Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression...

40
Chapter 15

Transcript of Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression...

Page 1: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Chapter 15Chapter 15

Page 2: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Overview

• Equilibrium Reactions

• Equilibrium Constants Kc & Kp

• Equilibrium Expression product/reactant

• Reaction Quotient Q

• Calculations

• Le Chatelier’s Principle

– disturbing the equilibrium

Page 3: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Overview, cont’d

• All reactions are reversible

• Dynamic Equilibrium

– When the rates of the forward and

– reverse reactions are equal

• Reactions do not “go to completion”

• Cannot use stoichiometric methods to calculate amount of products formed

Page 4: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

A B

kf [A] = kr [B]

forward rate = reverse rate

[B ] = kf = constant

[A] kr

Equilibrium and Rates

Page 5: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

• Ratio of Products to Reactant

– raised to each coefficient

• for example,

– N2 + 3H2 2NH3

– K = [NH3]2 [N2][H2]3

Equilibrium Constant Expression

Page 6: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

N2 + 3H2 2NH3

Large K, more product

Product Favored

Small K, more reactant Reactant Favored

cont’d

Page 7: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

aA + bB cC + dD

Kc = [C]c[D]d

[A]a[B]b

products

reactantsconcentration

In General:

Page 8: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Forms of Eq. Constant Expression

CO(g) + H2O(g) CO2(g) + H2(g)

Kc = [CO2][H2]

[CO][H2O]

4HCl(g) + O2(g) 2H2O(g) + 2Cl2(g)

Kc = [Cl2]2[H2O]2

[O2][HCl]4

Page 9: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Cont’d

2HI H2 + I2

Kf = [H2][I2]

[HI]2

H2 + I2 2HI

Kr = [HI]2 = 1

[H2][I2] Kf

Page 10: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Cont’d

2{ 2HI H2 + I2 }

Kf = [H2][I2]

[HI]2

4HI 2H2 + 2I2

K = Kf2 = [H2]2[I2]2

[HI]4

Page 11: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Example

N2O4 2NO2

Initial Initial Equilibrium Equilibrium KcN2O4 NO2 N2O4 NO2

0.0 0.02 0.0014 0.0172 0.211 0.0 0.03 0.0028 0.0243 0.211 0.0 0.04 0.0045 0.0310 0.213 0.02 0.0 0.0045 0.0310 0.213

Kc = [NO2]2 [N2O4]

generally unitless

Page 12: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

N2 + 3H2 2NH3

Large K, more product

K > > 1 Product Favored

N2 + 3H2 2NH3

Small K, more reactant

Reactant Favored K < < 1

Review values of K:

Page 13: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Example:

N2 + 3H2 2NH3

Kc = 4.34 x 10-3 at 300°C = [NH3]2 [H2]2 [N2]

• What is K for reverse reaction?

• What is K for 2N2 + 6H2 4NH3 ?

• What is K for 4NH3 6H2 + 2N2 ?

Kc reverse = 230

Kc = 1.88 x 10-5

Kc = 5.31 x 104

Page 14: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Heterogeneous Equilibria:

• When pure solid or liquid is involved

– Pure solids & liquids do not appear in the equilibrium constant expression

• When H2O is a reactant or product and is the solvent

– H2O does not appear in the equilibrium constant expression

Page 15: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Examples:

• CaCO3(s) CaO(s) + CO2(g)

– conc. = mol = g/cm3 = density cm3 g/mol MM

• Kc = [CaO] [CO2] = (constant 1) [CO2] [CaCO3] (constant 2)

• Kc’ = Kc (constant 2) = [CO2] (constant 1)

both are constant

Page 16: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Multi-Step Equilibria

AgCl(s) Ag+(aq) + Cl-(aq) K1 = [Ag+][Cl-]

Ag+(aq) + 2NH3(aq) Ag(NH3)2

+(aq) K2 = [Ag(NH3)2

+] [Ag+][NH3]2

AgCl(s) + 2NH3(aq) Ag(NH3)2

+(aq) + Cl-(aq)

Ktot = K1 K2 = [Ag(NH3)2+][Cl-]

[NH3]2

Page 17: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Problem:1.00 mole of H2 & 1.00 mole of I2 are placed in a 1.0 L container at 520 K and allowed to come to equilibrium. Analysis reveals 0.12 mol of HI present at equilibrium. Calculate Kc. H2(g) + I2(g) 2HI(g)

initial 1.00 1.00 0 change -0.06 -0.06 +0.12

equil. 0.94 mol 0.94 mol +0.12

Kc = (0.12)2 = 1.6 x 10-2 (0.94)(0.94)

Page 18: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Conversion between Kp and Kc

• Kc

– Equilibrium constant using concentrations

• Kp

– Equilibrium constant using partial pressures

Kp = Kc (RT)n

P = n RT V

R = 0.0821 L atm/mol KT = Temperature in Kn = tot. mol product - tot. mol reactant

Page 19: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Problem:

For 2SO3(g) 2SO2(g) + O2(g)

Kc = 4.08 x 10-3 at 1000 K. Calculate Kp.

Kp = Kc(RT)n = 4.08 x 10-3 (0.0821 x 1000)1

Kp = 0.0335

Page 20: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Problem:

For 3H2(g) + N2(g) 2NH3(g)

Kc = 0.105 at 472°C. Calculate Kp.

Kp = Kc(RT)n = 0.105 (0.0821 x 745)-2

Kp = 2.81 x 10-5

Page 21: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Applications of Eq. Constants

• Reaction Quotient

– Non-equilibrium concentrations used in the equilibrium constant expression

Q = K Reaction is at equilibrium

Q > K Reaction will shift left to equilibrium

Q < K Reaction will shift right to equilibrium

Page 22: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Problem:

Kc = 5.6 x 10-12 at 500 K for I2(g) 2I(g) [I2] = 0.020 M & [I] = 2.0 x 10-8 M. Is the reaction at equilibrium? Which direction will it shift to reach equilibrium?

Q = [I ]2 = (2.0 x 10-8)2 = 2.0 x 10-14 [I2] (0.020)

Q < K (2.0 x 10-14) < (5.6 x 10-12)

Reaction Shifts Right to get to equilibrium

not at equilibriumbecause Q K

Page 23: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Calculation of Eq. Concentrations

• use the stoichiometry of reaction

• initial concentration of all species

• change that occurs to all species

• equilibrium concentration of all species

• reaction will occur to reach the equilibrium point no matter the direction of reaction

Page 24: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Problem:

Cyclohexane, C6H12(g), can isomerize to form methylcyclopentane, C5H9CH3(g). The equilibrium constant at 25°C is 0.12. If the original amount was 0.045 mol cyclohexane in a 2.8 L flask, what are the concentrations at equilibrium?

C6H12 C5H9CH3

initial 0.045 mol 0

change -x +x

equil. 0.045 - x x

Page 25: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Cont’d

0.12 = (x) (0.045 - x)

Solve for x which is the equilibrium concentration of methylcyclopentane or the product

x = 4.8 x 10-3 mol C5H9CH3 in 2.8 L flask

[C5H9CH3] = 1.7 x 10-3 M

[C6H12] = 1.4 x 10-2 M

Page 26: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Problem:

For the reaction H2 + I2 2HI the Kc = 55.64. You start with 1.00 mol H2 and 1.00 mol I2 in a 0.500 L flask. Calculate the equilibrium concentrations of all species?

H2 + I2 2HI

initial 2.00 M 2.00 M 0

change -x -x +2x

equil. 2.00 - x 2.00 - x 2x

Page 27: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Cont’d

55.64 = (2x)2 (2.00 -x)2

(55.64)½ = (2x)2 (2.00 -x)2

x = 1.58 M

[HI] = 3.16 M [H2] = 0.42 M [I2] = 0.42 M

= 2x = 2.00 - x = 2.00 - x

½

perfect square

Page 28: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Problem:

For the reaction H2 + I2 2HI the Kc = 55.64. You start with 1.00 mol H2 and 0.50 mol I2 in a 0.500 L flask. Calculate the equilibrium concentrations of all species?

H2 + I2 2HI

initial 2.00 M 1.00 M 0

change -x -x +2x

equil. 2.00 - x 1.00 - x 2x

Page 29: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Cont’d

Kc = [HI]2

[H2][I2]

55.64 = (2x)2 (2.00 -x)(1.00 -x)

reduces to a quadratic equation:

x2 - 3.232 x + 2.155 = 0

not a perfect square

Page 30: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Quadratic Equation

x = - b ± b2 - 4ac 2a

for

ax2 + bx + c = 0

½

Page 31: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Cont’d

x = +3.232 ± 10.446 - 8.62 2

x = 1.616 ± 0.6755

[HI] = 1.88 M [H2] = 1.06 M [I2] = 0.060 M

= 2x = 2.00 - x = 1.00 - x

½

Page 32: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Le Chatelier’s Principle

• When a stress is applied to an equilibrium reaction, the equilibrium shifts to reduce the stress

• Types of Stress

– Addition or removal of reactant

– Addition or removal or product

– Increase or decrease of temperature

– Change in pressure or volume

Page 33: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

2NOCl(g) Cl2(g) + 2NO(g) H = +77 kJ

temp.NOCl

reaction shifts

temp.NOCl

reaction shifts

pressure volu

me

reactionshifts

Cl2 NO

Cl2 NO

Page 34: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

[C6H12] [C5H9CH3]

initial 1.4 x 10-2 + 1.0 x 10-2 M 1.7 x 10-3 M

change -x +x

equil. 2.4 x 10-2 - x 1.7 x 10-3 + x

0.12 = (1.7 x 10-3 + x) x = 1.05 x 10-3 M (2.4 x 10-2 - x)

[C6H12] = 0.023 M [C5H9CH3] = 0.0028 M

Addition of Reactant or Product

Page 35: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Changes in Temperature

• will change K

• for an endothermic reaction

– increasing T increases K

• for an exothermic reaction

– increasing T decreases K

Page 36: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

A

B

En

erg

y

Reactions Path

withoutcatalyst

withcatalyst

rfrr

Ea (f)

Ea (r)

Effect of a Catalyst

Page 37: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

2O3(g) 3O2(g) overall rxn

O3(g) O2(g) + O(g) fast

equil. rate1 = k1[O3]rate2 = k2[O2][O]

O(g) + O3(g) 2O2(g) slowrate3 = k3[O][O3]

rate 3 includes the conc. of an intermediate and the exptl. rate law will include only species that are present in measurable quantities

Reaction Mechanisms & Equilibria

k1

k3

k2

Page 38: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Substitution Method

at equilibrium k1[O3] = k2[O2][O]

rate3 =k3[O][O3] [O] = k1 [O3] k2 [O2]

rate3 = k3k1 [O3]2 or k2 [O2]

overall rate = k’ [O3]2 [O2]

substitute

Page 39: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Problem:

Derive the rate law for the following reaction given the mechanism step below:

OCl - (aq) + I -(aq) OI -

(aq) + Cl -(aq)

OCl - + H2O HOCl + OH - fast

I - + HOCl HOI + Cl - slow

HOI + OH - H2O + OI - fast

k1

k2 k3

k4

Page 40: Chapter 15. Overview Equilibrium Reactions Equilibrium Constants K c & K p Equilibrium Expression product/reactant Reaction Quotient Q Calculations Le.

Cont’d

rate1 = k1 [OCl -][H2O] = rate 2 = k2 [HOCl][OH -]

[HOCl] = k1[OCl -][H2O] k2[OH -]

rate 3 = k3 [HOCl][I -]

rate 3 = k3k1[OCl -][H2O][I -]k2 [OH -]

overall rate = k’ [OCl -][I -] [OH -]

solvent