Evolution of the Ocean’s Biological PumpForaminifera Mesoproterozoic Neoproterozoic Phanerozoic Cm...

Post on 27-Feb-2021

2 views 0 download

Transcript of Evolution of the Ocean’s Biological PumpForaminifera Mesoproterozoic Neoproterozoic Phanerozoic Cm...

Evolution of the Ocean’sBiological Pump

Andy Ridgwell

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

Evolution of the Biological Pump

Evolution of the Biological Pump

Coccolithophorids Radiolaria

DinoflagellatesDiatoms

Acritarchs

Ma

rtin

[1

99

5]

Major changes in plankton assembledge

Foraminifera

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

Evolution of the Biological Pump

Coccolithophorids Radiolaria

DinoflagellatesDiatoms

Acritarchs

Ma

rtin

[1

99

5]

Major changes in plankton assembledge

Foraminifera

0

1000

2000

3000

4000

5000

6000

7000

? ?Occurrence of ice ages (relative intensity)

Cro

we

ll [1

999]

Royer et al. [2004]

atmosphericpCO (ppm)2

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

deepocean

surfaceocean

CO fixation2

C oxidationorg

C oxidationorg

Evolution of the Biological Pump

Both physical/geochemical and biological/ecological changes occurring through Earth history will affect the processes that govern the partitioning of carbon (and alkalinity) between the surface ocean (and hence atmosphere) and ocean interior, and conversely, oxygen.

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

50

50 50

100

100

100 100

150150

150

150

200

200 200250 250

300

50

50 50

100

100

100 100

150150

150

150

200

200 200250 250

300

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

0 30 60 90-30-60-90

-1Dissolved oxygen (mmol kg )

0 300

De

pth

(km

)

0

4

2

5

1

3

Modern Pacific (zonal mean)

0 30 60 90-30-60-90

-1Dissolved oxygen (mmol kg )

0 300

-1Dissolved H S (mmol kg )2

300 0

Evolution of the Biological Pump

==?

High atmospheric pO2 Low atmospheric pO2

(1) Interrogating the biological pump in silico.

(2) The fundamental importance ... or not ... of the advent of pelagic calcification and mineral ‘ballasting’ of particulate organic matter fluxes.

(3) Extinctions as a window onto the biological pump components.

(4) The fundamental importance ... or not ... of physical ocean changes and particularly warming.

(5) What came before the (vertical) particulate carbon pump?

Evolution of the Biological Pump: TALK OUTLINE

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

Evolution of the Biological Pump: in silico

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

! calculate carbonate alkalinity

loc_ALK_DIC = dum_ALK & & - loc_H4BO4 - loc_OH - loc_HPO4 - 2.0*loc_PO4 - loc_H3SiO4 - loc_NH3 - loc_HS & & + loc_H + loc_HSO4 + loc_HF + loc_H3PO4

! estimate the partitioning between the aqueous carbonate species

loc_zed = ( & & (4.0*loc_ALK_DIC + dum_DIC*dum_carbconst(icc_k) - loc_ALK_DIC*dum_carbconst(icc_k))**2 + & & 4.0*(dum_carbconst(icc_k) - 4.0)*loc_ALK_DIC**2 & & )**0.5 loc_conc_HCO3 = (dum_DIC*dum_carbconst(icc_k) - loc_zed)/(dum_carbconst(icc_k) - 4.0)

loc_conc_CO3 = & & ( & & loc_ALK_DIC*dum_carbconst(icc_k) - dum_DIC*dum_carbconst(icc_k) - & & 4.0*loc_ALK_DIC + loc_zed & & ) & & /(2.0*(dum_carbconst(icc_k) - 4.0))

loc_conc_CO2 = dum_DIC - loc_ALK_DIC + & & ( & & loc_ALK_DIC*dum_carbconst(icc_k) - dum_DIC*dum_carbconst(icc_k) - & & 4.0*loc_ALK_DIC + loc_zed & & ) & & /(2.0*(dum_carbconst(icc_k) - 4.0))

loc_H1 = dum_carbconst(icc_k1)*loc_conc_CO2/loc_conc_HCO3

loc_H2 = dum_carbconst(icc_k2)*loc_conc_HCO3/loc_conc_CO3

open oceansea ice

terrestrialbiota

atmosphere

marine biota

sed

imen

ts

soils

land surface and hydrology

icesheet

2D energy-moisture balance(no clouds, dynamics)

fully 3D (‘reducedphysics’)

ocean

surf

ace layer

bioturbatedzone of 1 cm

sedimentstack layers

partially-filledupper-most

layer

bio

turb

ati

on

al

mix

ing

non-bioturbated

zone ofburied layers

simplifiedthermo-dynamic

Includes ‘main’ climate feedbacks

Nutrients: P, N, Fe, Si

Trace metals: Fe, Cd, Mo13 14

Isotope tracers: C, C, 7 15 30 34 44 144

Li, N, Si, S, Ca, Nd

‘Fast’: ~5,000 years per 24 single core hours

Simulation of the marine sedimentary record‘GENIE’

!

Evolution of the Biological Pump: in silico

tinyurl.com/kmjhe4s

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

!

Coccolithophorids Radiolaria

DinoflagellatesDiatoms

Acritarchs

Ma

rtin

[1

99

5]

Major changes in plankton assembledge

Foraminifera

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

Evolution of the Biological Pump:The Mesozoic planktic calcifier revolution

Coccolithophorids Radiolaria

DinoflagellatesDiatoms

Acritarchs

Ma

rtin

[1

99

5]

Major changes in plankton assembledge

Foraminifera

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

Evolution of the Biological Pump:The Mesozoic planktic calcifier revolution

Evolution of the Biological Pump:Planktic carbonate production and ‘ballasting’

00

-2-1

Flu

x of P

OC

(g m

yr

)

1

2

3

4

5

6

7

10 20 30 40-2 -1Flux of CaCO (g m yr )3

00

1

2

3

4

5

6

7

10 20 30 40-2 -1Flux of opal (g m yr )

00

1

2

3

4

5

6

7

10 20 30 40-2 -1Flux of detrital (g m yr )

2R = 0.49

2R = 0.13

2R = 0.22

Compilation of sediment trap observations: depths >= 2000 m (to exclude hydrodynamically distorted fluxes and relationships) and differentiated by basin:

, , , .

[Wlison et al., 2012; GBC 26, doi:10.1029/2012GB004398]

cyan == Atl yellow == Ind green == Pac magenta == SO

13

dC

(‰

)

1.0

1.5

2.0

2.5

3.0

65.2 65.3 65.4 65.5 65.6

Time (Ma)Ridgwell et al. [in prep]

1210

465Planktic(bulk carbonate)

Benthic(foraminifera)

Paleogene Cretaceous

Evolution of the Biological Pump: ‘Hiccups’(temporary disruption or removal of one or more processes)

65.2 65.3 65.4 65.5 65.6

Time (Ma)

13

dC

(‰

)

1.0

1.5

2.0

2.5

3.0

Ridgwell et al. [in prep]

1210

465Planktic(bulk carbonate)

Benthic(foraminifera)

Evolution of the Biological Pump: ‘Hiccups’(temporary disruption or removal of one or more processes)

high nutrient & DIC13

low d C

low nutrient & dissolvedinorganic carbon (DIC)

13high d C

13

dC

GR

AD

IEN

T

(microbial) degradation:organic matter ® nutrients+DIC

Biological productivity:nutrients+DIC ® organic matter

gra

vit

ati

on

al sett

lin

g

up

wellin

g a

nd

mix

ing

of n

utrie

nts

an

d D

IC

-20 to -30‰

Evolution of the Biological Pump: ‘Hiccups’

65.2 65.3 65.4 65.5 65.6

Time (Ma)

13

dC

(‰

)

1.0

1.5

2.0

2.5

3.0

Ridgwell et al. [in prep]

1210

465

Severe extinction amongstcalcifying plankton

(and less interesting creaturessuch as dinosaurs etc.)

Planktic(bulk carbonate)

Benthic(foraminifera)

(biogenic mineral flux == 0)&&

(organic carbon flux == 0)=> ballasting == .true.

Evolution of the Biological Pump: ‘Hiccups’

Oce

an d

epth

(km

)

5

4

3

2

1

0

13d C (‰)DIC

-0.5 0.0 0.5 1.5 2.51.0 2.0 3.0

modern observations (Pacific mean)

0 60 120-90

0

90

180-120 -60-180

0

Ocean depth (km)3 6

Evolution of the Biological Pump: ‘Hiccups’

Oce

an d

epth

(km

)

5

4

3

2

1

0

13d C (‰)DIC

-0.5 0.0 0.5 1.5 2.51.0 2.0 3.0

0 60 120-90

0

90

180-120 -60-180

0

Ocean depth (km)3 6

model vs. modern observations

Evolution of the Biological Pump: ‘Hiccups’

‘Suess Effect’

!

Oce

an d

epth

(km

)

5

4

3

2

1

0

13d C (‰)DIC

-0.5 0.0 0.5 1.5 2.51.0 2.0 3.0

0 60 120-90

0

90

180-120 -60-180

0

Ocean depth (km)3 6

Evolution of the Biological Pump: ‘Hiccups’

model ( ) vs.13choosing: d C = -4.5‰atm latest Maastrichtian proxies

!

Oce

an d

epth

(km

)

5

4

3

2

1

0

13d C (‰)DIC

-0.5 0.0 0.5 1.5 2.51.0 2.0 3.0

Evolution of the Biological Pump: ‘Hiccups’

model vs. early Paleogene

!

Oce

an d

epth

(km

)

5

4

3

2

1

0

13d C (‰)DIC

-0.5 0.0 0.5 1.5 2.51.0 2.0 3.0

0% biological activity

Evolution of the Biological Pump: ‘Hiccups’ !

-90 -60 -30 0 6030 90

Depth

(km

)

5

S N13

dC

(‰

)

3.0

-0.5

4

3

2

1

0

bio

tic

Evolution of the Biological Pump: ‘Hiccups’

13Modern Pacific zonal d C profile(DIC)

!

-90 -60 -30 0 6030 90

Depth

(km

)

5

S N13

dC

(‰

)

3.0

-0.5

4

3

2

1

0

Depth

(km

)

5

4

3

2

1

0

increasing fractionation between pCO and [CO ]2 2

with decreasing temperature towards to poles

ab

ioti

cb

ioti

c

!

Oce

an d

epth

(km

)

5

4

3

2

1

0

13d C (‰)DIC

-0.5 0.0 0.5 1.5 2.51.0 2.0 3.0

Evolution of the Biological Pump: ‘Hiccups’

30-40% biological activity

Answer:

A somewhat reduced biological pump ...

Oce

an d

epth

(km

)

5

4

3

2

1

0

13d C (‰)DIC

-0.5 0.0 0.5 1.5 2.51.0 2.0 3.0

shallow (150 m) organic matter remineralization

Evolution of the Biological Pump: ‘Hiccups’

Answer:

A somewhat reduced biological pump ...

... or, a strange and different biological pump, consistent with profound ecological change post impact?

Evolution of the Biological Pump:Planktic carbonate production and ‘ballasting’

00

-2-1

Flu

x of P

OC

(g m

yr

)

1

2

3

4

5

6

7

10 20 30 40-2 -1Flux of CaCO (g m yr )3

00

1

2

3

4

5

6

7

10 20 30 40-2 -1Flux of opal (g m yr )

00

1

2

3

4

5

6

7

10 20 30 40-2 -1Flux of detrital (g m yr )

2R = 0.49

2R = 0.13

2R = 0.22

Compilation of sediment trap observations: depths >= 2000 m to exclude hydrodynamically distorted fluxes and relationships, and differentiated by basin:

, , , .

[Wlison et al., 2012; GBC 26, doi:10.1029/2012GB004398]

cyan == Atlantic yellow == Indian green == Pacificmagenta == Southern Ocean

Spatial distribution of carrying capacity (ballasting) coefficients calculated using geographically weighted regression

analysis for CaCO .3

Wilson et al. [2012]

Evolution of the Biological Pump:Planktic carbonate production and ‘ballasting’

Evolution of the Biological Pump:Ocean Carbon Cycling and Oxygenation in Warm Climates

? ?

‘ic

e-h

ou

se’

‘ho

t-h

ou

se’

‘ho

t-h

ou

se’

‘ic

e-h

ou

se’

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

(warm == stratified) && (stratified == anoxic) == .true.

???( ‘stratified’ || ‘sluggish’ || ‘stagnant’ )

Evolution of the Biological Pump:Ocean Carbon Cycling and Oxygenation in Warm Climates

tropics poles

Evolution of the Biological Pump:Ocean Carbon Cycling and Oxygenation in Warm Climates

0

0

0

04 4

4

4

4

8

8

812

12

12

16

16

20

20

−20

−20

−16

−16−12

−12

−12−8

−8

−8

−8

−8 −8

−8

−4

−4

−4

−4

−4

−40

0

0

0

0 30 60 90-30-60-90

De

pth

(km

)

0

4

2

5

1

3

S

-180 -120 -60 60-90

0

90

0 120 180

N

-1D

isso

lve

d o

xyg

en

(m

mo

l kg

)

0

50

100

150

200

250

x4 CO reference simulation2

Benthic (>1000m) [O ]2

Evolution of the Biological Pump:Ocean Carbon Cycling and Oxygenation in Warm Climates

!

0

0

0

04 4

4

4

4

8

8

812

12

12

16

16

16

20

20

−20

−20−16

−16

−16−12

−12

−12−8

−8

−8

−8

−8

−8

−8

−4

−4

−4

−4

−4

−40

0

0

0

0 30 60 90-30-60-90

De

pth

(km

)

0

4

2

5

1

3

S

-180 -120 -60 60-90

0

90

0 120 180

N

-1D

isso

lve

d o

xyg

en

(m

mo

l kg

)

0

50

100

150

200

250

x8 CO @ 10,000 yrs2

(started from end of the x4 simulation)

Benthic [O ]2

Evolution of the Biological Pump:Ocean Carbon Cycling and Oxygenation in Warm Climates

!

0

0

0

04 4

4

4

4

8

8

812

12

12

16

16

16

20

20

−20

−20−16

−16

−16−12

−12

−12−8

−8

−8

−8

−8

−8

−4

−4

−4

−4

−4

−40

0

0

0

0 30 60 90-30-60-90

De

pth

(km

)

0

4

2

5

1

3

S

-180 -120 -60 60-90

0

90

0 120 180

N

-1D

isso

lve

d o

xyg

en

(m

mo

l kg

)

0

50

100

150

200

250

x16 CO @ 10,000 yrs2

(started from end of the x4 simulation)

Benthic [O ]2

Evolution of the Biological Pump:Ocean Carbon Cycling and Oxygenation in Warm Climates

!

0

0

5

5

5

10

1015 152025

0

De

pth

(km

)

0

4

2

5

1

3

30 60 90-30-60-90

Temperature (°C)

0 30

Temperature (°C)0 30

15

1520 2025 2530

De

pth

(km

)

0

4

2

5

1

3

180 W°

x4 CO 2

Maastrichtian reference simulation

Evolution of the Biological Pump:Ocean Carbon Cycling and Oxygenation in Warm Climates

x1 CO pre-2

industrial reference simulation

180 W°

!

0

0

0

0

0

04

4

4

48

8

81212

12

16

16

20

−20

−20

−16

−16−12

−12−8

−8

−4

−4

−40

0

0

0

0

0

0

0 30 60 90-30-60-90

-1D

isso

lve

d o

xyg

en

(m

mo

l kg

)

De

pth

(km

)

0

4

2

5

1

3

S

-180 -120 -60 60-90

0

90

0 120 180

0

N

50

100

150

200

250

x16 CO @ 2,000 yrs2

transient state(incomplete adjustment to increased radiative forcing)

Benthic [O ]2

Evolution of the Biological Pump:Ocean Carbon Cycling and Oxygenation in Warm Climates

!

Oce

an d

epth

(km

)

5

4

3

2

1

0

13d C (‰)DIC

0.0-1.0 1.0 2.0 3.0

-90

0

90

100-260

13Open ocean d C adjacent to DIC

modern Tanzania

yellow == 13

observed d CDIC

blue == 13model d CDIC

(year 1994)

‘Suess Effect’

!

Oce

an d

epth

(km

)

5

4

3

2

1

0

13d C (‰)DIC

0.0-1.0 1.0 2.0 3.0

-90

0

90

100-260

13Open ocean d C adjacent to DIC

modern Tanzania

5

4

3

2

1

0

13d C (‰)DIC

0.0-1.0 1.0 2.0 3.0

0-90

0

90

180-180

13Planktic foraminiferal d C from early Eocene Tanzania

yellow == 13foraminiferal d C

18d O has been convertedinto pale temperature and then to habitat depth using a coupled GCM

Oce

an d

epth

(km

)

5

4

3

2

1

0

13d C (‰)DIC

0.0-1.0 1.0 2.0 3.0

-90

0

90

100-260

13Open ocean d C adjacent to DIC

modern Tanzania

5

4

3

2

1

0

13d C (‰)DIC

0.0-1.0 1.0 2.0 3.0

0-90

0

90

180-180

13Planktic foraminiferal d C from early Eocene Tanzania

blue == 13model d CDIC

(Eocene config)

!

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

Evolution of the Biological Pump:Dissolved organic matter

Evolution of the Biological Pump:Dissolved organic matter

deepocean

surfaceocean

RDOC [630 PgC]

RDOCcreation

scavengingTe

rre

str

ial

DO

C i

np

ut

(?)

UV creation/destruction

SLDOC [6]

SRDOC [14]

60° S

Pacific Ocean

60° S

40° S

40° N

60° N

Atlantic

Ocean

0

200

400

1,000

2,000

3,000

4,000

5,000

6,000

20° S

20° N

40° S 20° S 0° 20° N 40° N 60° N

20° N

IndianOcean

0

200

400

1,0002,0003,0004,0005,0006,000

0

200

400

1,000

2,000

3,000

Depth (m

)

4,000

5,000

6,000

40 50 60 70 80–1DOC (µmol kg )

Hansell [2012]

MesoproterozoicNeoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000Time (Ma)

50

50 50

100

100

100 100

150150

150

150

200

200 200250 250

300

50

50 50

100

100

100 100

150150

150

150

200

200 200250 250

300

0 30 60 90-30-60-90

-1Dissolved oxygen (mmol kg )

0 300

De

pth

(km

)

0

4

2

5

1

3

Modern Pacific (zonal mean)

0 30 60 90-30-60-90

-1Dissolved oxygen (mmol kg )

0 300

-1Dissolved H S (mmol kg )2

300 0

==?

High atmospheric pO2 Low atmospheric pO2

Evolution of the Biological Pump:Dissolved organic matter

200015001000500 2500 3000 35004003002001000-15

-10

-5

0

+5

+10

+15

-1.0

+0.0

+1.0

+2.0

+3.0

+4.0

53.0 54.0 55.0 56.0 57.0 58.0

500 550 600 650 700 750Time (Ma)

Time (Ma)

-15

-10

-5

0

+5

+10

+15

13

dC

(‰

)

13

dC

(‰

)Mesoproterozoic

Neoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000

Time (Ma)

Ridgwell and Arndt [submitted]

13d C (‰)

To

tal carb

on

rele

ase (

Pg

C)

0

2,000

0 -10 -20 -40 -60-30 -50

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

mantle CO2 @ -6‰

marine organic matter

thermogenic methane

biogenic methane

13

+6‰

dC

ini

13

-2‰

dC

ini

terrestrial:C3 plants

terrestrial:C4 plants

A DOC-dominated carbon cycle?

Contours of carbon release vs. source isotopic signature for a global -4‰ carbon isotopic excursion. Contours differ according to the initial mean

13global d C.

Ridgwell and Arndt [submitted]

deepocean

surfaceocean

RDOC [630 PgC]

RDOCcreation

scavenging

Te

rre

stria

l DO

C in

pu

t (?

)

UV creation/destruction

SLDOC [6]

SRDOC [14]

RDOC [1,630,000 PgC]

A DOC-dominated carbon cycle?

Ridgwell and Arndt [submitted]

In the Rothman et al. [2003] model, the RDOC reservoir is assumed to have been at least 10 times the size of the inorganic (ocean DIC + atmospheric pCO ) 2

reservoir. For a modern DIC + pCO2 reservoir of 39,000 PgC, this mean 390,000 PgC of DOC – more than 500 times larger than modern). For a higher late Precambrian DIC reservoir, the minimum

6DOC reservoir becomes 1.6´10 PgC, equivalent to concentration of a little over 1000 mgC per L of seawater and becoming the third most dominant

-dissolved species in the ocean after Cl .

60° S

Pacific Ocean

60° S

40° S

40° N

60° N

Atlantic

Ocean

0

200

400

1,000

2,000

3,000

4,000

5,000

6,000

20° S

20° N

40° S 20° S 0° 20° N 40° N 60° N

20° N

IndianOcean

0

200

400

1,0002,0003,0004,0005,0006,000

0

200

400

1,000

2,000

3,000

Depth (m

)

4,000

5,000

6,000

40 50 60 70 80–1DOC (µmol kg )

200015001000500 2500 3000 35004003002001000-15

-10

-5

0

+5

+10

+15

-1.0

+0.0

+1.0

+2.0

+3.0

+4.0

53.0 54.0 55.0 56.0 57.0 58.0

500 550 600 650 700 750Time (Ma)

Time (Ma)

-15

-10

-5

0

+5

+10

+15

13

dC

(‰

)

13

dC

(‰

)Mesoproterozoic

Neoproterozoic

Phanerozoic

Cm

EraEon Proterozoic Archean

Paleoproterozoic

Phanerozoic

Cenozoic Mesozoic Paleozoic

KPgNg J T P C D OPeriod

200015001000500 2500 3000 35004003002001000

Time (Ma)

?

Ridgwell and Arndt [submitted]

0

0 0

0

0

0

0

0

0

102030

−40

−30

−30

−20

−20

−20

−20−10

−10

−10

−10

0

0 0

0

0

0

0

0

0

0

De

pth

(km

)

0

4

2

5

1

3

30 60 90-30-60-90

-1Dissolved oxygen (mmol kg )

0 300

deepocean

surfaceocean

DOCDOC

DOCDOC

DOC

DOC

DOC

RDOCcreation

scavenging

A DOC-dominated carbon cycle?

Sexton et al. [2011]

Eocene (@180 W)°

UV creation/destruction

In the Eocene hyperthermal RDOC hypothesis, difficulties include envisioning a sufficiently stratified deep ocean (even when ignoring the lack of any evidence for widespread anoxia) that could partition RDOC away from the upper ocean and destruction by oxidation/photo-dedregation.

Thanks to:

Jamie Wilson & Steve Barker,Eleanor John, Paul Pearson [Cardiff]Sandra Arndt, Daniela Schmidt [Bristol]

Ellen Thomas [Yale]

The Royal Society, Natural Environmental Research Council, EU ERC