Experimental validation of FENDL-3 nuclear data library Paola Batistoni

Post on 27-Jan-2016

51 views 0 download

Tags:

description

Associazione Euratom-ENEA sulla fusione. Experimental validation of FENDL-3 nuclear data library Paola Batistoni ENEA - Fusion and Nuclear Technology Dept. Frascati - ITALY FENDL-3 1 st Research Co-ordination Meeting IAEA Hq, Vienna, 2-5 December 2008. - PowerPoint PPT Presentation

Transcript of Experimental validation of FENDL-3 nuclear data library Paola Batistoni

Experimental validation of FENDL-3 nuclear data

library

Paola BatistoniENEA - Fusion and Nuclear Technology Dept.

Frascati - ITALY

FENDL-3 1st Research Co-ordination MeetingIAEA Hq, Vienna, 2-5 December 2008

Associazione Euratom-ENEA sulla fusione

Machine operation, protection, maintenance & Safety

• Nuclear heating (e.g.: < 14 KW in TFC)

• Fast neutron fluence (e.g.: <1023 n/m2 Nb3Sn, <5•1021 n/m2

insulators) < 1(3) appm He-production thick (thin) < 1 dpa for re-welding• Integrated dose (e.g. <10 MGy to insulators) • Activation (short and long term, dust and ACP estimate, waste estimate)• Shutdown dose rates (repair, replacement maintenance)• Decay heat (heat removal capabilities after accident) • Shielding properties of inner components (streaming paths)

• Tritium breeding Calculations validated by experiments (nuclear data &

codes) with assessment of uncertainties

Radiation loads in fusion devices (e.g. ITER)

(e.g. ITER: 500 MW fusion power, 1.78 x 1020 n/s)

Neutronic calculations and analyses shall conform to the ITER Management and Quality Program.

ITER Project Management and Quality Program: Quality Assurance in Neutronic Analyses (ITER_D_23H9A4, May 2006)

• Computer software & data must be verified and validated prior to use

• …………. • The FENDL-2.1 library is the reference nuclear data library for

nuclear analyses for ITER• ……

QA in ITER Neutronics Analyses

FENDL-2.1 has been verified and validated for neutronic calculations using available fusion benchmark experiments performed during the ITER R&D activities

Same procedure for FENDL-3

Frascati 14-MeV Neutron Generator (FNG)

• ENEA, Frascati Research Centre (Italy)

• Accelerator based T(d, n) Ed =300 keV

• European facility for fusion neutronics

Shielding activation development of detectors

• Operating since 1992

• MAIN PARAMETERS 

14-MeV neutron intensity 1011 n/s14-MeV neutron flux 1010 n/(cm2s)D+ beam energy / current 260 keV / 1 mATarget tritium content 370 GBq

Generatore di neutroni FNG

Benchmark experiments performed at FNG and used for FENDL-2.1 /MC validation :

• Stainless steel experiment

• Bulk shield experiment (inboard shield, stainless steel & water)

• Streaming experiment (shield with streaming channel, stainless steel & water)

• Silicon Carbide (SiC) block

• Tungsten block

• HCPB Breeder blanket (Be / Li2CO3) experiment

• HCLL Breeder blanket (LiPb) experiment in progress

• Shutdown dose rate

Fusion neutronics experiments at FNG

All experiments available in SINBAD Fusion benchmarks database (NEA/OECD)

Main materials in FNG experiments

ENDF/B-VI.8ENDF/B-VI.8

ENDF/B-VIENDF/B-VI

ENDF/B-VI ENDF/B-VI

Li-6Li-7

JENDL-FFJENDL-FFENDF/B-VI (C-nat)C-12

ENDF/B-VI.8JENDL-FFENDF/B-VIO-16

Pb

JENDL-FFJENDL-FFENDF/B-VIBe-9

ENDF/B-VI.8ENDF/B-VIENDF/B-VICr-50,52,53,54

ENDF/B-VI.8JENDL-FF (W-nat)ENDF/B-VIW-182,3,4,6

JEFF-3.0 (EFF-3.0)

ENDF/B-VI.8ENDF/B-VIENDF/B-VI

ENDF/B-VIENDF/B-VI

Ni-58,60Ni61,62,64

JEFF-3.0 (EFF-3.1)EFF-3.0

ENDF/B-VI

Fe-56

FENDL-2.1FENDL-2.0FENDL-1.0Materials

Si-28 BROND-2 ENDF/B-VI.8 ENDF/B-VI.8

Fe-54,57,58,59

ENDF/B-VI

ENDF/B-VI ENDF/B-VI

ENDF/B-VI ENDF/B-VI.8

Mock-up of the ITER inboard first wall/shielding blanket/vacuum vessel/toroidal magnet

Measurements of the neutron flux as a function of depth by activation foils

Bulk Shield experiment

Neutron energyE> 10 MeV

Nb-93(n,2n)

Ni-58(n,2n)

Bulk Shield experiment

Neutron energyE> 3 MeV

Fe-56(n,p)

Al-27(n,a)

Bulk Shield experiment

Neutron energyE> 0.8 MeV

Ni-58(n,p)

In-115(n,n’)

Bulk Shield experiment

Neutron energyE eV

Mn-55(n,)

Au-197(n,)

Bulk Shield experiment

Nuclear heating well predicted within 15% uncertainty in FW, SB and VV 30% in TF coils (underestimation)

Neutron and gamma fluxes (He-production, radiation damage) well predicted within 15% uncertainty at the VV and 30% at the TF coil (underestimation)

Bulk Shield experimentNuclear heating in steel and copper

Conclusions :

Mock-up of the ITER inboard first wall/shielding blanket /vacuum vessel/toroidal magnet with a streaming channel (3 cm diam)

Measurements of the neutron flux as a function of depth by activation foils

in the channel in the box in the shield behind

Streaming experiments

Nb-93(n,2n)E > 10 MeV

Al-27(n,a)E > 5 MeV

Streaming experiment

Ni-58(n,p)E > 1.5 MeV

Au-197(n,g)E 5 eV

Streaming experiment

Activation measutrements in the cavity Similar results are obtained with the other activation reactions

Streaming experiment

Results & uncertainties similar to those obtained in bulk shield

The presence of penetrations does not deteriorate C/E values

Conclusions :

Measurements of the neutron flux in four positions at different depths by activation foils

Silicon Carbide block (SiC, advanced low-activation structural material)

Siicon Carbide (SiC) experiments

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 10 20 30 40 50 60

Depth (cm)

C/E

Nb-EFF-2.4

Nb-FEN-2

Nb-EFF-3

Nb-FEN-2.1Nb-93(n,2n)

Al-27(n,a)

Ni-58(n,p)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 10 20 30 40 50 60

Depth (cm)

C/E

Al-EFF-2.4

Al-FEN-2

Al-EFF.3

Al-FEN-2.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 10 20 30 40 50 60

Depth (cm)

C/E

Ni-EFF-2.4

Ni-FEN-2

Ni-EFF.3

Ni-FEN-2.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Depth (cm)

C/E

Au-197(n,g)-EFF-2.4

Au-197(n,g)-FEN-2.0

Au-197(n,g)-EFF-3.0

Au-197(n,g)-FEN-2.1Au-197(n,g)

E > 3 MeV

E > 1 MeV

E eV

E > 10 MeV

Conclusions: Significant underestimation of the fast neutron flux

DENSIMET-176 (93.2%w W, 2.6%w Fe, 4.2%w Ni, 17.70 g/cm3). DENSIMET-180 (95.0%w W, 1.6%w Fe, 3.4%w Ni, 18.075 g/cm3)

Measurements of the neutron flux in four positions at different depths by activation foils

Tungsten block (armour material for plasma facing components)

Tungsten (W) experiments

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 5 10 15 20 25 30 35 40

Depth (cm)

C/E

Nb-93(n,2n) / EFF-2Nb-93(n,2n) / FEN-2Nb-93(n,2n) / JEN-3.2Nb-93(n,2n) / FEN-2.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 5 10 15 20 25 30 35 40

Depth (cm)

C/E

Zr-90(n,2n) / EFF-2Zr-90(n,2n) / FEN-2Zr-90(n,2n) / JEN-3.2Zr-90(n,2n) / FEN-2.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 5 10 15 20 25 30

Depth (cm)

C/E

Ni-58(n,2n) / EFF-2Ni-58(n,2n) / FEN-2Ni-58(n,2n) / JEN-3.2Ni-58(n,2n) / FEN-2.1

E > 10 MeV

Nb-93(n,2n)

Zr-90(n,2n) Ni-58(n,2n)

W experiment

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 5 10 15 20 25 30 35 40

Depth (cm)

C/E

Ni-58(n,p) / EFF-2Ni-58(n,p) / FEN-2Ni-58(n,p) / JEN-3.2Ni-58(n,p) / FEN-2.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 5 10 15 20 25 30 35 40

Depth (cm)

C/E

Al-27(n,a) / EFF2Al-27(n,a) / FEN-2Al-27(n,a) / JEN-3.2Al-27(n,a) / FEN-2.1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 5 10 15 20 25 30 35 40

Depth (cm)

C/E

Fe-56(n,p) / EFF-2Fe-56(n,p) / FEN-2Fe-56(n,p) / JEN-3.2Fe-56(n,p) / FEN-2.1

E > 3 MeV

Ni-58(n,p)

Fe-56(n,p)Al-27(n,a)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0 5 10 15 20 25 30 35 40

Depth (cm)

C/E

Au-197(n,g) / EFF-2Au-197(n,g) / FEN-2Au-197(n,g) / JEN-3.2Au-197(n,g) / FEN-2.1

Au-197(n,g)

E > 1 MeV E eV

E > 3 MeV

W experiment

Conclusion: Significant improvement from FENDL-2.0 to FENDL-2.1

Dose rate experiments

gamma spectrometer (NE 213 liquid scintillator)

tissue-equivalent dose rate meter(NE 105 plastic scintillator)

Mock-up of the ITER vacuum vessel

Measurement of the shutdown dose rate after long irradiation with 14 MeV neutrons

• Numerical tools developed combining transport & activation codes (MCNP,FISPACT)

• Validation of different approaches of combination: D1S, R2S

Conclusions:

Shut down dose rate at the vacuum vessel level can be predicted within 25% uncertainty up to 4 months decay time

Measurements of tritium production in 4 positions P.2 – P.8 by Li2CO3 pellets (nat. Li)(12 pellet/position) and of the neutron flux in the central Be layer by activation foils

Mock-up of the EU breeder blanket Helium Cooled Pebble Bed (HCPB)

HCPB Breeder blanket experiments

Total uncertainty on C/E comparison ~9% (2 ) C/E sligthly underestimated by 5-15%, generally within total uncertainty

Conclusions:

C/E Comparison for T measurementsAnalysis performed with EFF-3Very similar results obtained with FENDL-2.1

Cross section sensitivity/uncertainty analysis (FZK, NEA-DB)

Sensitivities (%/%) of calculated T- production vs cross sections

Total uncertainties (2) on total T- production vs cross sections

 cross

section

Li-6(n,t) Li-7(n,n't)

TUD 1 TUD 3 TUD 5 TUD 7 TUD 1 TUD 3 TUD 5 TUD 7

Be-9elastic 1.999 2.091 1.784 1.672 0.048 -0.001 -0.053 -0.130

(n,2n) 0.716 0.710 0.664 0.611 -0.016 -0.191 -0.398 -0.619

Li-6 (n,t) 0.326 0.248 0.179 0.152 0.000 0.000 0.000 0.000

Li-7 (n,n't) 0.001 0.001 0.000 0.000 0.990 0.982 0.972 0.960C-12,O-

16   < 0.1

Be9 Li6 Li7 O16 C12 total

TUD 1 3.5% 0.30% 0.60% 0.30% 0.10% 3.58%

TUD 3 4.3% 0.20% 0.40% 0.30% 0.03% 4.33%

TUD 5 4.0% 0.20% 0.30% 0.40% 0.03% 4.04%

TUD 7 3.5% 0.10% 0.20% 0.40% 0.03% 3.53%

0.80

0.90

1.00

1.10

1.20

1.30

0 5 10 15 20 25

Depth (cm)

C/E

Au(n,g) IRDF02 Nb(n,2n) IRDF02

Al(n,a) IRDF02 Ni(n,p) IRDF02

case c) EFF2.4/Be-9 from FENDL2.0

0.80

0.90

1.00

1.10

1.20

1.30

1.40

0 5 10 15 20 25

Depth (cm)

C/E

Au(n,g) IRDF02 Nb(n,2n) IRDF02

Al(n,a) IRDF02 Ni(n,p) IRDF02

case d) JEFF-3.1

0.80

0.90

1.00

1.10

1.20

1.30

0 5 10 15 20 25

Depth (cm)

C/E

Au(n,g) Nb(n,2n)

Al(n,a) Ni(n,p)

case e) FENDL-2.1

Analysis of activation measurements in Beryllium

Conclusions

Neutron flux well predicted in Be within 5-10% uncertainty (shielding properties)

HCLL Breeder blanket experiments (2008-2009)

Mock-up of the EU breeder blanket Helium Cooled Pebble Bed (HCPB)

Measurements of tritium production in 15 positions by• Li2CO3 pellets (nat. Li & Li-6

enr.)• TLDs (TLD-600,TLD-700)and of the neutron flux in LiPb by activation foils

(started on 26/11, in progress)

LiPb (15.7 at% nat-Li) 630 kg

Eurofer 11 plates, 9 mm thick

Polyethylene

0

20

40

60

80

100

120

140

160

180

0 10 20 30Depth (cm)

T-S

peci

fic A

ctiv

ity (

Bq/g

) . Natural Li

Li-6 enriched 95%

The use of two types of Li2CO3 pellets (nat. Li and 95% Li-6 enriched) will allow to separate contribution from Li-6 and L-7 tritium producing reactions.

Conclusions

• Shielding, activation and dose rate calculations for ITER validated for many materials / components using FENDL- 2.1 reference library

• Neutron fluxes predicted in stainless steel/water shield assemblies within 30% uncertainty at 1 m depth. Underestimation of fast neutron flux observed

• Significant underestimation of the fast neutron flux is found in SiC with FENDL-2.1 (20% at 50 cm)

• Significant improvement from FENDL-2.0 to FENDL-2.1 in tungsten

• Very good prediction of neutron flux in HCPB blanket mock-up (Be/ Li2CO3) Tritium production underestimated by 5-15%, generally within total uncertainty ( 9%, 2)•HCLL blanket experiment in progress

•Only main structural in vessel materials investigated so far