Equilibrium constants

Post on 13-Jan-2016

39 views 6 download

Tags:

description

Equilibrium constants. Equilibrium constants. P C c P D d. K =. P A a P B b. [C] c [D] d. K =. [A] a [B] b. Equilibrium constants. P C c P D d. K =. P A a P B b. [C] c [D] d. K =. [A] a [B] b. [solid] = 1. Equilibrium of solids and solutions. - PowerPoint PPT Presentation

Transcript of Equilibrium constants

Equilibrium constants

Equilibrium constants

K =PC

cPDd

PAaPB

b

K =[A]a[B]b

[C]c[D]d

Equilibrium constants

K =PC

cPDd

PAaPB

b

K =[A]a[B]b

[C]c[D]d

[solid] = 1

Equilibrium of solids and solutions

Equilibrium of solids and solutions

NaCl(s) + H2O(l)

Equilibrium of solids and solutions

NaCl(s) + H2O(l) Na+(aq) + Cl-

(aq)

To remove an ion from the crystal lattice, the

solvating interactions must be stronger than

the lattice interactions.

Equilibrium of solids and solutions

NaCl(s) + H2O(l) Na+(aq) + Cl-

(aq)

Solution must be saturated for this

equilibrium to take place.

Dynamic equilibrium

Equilibrium for dissolution-precipitation

reaction:

Equilibrium for dissolution-precipitation

reaction:

I2(s) + CCl4(l) I2(CCl4)

Equilibrium for dissolution-precipitation

reaction:

K [I2]CCl4

=

I2(s) + CCl4(l) I2(CCl4)

Equilibrium for dissolution-precipitation

reaction:

[I2]CCl K4=

I2(s) + CCl4(l) I2(CCl4)

Molarity of saturated solution = K

[I2]CCl K4=

K will vary when conditions are changed

based on Le Chatelier’s Principle.

[I2]CCl K4=

If solution of a material is exothermic,

increasing the temperature will

decrease K.

A(s) A(sol)

[I2]CCl K4=

If solution of a material is endothermic,

increasing the temperature will

increase K.

A(s) A(sol)

Kinetics (reaction rates) must

be considered.

The value of K is not an indicator

of how long it takes to attain

equilibrium.

A K = 5 does not guarantee a 5 M

solution in a few minutes.

Not all solutions are ‘ideal’

Not all solutions are ‘ideal’

Ideal Solution:

Widely separated species

(ions or molecules) that do not

interact.

CsCl(s) Cs+(aq) + Cl-

(aq)

CsCl(s) Cs+(aq) + Cl-

(aq)

As the concentration of ions increases,

Cs+ to Cl- distances decrease.

CsCl(s) Cs+(aq) + Cl-

(aq)

As the concentration of ions increases,

Cs+ to Cl- distances decrease.

Cs+…Cl-Cs+…Cl-

Cl-…Cs+

CsCl(s) Cs+(aq) + Cl-

(aq)

Cs+…Cl-Cs+…Cl-

Cl-…Cs+

Ion pairing may occur before equilibrium.

CsCl(s) Cs+(aq) + Cl-

(aq)

Cs+…Cl-Cs+…Cl-

Cl-…Cs+

These solutions are non-ideal.

Ion pairing may occur before equilibrium.

CsCl(s) Cs+(aq) + Cl-

(aq)

Salts of low solubilities allow the study

of solutions that are essentially ideal.

CsCl(s) Cs+(aq) + Cl-

(aq)

Salts of low solubilities allow the study

of solutions that are essentially ideal.

A saturated solution of 0.1 or less is

a sign of low solubility in a salt.

Solubility product

Solubility product

AgCl(s) Ag+(aq) + Cl-

(aq)

Solubility product

AgCl(s) Ag+(aq) + Cl-

(aq)

Same form as equilibrium constant

Solubility product

AgCl(s) Ag+(aq) + Cl-

(aq)

[Ag+][Cl-]

[AgCl]

Solubility product

AgCl(s) Ag+(aq) + Cl-

(aq)

[Ag+][Cl-]

1= Ksp

Solubility product

AgCl(s) Ag+(aq) + Cl-

(aq)

[Ag+][Cl-] = Ksp

Solubility product

AgCl(s) Ag+(aq) + Cl-

(aq)

[Ag+][Cl-] = Ksp

25oC Ksp = 1.6 x 10-10

Solubility product

AgCl(s) Ag+(aq) + Cl-

(aq)

[Ag+][Cl-] = Ksp

25oC Ksp = 1.6 x 10-10

[Ag+] = [Cl-] = y

Solubility product

AgCl(s) Ag+(aq) + Cl-

(aq)

[Ag+][Cl-] = Ksp

25oC Ksp = 1.6 x 10-10

[Ag+] = [Cl-] = y y2 = Ksp = 1.6 x 10-10

Solubility product

AgCl(s) Ag+(aq) + Cl-

(aq)

[Ag+][Cl-] = Ksp

y2 = Ksp = 1.6 x 10-10

= 1.26 x 10-5 M[Ag+] = [Cl-]

Solubility product

AgCl(s) Ag+(aq) + Cl-

(aq)

[Ag+][Cl-] = Ksp

y2 = Ksp = 1.6 x 10-10

= 1.26 x 10-5 M[Ag+] = [Cl-]

1.8 x 10-3 g/L

BaF2(s) Ba2+(aq) + 2 F-

(aq)

BaF2(s) Ba2+(aq) + 2 F-

(aq)

[Ba2+][F-]2 = Ksp

Fe(OH)3Fe3+

(aq) + 3 OH-(aq)

Fe(OH)3Fe3+

(aq) + 3 OH-(aq)

[Fe3+][OH-]3 = 1.1 x 10-36

Fe(OH)3Fe3+

(aq) + 3 OH-(aq)

[Fe3+][OH-]3 = 1.1 x 10-36

For every Fe3+ that goes into solution,

3 OH- go into solution.

Fe(OH)3Fe3+

(aq) + 3 OH-(aq)

[Fe3+][OH-]3 = 1.1 x 10-36

[y][3y]3 = 1.1 x 10-36

Fe(OH)3Fe3+

(aq) + 3 OH-(aq)

[Fe3+][OH-]3 = 1.1 x 10-36

[y][3y]3 = 1.1 x 10-36

If there is another source of OH- (NaOH)

that provides a higher [OH-] then that is

the value of [OH-] to be used.

Fe(OH)3Fe3+

(aq) + 3 OH-(aq)

[Fe3+][OH-]3 = 1.1 x 10-36

[y][3y]3 = 1.1 x 10-36

27y4 = 1.1 x 10-36

Fe(OH)3Fe3+

(aq) + 3 OH-(aq)

[Fe3+][OH-]3 = 1.1 x 10-36

[y][3y]3 = 1.1 x 10-36

27y4 = 1.1 x 10-36

y4 =1.1 x 10-36

27= 4.1 x 10-38

Fe(OH)3Fe3+

(aq) + 3 OH-(aq)

[Fe3+][OH-]3 = 1.1 x 10-36

[y][3y]3 = 1.1 x 10-36

27y4 = 1.1 x 10-36

y4 =1.1 x 10-36

27= 4.1 x 10-38

y = 4.5 x 10-10

Ksp CuS = 2 x 10-47

CuS(s) Cu2+(aq) + S2-

(aq)

Ksp CuS = 2 x 10-47

CuS(s) Cu2+(aq) + S2-

(aq)

[Cu2+][S2-] = 2 x 10-47

Ksp CuS = 2 x 10-47

CuS(s) Cu2+(aq) + S2-

(aq)

[Cu2+][S2-] = 2 x 10-47

y2 = 2 x 10-47

Ksp CuS = 2 x 10-47

CuS(s) Cu2+(aq) + S2-

(aq)

[Cu2+][S2-] = 2 x 10-47

y2 = 2 x 10-47

y = 4.5 x 10-24 = [Cu2+] = [S2-]

Ksp CuS = 2 x 10-47

CuS(s) Cu2+(aq) + S2-

(aq)

y = 4.5 x 10-24 = [Cu2+] = [S2-]

mw CuS = 95.6

Ksp CuS = 2 x 10-47

CuS(s) Cu2+(aq) + S2-

(aq)

y = 4.5 x 10-24 = [Cu2+] = [S2-]

mw CuS = 95.6

4.5 x 10-24 (95.6) = 4.3 x 10-22 g/L

Ksp CuS = 2 x 10-47

CuS(s) Cu2+(aq) + S2-

(aq)

y = 4.5 x 10-24 = [Cu2+] = [S2-]

4.5 x 10-24 (95.6) = 4.3 x 10-22 g/L

Atoms/L = moles x Ao

Ksp CuS = 2 x 10-47

CuS(s) Cu2+(aq) + S2-

(aq)

y = 4.5 x 10-24 = [Cu2+] = [S2-]

4.5 x 10-24 (95.6) = 4.3 x 10-22 g/L

Atoms/L = moles x Ao = (4.5 x 10-24)(6 x 1023) =

Ksp CuS = 2 x 10-47

CuS(s) Cu2+(aq) + S2-

(aq)

y = 4.5 x 10-24 = [Cu2+] = [S2-]

4.5 x 10-24 (95.6) = 4.3 x 10-22 g/L

Atoms/L = moles x Ao = (4.5 x 10-24)(6 x 1023) =

2.7 atoms/L

Example 9-3

Determine Ksp for a salt based

on solubility data.

Example 9-3

Determine Ksp for a salt based

on solubility data.

PbCl2 8.67 g/L for a saturated solution

Example 9-3

Determine Ksp for a salt based

on solubility data.

PbCl2 8.67 g/L for a saturated solution

PbCl2 Pb2+(aq) + 2 Cl-

(aq)

Example 9-3

Determine Ksp for a salt based

on solubility data.

PbCl2 8.67 g/L for a saturated solution

PbCl2 Pb2+(aq) + 2 Cl-

(aq)

[Pb2+][Cl-]2 = Ksp

Example 9-3

PbCl2 8.67 g/L for a saturated solution

PbCl2 Pb2+(aq) + 2 Cl-

(aq)

[Pb2+][Cl-]2 = Ksp

(y)(2y)2 = Ksp

Example 9-3

PbCl2 8.67 g/L for a saturated solution

PbCl2 Pb2+(aq) + 2 Cl-

(aq)

[Pb2+][Cl-]2 = Ksp

(y)(2y)2 = Ksp

4y2 = Ksp

Example 9-3

PbCl2 8.67 g/L for a saturated solution

PbCl2 Pb2+(aq) + 2 Cl-

(aq)

[Pb2+][Cl-]2 = Ksp

4y2 = Ksp 8.67 g PbCl2

278.1 g/mol=

Example 9-3

PbCl2 8.67 g/L for a saturated solution

PbCl2 Pb2+(aq) + 2 Cl-

(aq)

[Pb2+][Cl-]2 = Ksp

4y3 = Ksp 8.67 g PbCl2

278.1 g/mol= 0.031 mol

< 0.1 mol

Example 9-3

PbCl2 8.67 g/L for a saturated solution

PbCl2 Pb2+(aq) + 2 Cl-

(aq)

[Pb2+][Cl-]2 = Ksp

4y3 = Ksp 8.67 g PbCl2

278.1 g/mol= 0.031 mol

Ksp = 4(0.031)3

Example 9-3

PbCl2 8.67 g/L for a saturated solution

PbCl2 Pb2+(aq) + 2 Cl-

(aq)

[Pb2+][Cl-]2 = Ksp

4y3 = Ksp 8.67 g PbCl

278.1 g/mol= 0.031 mol

Ksp = 4(0.031)3 =1.2 x 10-4

Example 9-3

PbCl2 8.67 g/L for a saturated solution

PbCl2 Pb2+(aq) + 2 Cl-

(aq)

[Pb2+][Cl-]2 = Ksp

4y3 = Ksp 8.67 g PbCl

278.1 g/mol= 0.031 mol

Ksp = 4(0.031)3 =1.2 x 10-4 Table = 1.6 x 10-5

Example 9-3

PbCl2 8.67 g/L for a saturated solution

PbCl2 Pb2+(aq) + 2 Cl-

(aq)

[Pb2+][Cl-]2 = Ksp

4y3 = Ksp 8.67 g PbCl

278.1 g/mol= 0.031 mol

Ksp = 4(0.031)3 =1.2 x 10-4 Table = 1.6 x 10-5

Non-ideal solution

Precipitation from solution

Precipitation from solution

Start with solution that is not saturated.

Precipitation from solution

Start with solution that is not saturated.

Cause solution to become saturated.

Precipitation from solution

Start with solution that is not saturated.

Cause solution to become saturated.

Remove solvent by evaporation.

Precipitation from solution

Start with solution that is not saturated.

Cause solution to become saturated.

Remove solvent by evaporation.

Change nature of solvent.

Change nature of solvent.

The polarity of a solvent

system can be adjusted.

Change nature of solvent.

The polarity of a solvent

system can be adjusted.

NaCl(s) + H2O(l) Na+(aq) + Cl-(aq)

Not saturated

Change nature of solvent.

The polarity of a solvent

system can be adjusted.

NaCl(s) + H2O(l) Na+(aq) + Cl-(aq)

Not saturatedAdd EtOH to solution.

Precipitation from solution

Start with solution that is not saturated.

Cause solution to become saturated.

Remove solvent by evaporation.

Change nature of solvent.

Cool or warm system.

Precipitation of a product from

a reaction.

Will it precipitate?

Determine reaction quotient.

AgNO3 (solution) mixed with

NaCl (solution)

Will AgCl precipitate?

Determine reaction quotient.

AgNO3 (solution) mixed with

NaCl (solution)

Will AgCl precipitate?

Q = [Ag+][Cl-]

Q = reaction quotient

AgNO3 (solution) mixed with

NaCl (solution)

Q = reaction quotient

Qinit = conditions just as solutions are mixed

Q = [Ag+][Cl-]

AgNO3 (solution) mixed with

NaCl (solution)

Q = reaction quotient

Qinit = conditions just as solutions are mixed

If Qinit < Ksp then no AgCl willprecipitate.

Q = [Ag+][Cl-]

[Ag+][Cl-] too low

AgNO3 (solution) mixed with

NaCl (solution)

Q = reaction quotient

Qinit = conditions just as solutions are mixed

If Qinit > Ksp then AgCl will precipitate.

Q = [Ag+][Cl-]

Ag+ Cl- too high

AgNO3 (solution) mixed with

NaCl (solution)

Q = reaction quotient

Qinit = conditions just as solutions are mixed

If Qinit > Ksp then AgCl will precipitate.

As the reaction continues, precipitation willstop when Q = Ksp

Q = [Ag+][Cl-]

precipitate

No precipitate

Exercise page 384

TlIO3 555 ml 0.0022 M

NaIO3 445 ml 0.0022 M

Will TlIO3 precipitate atequilibrium?

Exercise page 384

TlIO3 555 ml 0.0022 M

NaIO3 445 ml 0.0022 M

Will TlIO3 precipitate atequilibrium?

Ksp = 3.1 x 10-6

TlIO3 555 ml 0.0022 M

NaIO3 445 ml 0.0022 M

Ksp = 3.1 x 10-6

Q = [Tl+][IO3-]

[Tl3+] = .555(0.0022) 1.000

= 0.0012 M

TlIO3 555 ml 0.0022 M

NaIO3 445 ml 0.0022 M

Ksp = 3.1 x 10-6

Q = [Tl+][IO3-]

[Tl+] = 0.0012 M

TlIO3 555 ml 0.0022 M

NaIO3 445 ml 0.0022 M

Ksp = 3.1 x 10-6

Q = [Tl+][IO3-]

[Tl+] = 0.0012 M .555 L x 0.0022 M = 0.0012 moles

[IO3-] = .00099 M + 0.0012 M = 0.0022

TlIO3 555 ml 0.0022 M

NaIO3 445 ml 0.0022 M

Ksp = 3.1 x 10-6

Q = [Tl+][IO3-] = (0.0012)(.00099) = 1.2 x 10-6

[Tl+] = 0.0012 M .555 L x 0.0022 M = 0.0012 moles

[IO3-] = .0022 M

For this solution

TlIO3 555 ml 0.0022 M

NaIO3 445 ml 0.0022 M

Ksp = 3.1 x 10-6

Q = [Tl+][IO3-] = (0.0012)(.0022) = 2.6 x 10-6

Q < Ksp

No precipitate

For mixedsolutions

Common ion effect

Common ion effect

Adding more of a cation or anion

that is already in solution will

cause Q to change.

Common ion effect

Adding more of a cation or anion

that is already in solution will

cause Q to change.

Q = [A+][B-]

AgCl(s)Ag+

(aq) + Cl-(aq)

Q = [Ag+][Cl-]

Add more Cl- (NaCl)

Q < Ksp

Q > Ksp

AgCl(s)Ag+

(aq) + Cl-(aq)

Q = [Ag+][Cl-]

Add more Cl- (NaCl)

This raises Q above Ksp

Common ion effect

If a solution and a solid salt to be

dissolved in it have an ion in common,

the solubility of the salt is depressed.

Ksp = 3.1 x 10-6

Q = [Tl+][IO3-]

Exercise page 387

TlIO3(s)Tl+

(aq) + IO3-(aq)

0.050 M KIO3

What is the solubility of TlIO3

in this solution?

Ksp = 3.1 x 10-6

Q = [Tl+][IO3-]

Exercise page 387

TlIO3(s)Tl+

(aq) + IO3-(aq)

0.050 M KIO3

Ksp = [Tl+][IO3-]

[Tl+] = y

Ksp = 3.1 x 10-6

Q = [Tl+][IO3-]

Exercise page 387

TlIO3(s)Tl+

(aq) + IO3-(aq)

0.050 M KIO3

Ksp = [Tl+][IO3-]

[Tl+] = y [IO3-] = y + 0.050

Ksp = 3.1 x 10-6

Q = [Tl+][IO3-]

Exercise page 387

TlIO3(s)Tl+

(aq) + IO3-(aq)

0.050 M KIO3

Ksp = [Tl+][IO3-]

[Tl+] = y [IO3-] = y + 0.050 0.050

Ksp = 3.1 x 10-6

Q = [Tl+][IO3-]

Exercise page 387

TlIO3(s)Tl+

(aq) + IO3-(aq)

0.050 M KIO3

Ksp = [Tl+][IO3-]

[Tl+] = y [IO3-] = y + 0.050 0.050

3.1 x 10-6 = (y)(0.050) = 0.050y

Ksp = 3.1 x 10-6

Exercise page 387

TlIO3(s)Tl+

(aq) + IO3-(aq)

0.050 M KIO3

Ksp = [Tl+][IO3-]

[Tl+] = y [IO3-] = y + 0.050 0.050

3.1 x 10-6 = (y)(0.050) = 0.050y

y = 6.2 x 10-5 mol/L

Ksp = 3.1 x 10-6

Exercise page 387

TlIO3(s)Tl+

(aq) + IO3-(aq)

0.050 M KIO3

Ksp = [Tl+][IO3-]

[Tl+] = y [IO3-] = y + 0.050 0.050

3.1 x 10-6 = (y)(0.050) = 0.050y

y = 6.2 x 10-5 mol/L [Tl+] = 1.8 x 10-3

No common ion