カーボンナノチューブ化学 - 東京大学maruyama/visitors/yudasaka/...Fan et al. JPCB...

Post on 24-Jun-2020

0 views 0 download

Transcript of カーボンナノチューブ化学 - 東京大学maruyama/visitors/yudasaka/...Fan et al. JPCB...

カーボンナノチューブ化学

• 熱構造変化

• 開孔

• 内包

• エッジの化学

• その他

カーボンナノチューブの化学をカーボンナノチューブを使って行うのは、量が少なくて、困難。よって、ナノホーンで、化学研究したほうが、多くのことが分かる。

開孔方法

•酸化

(HNO3, H2SO4, H2O2, O2)

• メカニカルクラッシュ

酸素中加熱で開孔

Ar

Dry air

O2

T(target)

TimeP(keep)

Slow combustion

Quick combustionT(target)

O2

Time

Fan et al. JPCB 2006

問題:酸化処理により生じる炭素ゴミ

5nm

Hole opening by Combustion

As-grown

580oC, 10 min, O2 100%

Fan et al. JPCB 2006

解決法:炭素ゴミを取るために熱処理500oC, 2 h, 5x10-6 Torr

Fan et al. JPCB 2006

解決法:ゆっくり酸化(Slow combustion)

T(target): 550ºC

:炭素ゴミが少ない

Fan et al. JPCB 2006

開孔した事を確認する。

•比表面積、細孔容量

• TEM

• Raman スペクトル

Fan et al. JPCB 2006

Specific surface area

0 50 400 500 6000

400

800

1200

1600

Sp

ecif

ic s

urf

ace

area

(m

2/g

)

Oxidation temperature (oC)

Usual combustion

Slow combustion

N2 adsorption at 77K.

25 350 400 450 500 550 6000.0

0.1

0.2

0.3

0.4

Ad

sorp

tio

n Q

uan

tity

(g

/g)

Oxidation temperature (oC)

Xylene adsorption at r.t.

Slow combustion

BET吸着等温式(Brunauer,Emmett、Teller)

Fan et al. JPCB 2006

孔?

Holes in graphene walls

SWNHox

Ajima et al. Adv. Materials, 16 (2004) 397.

O2, 570oC, 15 minutes + HT in vac.

0

10

20

30

40

50

60

70

0-0.5 0.5-

1.0

1.0-

1.5

1.5-

2.0

2.0-

2.5

2.5-

3.0

3.0-

3.5

3.5-

4.0

4.0-

4.5

4.5-

5.0

5.0-

5.5

5.5-

6.0

Distribution of Hole Sizes.

2.3 nm

5 nm

Number of holes opened

on the tips

Number of the holes opened

on the side-walls

Hole size ( nm )

Num

ber

of h

oles

1.5 nm

0

10

70

60

50

40

30

20

0- 0.5- 1.0- 1.5- 2.0- 2.5- 3.0- 3.5- 4.0- 4.5- 5.0- 5.5-0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Ajima et al. Adv. Materials, 16 (2004) 397.

O2, 570oC, 15 minutes

1~3 nm

HeAr

N2CH4

SF6C60

0

0.1

0.2

0.3

0.4

as …

573

623

693Probe

molecules

Pore

volu

me

Heated

temperature

Hole sizes depending on oxidation temperature

Murata et al. JPCB 2002

C60が入れる大きさの孔

5nm

400 oC 450 oC

500 oC 550 oC

Yudasaka et al

SWNTs(Laser ablation) HNO3

water

Oil bath

(~130oC、>数時間)

Trap

酸を用いた開孔硝酸

As-grwon SWNTs(Laser ablation)

硝酸処理後(120℃、4h)

Nagasama et al. CPL 2000

SWNTs(Laser ablation) HNO3

water

Oil bath

(~130oC、>数時間)

O2 (250 Torr)

420oC, 20 min.

Trap

酸化性酸を用いた開孔硝酸

開孔縁の官能基

分析方法・ 定性:IR・ 定性:TPD-MS・ 定量:TGA可視化・ 染色→TEM

開孔縁にある官能基

化学修飾に使えるもの

3h-LAOx2h-LAOx1h-LAOx

2h-Ox

3h-Ox4h-Ox

O2, 500oC

as-grown

1800 1600 1400 1200 1000

Tra

nsm

ittan

ce (a

rb. u

nits

)

Wavenumbers (cm-1)

IR spectraO

C C

O

OC

OC

CC

C OH

OC

O H

OC

OC

O

C CO

Zhang et al. ACS Nano 2007

IR assignments of functional groups on carbon surfaces

Fanning PE, Vannice MA. Carbon 1993;31:721.

• C–O in ethers (stretching) 1000–1300• Alcohols 1049–1276 3200–3640• Phenolic groups:• C–OH (stretching) 1000–1220• O–H 1160–1200 2500–3620• Carbonates; carboxyl-carbonates

1100–1500 1590–1600• C=C aromatic (stretching) 1585–1600• Quinones 1550–1680• Carboxylic acids 1120–1200 1665–1760 2500–3300• Lactones 1160–1370 1675–1790• Carboxylic anhydrides 980–1300 1740–1880• C–H (stretching) 2600–3000

TPD-MS

20 200 400 600 800 1000 Temperature (

oC)

Co

un

ts (

arb

. u

nit

s)

3h-LAOx

2h-LAOx

1h-LAOx

2h-Ox

3h-Ox

4h-Ox

O2, 500oC

as-grown

Mass 44 (CO2)

Zhang et al. ACS Nano 2007

Fanning PE, Vannice MA. Carbon

1993;31:721.

0 200 400 600 800

84

86

88

90

92

94

96

98

100

Temperature (oC)

Wei

ght

(%)

3h-LAOx

2h-LAOx

1h-LAOx

2h-Ox3h-Ox

4h-Ox

O2, 500oC

as-grown

カルボキシル基の数を推定 TGA (He)

ナノホーン1本あたりの孔(直径~2nm)の数・・・・5個程度。(多すぎる。)

Zhang et al. ACS Nano 2007

カルボキシル基の可視化Hashimoto et al. PNAS 101(2004)8527.

One Gd-atomFour Gd-atoms

Gd(CH3COO)3

を使ってキレート結合でエッジにつける。

可視化 ( Site localization)-COOH + Pt(NH3)6(OH)4

-CO-O-NH2-Pt(NH3)5(OH)4

-COO- Pt(NH3)5(OH)4 (NH4)+

Xu et al. APA 2010

As grown

Ox-H2O2 26d

Ox-H2O2 6d

ox500oC As grown

Xu et al. APA 2010

Pt 化合物付着の様子とーCOOHの有無

0.5~0.9 1~1.4 1.5~1.9 2~2.4 2.5~2.9 >30

10

20

30

40

Num

ber

Pt particle size (nm)

SWNHasPt

0.5~0.9 1~1.4 1.5~1.9 2~2.4 2.5~2.9 >30

2

4

6

8

10

12

14

16

18

20

Num

ber

Pt particle size (nm)

SWNHox500Pt

0.5-0

.91-

1.41.5

-1.9

2-2.4

2.5-2

.9 >30

10

20

30

40

50

60

70

Num

ber

Pt particle size (nm)

SWNHox-6d, Pt

0.5~0.9 1~1.4 1.5~1.9 2~2.4 2.5~2.9 >30

20

40

60

80N

um

ber

Pt particle size (nm)

SWNHox-26d, Pt

Pt complex particles: Size distribution

Xu et al. APA 2010

Ptの量を測定できる。

Ptの量からCOOH量を推定。

TGA(酸素)

0 5 10 15 20 25

0

2

4

rt-400oC

W

eig

ht

loss

(%

)

Immersion period in H2O2 (days)

Ptの量は、COOHの量と相関。Xu et al. APA 2010

内包

1.気相(昇華法)2.液相3.吸着サイト4.内包物質の反応

(C60)n@SWNT (Peapod)

C60

SWNTs

1. Open SWNT tips

by Oxidation.

2. Expose to C60 Vapor

at 400 oC.

Hirahara et al. Phys. Rev. Lett. 85, 5384, 1999

Heat treatment at 1200 oC

C60@SWNT

Double-wall carbon nanotubes

Bandow et al. Chem. Phys. Lett. 337, 48, 2001

C60@SWNTs Double-walled carbon nanotubes

Nano-Condensation

Incorporation in liquid phase at room temperature.

CNT, SWNHGuest

molecules

Solvents

strong

weak

Nano-precipitation

Nano-Extraction

Nano-Titration, etc.

Affinity

balance

CNTsGuest

molecules

Solvents

Affinity

balance

Yudasaka et al. Chem. Phys. Lett. 2003.

Yuge et al, J. Phys. Chem. B 2005.

Filtration paper

TEM gridSolution

NTs, NHs

Nano-Condensation

Incorporation Methods:Non-equilibrium methods of C60 in

Liquid Phase at Room Temperature

M.Yudasaka et al., Chem. Phys. Lett., 380, 42 (2003).

Filter paper

TEM grid

C60 + Toluene

SWNT

or SWNH

Ajima et al. Adv. Materials, 16 (2004) 397.

5 nm

M.Yudasaka et al., Chem. Phys. Lett.,

380, 42 (2003).

C60 @ SWNTsC60 @ SWNHs

Ajima et al. Adv. Materials, 16 (2004) 397.

Incorporation Methods:Non-equilibrium methods of C60 in

Liquid Phase at Room Temperature

M.Yudasaka et al., Chem. Phys. Lett., 380, 42 (2003).

Nano-Extraction

C60 + EtOH + SWNT/ SWNH5 nm

Ajima et al. Adv. Materials, 16 (2004) 397.

Incorporation of ZnPc into SWNHs (NHox)

Dried in

N2 flow

at r. t.

Filtration,

and washing

with ethanol

SWNHox was

dispersed in DMSO-

Ethanol solution of

ZnPc

SWNHox was

immersed in

ZnPc-DMSO –

EtOH for 24 h

ZnPc@NHox

NHox

ZnPc-DMSO

24 h

Zhang et al PNAS 2008

10 nm

TEM image of ZnPc-SWNHox

COOH

COOH

Zhang et al PNAS 2008

Chemical Modification of ZnPc-SWNHox with BSA protein

ZnPc

~40 wt.%

Temperature (oC)

Wei

gh

t (%

)

TGA results

in O2

The content of ZnPc in SWNHox did not

change after modification with BSA.20 nm

ZnPc-SWNH-BSA

20 nm

ZnPc-SWNHox

BSA

~20 %

0 200 400 600 800 10000

20

40

60

80

100

Zhang et al PNAS 2008

C

Zn O

元素マッピング(EELS)Zhang et al PNAS 2008

Cisplatin (CDDP)@SWNHox

•Abundant incorporation :

CDDP 50 wt%

•Slow release : 4days

10 nm 2 nm

CDDP

clusters

CDDP+H2OCDDP@

SWNHox

Ajima, et al. ACS Nano 2008

Molecular structure confirmation for CDDP

in CDDP@SWNHox

EELS

Cl and C mapping

Z-contrast image

Pt: Bright spots

STEM image

Pt

Pt

Cl

Cl

H3N

H3NICP analysis Pt:Cl= 1:2

CDDP

Ajima, et al. ACS Nano 2008

内包量の評価は、金属(あるいは、SとかFとか)がない場合は簡単ではない。

5 nm

5 nm

10 nm2 nm

C60

TEM images of

C60@SWNHox prepared by

nano-precipitation (b and c),

and C60 crystal (indicated by

arrow) deposited on as-grown

SWNHs (d). TEM image of

residue obtained by stopping

TG measurement of 15%-

C60@SWNHox at 500C,

indicating most of C60 was

eliminated by combustion with

O2 (e).

C60/asSWNHC60@SWNHox

C60@SWNHox

500℃ TGA reside

Yuge et al. JPCB 2005

200 400 600 800 10000

50

100

0.0

0.3

0.6

Temperature (C)

Wei

ght

(%)

Deriv. W

eight (%

/C)

SWNHox

1% (0.01 g/g)

3% (0.03 g/g)

10% (0.11 g/g)

15% (0.18 g/g)

40% (0.67 g/g)

C60@SWNHox

Raman spectra

Yuge et al. JPCB 2005

200 400 600 800 1000

0

20

40

60

80

100

as-grown SWNHs

40%-C60

/SWNH (as-grown)

Temperature (ºC)

Weig

ht

(%)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Deriv

. Weig

ht (%

/ºC)

C60@as-SWNH

Raman spectra

0

200

400

10 15 20 25 300

500

1000

1500

0

2000

4000

6000

Inte

nsit

y (

arb

. u

nit

s)

2 theta (degree)

0%

15%

40%

60% -C60@SWNHox

15%-C60/as-SWNH

C60(1

11)

(22

0)

(311)

(22

2)

(33

1)

(42

0)

XRD

Yuge et al. JPCB 2005

1000 1200 1400 1600 1800

0.2

0.4

0.6

0.8

1.0

In

ten

sit

y (

arb

. u

nit

s)

Raman shift (cm-1)

1466 cm-1

C60@SWNHox-tol

C60@SWNHox

(TGA residue)

15%-C60@SWNHox

SWNHox

Raman spectra

1400 1420 1440 1460 1480 1500 1520 1540

0.15

0.20

0.25

0.30

0.35

0.40

Inte

nsi

ty (

arb

. u

nit

s)

Raman shift (cm-1)

15%-C60@SWNHox

3%-C60@SWNHox

40%-C60@SWNHox

15%-C60/as-SWNHs

40%-C60/as-SWNHs

Raman spectra

1420 1440 1460 1480 1500

0.14

0.15

0.16

0.17

0.18

T= 120 min

T= 90 min

T= 60 min

In

ten

sity

(arb

. u

nit

s)

Raman shift (cm-1)

T= 30 min

Raman spectra

(レーザー照射によるC60ラマンピーク

強度の減衰。SWNHox内部にあ

ると減衰速度は遅くなる。)

15%-C60@SWNHox

Starting quantity of C60

in the initial mixture of

C60, SWNHox, and

toluene

% 1 3 10 15 40 60

g/g 0.01 0.03 0.11 0.18 0.67 1.50

vol/vol 0.02 0.05 0.17 0.28 1.06 1.65

Ratio of incorporated

C60 and SWNHox in the

end products of

C60@SWNHox

g/g 0 0.03 0.09 0.11 0.22 **

vol/vol 0 0.05 0.15 0.19 0.36 **

In calculating C60 quantities in units of vol/vol, the density of the C60 crystal (1.68 g cm-3)

and the pore volume of the inside space of the SWNHox (0.36 ml g-1)13 were applied.

カギになる元素がいない場合には、量の計測が容易ではない。

SWNH外部にはC60がいないことを確認。 TGAからC60量を見積もった。

内包量は、仕込み量で制御できる。

Hashimoto, A. et al.,

Proc. Natl. Acad. Sci. USA, (2004).

5 nm1. Stirring of NHox and Gd(OAc)3・4H2O

in EtOH for 24 hrs at r.t.

2. Filtration

3. Sonication in EtOH for 20 sec

4. Filtration

5. Vacuum drying

Gd(III)-NHox

Equilibrium methods for preparingGd-acetates@SWNHox

NHoxGd(III)

-NHox

Nano-

windowGd

acetates

SWNHox and Gd(OAc)3・4H2O are

immersed in EtOH at room temperature.

Gd(OAc) ・0.5H2O

( From TG-MS and IR )

(Gd(OAc)3 ・4H2O was changed.)

吸着サイト

Inter-SWNH pore

0.1 ml/g

Intra-SWNH pore I

0.2 ml/g

Intra-SWNH pore II

0.2 ml/g

100 200 3000.0

0.1

0.2

Temperature (oC)

∂(w

eig

ht)

/∂T

(%

/oC

)Desorption of

xylene and benzene CH3

CH3

Single-wall carbon nanohorns

1 nm

20 nm

0 100 200 300 400 500 600

0.00

0.05

0.10

0.15

0.20

0.25

Temperature at

maximum of

DW curve

(T(desorb))

Temperature (oC)

Wei

ght

(%)

Der

iv. W

eight

(%/o

C)

0 100 200 300 400 500 60070

75

80

85

90

95

100

Desorptionquantity

(DQ)

dry air

NHoxXylene@NHox

1 hour 0 ~ 21 days

xylene,

Temperature (oC)

CH3

CH3

Fan CPL 2004Yudasaka et al. JPCB 2005

0 100 200 500 600

70

80

90

100

0 100 200 500 600

0.0

0.1

0.2

Wei

gh

t (%

)D

eriv

. W

eig

ht

(%/o

C)

Temperature (oC)

Temperature (oC)

21 days

11

7

0

1

2

21 days

11

7

0

12

0 100 200 500 60070

80

90

100

As-grown

350

450580

600

Temperature (oC)

Wei

gh

t (%

)

0 100 200 500 6000.0

0.1

0.2

As-grown

350450

550oC580600

Temperature (oC)

Der

iv.

Wei

gh

t(%

/oC

)

550oC

Xylene adsorption quantity depended on hole-opening temperatures.

Adsorbed xylene was released slowly.CH3

CH3

0 5 10 15 200

5

10

15

20

25

0

50

100

150

DQ

(%

)

T(d

esorb

) (oC

)

Period(air) (days)Tox (oC)

DQ

(%

)

T(d

esorb

) (oC

)

0 30300 400 500 6000

5

10

15

20

25

0

20

40

60

80

100

Xylene adsorption quantity depended on hole-opening temperatures.

Adsorbed xylene was released slowly.CH3

CH3

XY

Z

0.2

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.05

0.0

0.05

0.0

0 100 200 300 400

Temperature (oC)

Der

iv, W

eight

(%oC

-1)

Tox: 600oC

580oC

550oC

450oC

350oC

As-grown

Der

iv. W

eight

(%oC

-1)

Temperature (oC)

Periods left in

dry air for 21 days

11 days

2 days

0 dayX Y

Z

0 100 200 3000.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

Xylene adsorption quantity depended on hole-opening temperatures.

Adsorbed xylene was released slowly. CH3

CH3

0 10 200

10

2040

80

120

160

200

0 10 20 0 10 20

Periods in air (days)

T(desorb)

FWHM

Quantity

X YZ

T(d

eso

rb)(

oC

), F

WH

M(o

C),

Qu

anti

ty (

g/1

00

g)

X Y Z

T(desorb)

FWHM

Quantity

Tox (oC)0 200 400 600

0

10

60

80

100

120

140

160

180

0 200 400 6000 200400600

Z

Y

X

燃焼で消滅強く吸着放出しにくい

CH3

CH3

燃焼で消滅しない弱く吸着放出しやすい

燃焼で消滅しない強く吸着放出しにくい

0 30 300 400 500 6000

2

4

6

8

10

12

14

0

20

40

60

80

100

Tox (oC)

DQ

(%)

T(d

esorb

) (oC

)

0 2 4 6 8 10 12 14 16 18 20 220

5

10

15

20

25

0

20

40

60

80

100

120

140

160

DQ

(%)

T(d

esorb

) (oC

)

Period(air) (days)

Benzene adsorption quantity depended on hole-opening temperatures.

Yudasaka et al. JPCB 2005

0.0

0.1

0 50 100 150 200 250 300

0.0

0.1

0.0

0.10.0

0.10.0

0.10.0

0.1

0.0

0.1

Temperture (oC)

Deri

v.

of

weig

ht (%

/oC

)

YZ

Tox 620oC

600

580

550

450

350

As-grown

0 100 200 300

0.00

0.05

0.00

0.05

0.00

0.05

0.00

0.05

0.10

0 day

4 days

1 day

Temperture (oC)

Der

iv. of

wei

ght

(%/o

C)

YZ

Periods left in dry air.

16 days

Benzene adsorption quantity depended on hole-opening temperatures.

Yudasaka et al. JPCB 2005

0 200 400 6000 200 400 600

0

10

50

100

150

0 5 10 15

0246

50

100

150

200

0 5 10 15

T(d

eao

rb)

(oC

), F

WH

M (

oC

) Q

uan

tity

(g

/SW

NH

ox

10

0 g

)

Y

Z

T(desorb)

FWHM

Quantity

Period (air) (days)

Tox (oC)

Y Z

T(desorb)

FWHM

Quantity

Z

Y

X

消滅しやすい強く吸着放出しにくい

消滅しない弱く吸着放出しやすい

消滅しない強く吸着放出しにくい

Xサイトからの放出がない!

Yudasaka et al. JPCB 2005

sites X Y Z

Xylene/SWNHox

Desorption quantity

(mole/SWNHox(100g))0.17 0.11 0.046

Desorption temp (oC) 75 120 170

sites Y Z

Benzene/SWNHox

Desorption quantity

(mole/SWNHox(100g))Not detected 0.12 0.026

Desorption temp (oC) Not detected 80-110 130-190

0.17

mole/SWNHox(100g)

Yudasaka et al. JPCB 2005

K. Ajima, et al. Adv. Mater. 2004, 16, 397–401.

C60 molecules (0.7 nm) were preferentially incorporated at sites of NHox with diameters of 1−2 nm.

2 nm

1.2 nm 1.2 nm 1.6 nm 1.9 nm

Relation between number of C60 molecules and local

diameters of NHox

0

5

10

15

20

25

30

35

0.5-

0.9

1.0-

1.4

1.5-

1.9

2.0-

2.4

2.5-

2.9

3.0-

3.4

3.5-

3.9

4.0-

Local diameter: 2r (nm)

Num

ber

of

inco

rpo

rate

dC

60

mo

lecu

le

S. Okada et al., Phys. Rev. B 2003, 67, 205411–

205415.

1.2 1.3 1.4 1.5 1.6 1.7

1.8

ΔE

(eV

/Fulle

rene)

SWNT diameter (nm)

(1.5 nmf)C60@SWNTs

C70@SWNT

s

Stability of peapod depends on diameter of SWNTsC60 encapsulation in nanospaces by van der Waals force

(1.5 nmf)

Quantum Effects on Hydrogen Isotope

Adsorption on Single-Wall Carbon Nanohorns

Tanaka et al. JACS 2005

Quantum effects cause the density of adsorbed H2 inside the

SWNH to be 8-26% smaller than that of D2

Nanowindow-Regulated Specific Capacitance of

Supercapacitor Electrodes of Single-Wall Carbon

Nanohorns

Yang et al.

JACS 2006CAN アセトニトリル,

PC プロピレンカーボネート

H2SO4/H2O < Et4NBF4/ACN <

Et4NBF4/PC (Et4N+â7ACN, 1.30 nm; BF4

-â9ACN, 1.16 nm; Et4N+â

4PC, 1.35 nm; BF4

-â8PC, 1.40 nm).