EE143 F2010 Lecture 16 Metallizationee143/fa10/lectures/Lec_16.pdfEE143 F2010 Lecture 16 7 "Metal...

Post on 04-Apr-2018

224 views 2 download

Transcript of EE143 F2010 Lecture 16 Metallizationee143/fa10/lectures/Lec_16.pdfEE143 F2010 Lecture 16 7 "Metal...

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

1

Metallization• Interconnects

– Typical current density ~105 A/cm2

– Wires introduce parasitic resistance and capacitance• RC time delay

• Inter-Metal Dielectric-Prefer low dielectric constant to reduce capacitance

• Multilevel Metallization (2-10 levels of metalwiring)– Reduction in die size– Higher circuit speed ( shorter interconnect distance)– Flexibility in layout design

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

2

FOX

Si substrate

( InteMetal Oxide e.g. BPSG. Low-K dieletric)

(e.g. PECVD Si Nitride)

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

3

• Interconnections and Contacts– RC Time Delay– Interconnect resistance– Contact resistance– Dielectric Capacitance– Reliability - Electromigration

• Multilevel Metallization• Surface Planarization Techniques

Outline

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

4

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

5

Interconnect ResistanceRI =R/L = / (WAlTAl)

Interconnect-SubstrateCapacitanceCV C/L = WAl ox / Tox

Interconnect-InterconnectCapacitanceCL C/L = TAl ox / SAl

* Values per unit length L

Interconnect RC Time Delay

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

6

InterconnectionsInterconnect Requirements

• low ohmic resistance– interconnects material has low resistivity

• low contact resistance to semiconductordevice

• reliable long-term operation

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

7

• Metal (Low resistivity)

– for long interconnects

• Highly doped Poly-Si (medium resistivity)

–for short interconnects

• Highly doped diffused regions in Si substrate(medium resistivity)

–for short interconnects

Possible interconnect materials

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

8

Resistivity of Poly-Si

Resistivity of Pure Metals

Poly-Si (min) =1E-3 -cm

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

9

Metal Contact to SiTunneling “ohmic” contacts

SiO2

Al

n+

n-Sie 1019 - 1021/cm3

SiO2

Al

p+

p-Si

Xd

Ec

Ev

I

Vh

MSi

> 1019/cm3

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

10

SchottkyRectifyingContact

SchottkyTunnelingOhmic Contact

Tunneling

Thermionicemission

Small depletion width(highly doped Si)

Large depletion width(lightly doped Si)

metal semiconductor

Depletion region

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

11

For a uniform current densityflowing across the contact areaRc = c / (contact area )

c of Metal-Si contacts ~ 1E-5 to 1E-7 -cm2

c of Metal-Metal contacts < 1E-8 -cm2

MetalContactArea

Heavily dopedSemiconductor surface

Contact Resistance Rc

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

12

Bs

c Nh

m

*2exp

Approaches to lowering of contact resistance:1) Use highly doped Si as contact semicodnuctor2) Choose metal with lower Schottky barrier height

B is the Schottky barrier heightN = surface doping concentrationc = specfic contact resistivity in ohm-cm2

c V

J

1

at V~0

m = electron massh =Planck’s constant= Si dielectric constant

Specific contact resistivity

Contact Resistivity c

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

13

Schottky Barrier heightsof common metals contactsto n-type semiconductors

Note:B (n-type) + B (p-type)= Eg of semiconductor

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

14

Al Spiking Problem

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

15

Al-Si Eutectic Behavior

At thesinteringtemperatureof about450C aftermetalization,Si is solublein Al up to ~1% but Al isnot soluble inSi.

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

16

1. Add ~2% Si to Al to prevent Si outdiffusion

2. Use diffusion barrier layer to block Al/substrate interaction

Al Spiking Problem: Solutions

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

17

electron flow

moment transferredfrom electrons

Thermally excitedmetal atom out of lattice site

Metal Latticeatomic potential

position x

Electromigration Motion

Metal atom at lattice site(equilibrium)

•Electromigrated metal atoms move along the same direction of electrons

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

18

Hillock formation (can short neighboring metal lines)

Void formation(metal line becomes open)

2 flux in 1 flux out

MassAccumulation

1 flux in 2 flux out

MassDepletion

Grainboundaries

Electromigrated atoms dominated by grain boundary diffusion

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

19

Electron flow

HillockFormation

VoidFormation

LargeHillock(dendrite)

SEM micrographs ofAluminumelectromigrationfailure

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

20

Dendrite Fomation Void Formation

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

21

* MTF defined as time for 50% of test samples to fail

MTF J –2 exp [ EA/ kT]

J = current density in Amp/cm2EA = activation energy ( ~ 0.5-0.8 eV for metals)

Median Time to Failure (MTF) ofElectromigration

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

22* Tradeoffs are etching difficulty and increased electrical resistivity

Shown are Acceleratedtest data:Testing temp ~225CJ ~ 1E6 Amp/cm2

Alloying Al with other elements will retardgrain boundary diffusion

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

23

How alloy precipitates can block grain boundary diffusion

Example: Al-Cu (1-4%) alloy. After sintering, AlCu3 compound willprecipitate along the grain boundaries.

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

24

Suggested Metallization for 0.25m linewidths

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

Metal Silicides

Metal silicides can be used as :

1) Low-resistivity metal for source/drain contacts2) Shunting metal with poly-Si as interconnects

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

Metal Silicides can be prepared by:

1) Sputtering Deposition2) CVD3) Metal-Si Reactions

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

Properties of Metal Silicides

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

28

Metal Deposition Techniques

• Sputtering has been the technique of choice– high deposition rate– capability to deposit complex alloy compositions– capability to deposit refractory metals– uniform deposition on large wafers– capability to clean contact before depositing metal

• CVD processes have recently been developed(e.g. for W, TiN, Cu)– better step coverage– selective deposition is possible– plasma enhanced deposition is possible for lower deposition

temperature

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

29

1) Tungsten (W)– used as contact plug, also as first-level metal

– blanket (non-selective) deposition processes:

HFWHWF 63 26

2446 2 HHFSiFWSiHWF

Example Metal CVD Processes

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

30

2) TiN– used as barrier-metal layer

– deposition processes:

HClTiNHNHTiCl 8222 234

234 NHCl24TiN6NH8TiCl6

HClTiNHNTiCl 8242 224

Metal CVD Processes (cont.)

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

31

3) CVD Copper

Metal-OrganicCu compound (gas)

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

32

Trench filling with CVD Cu

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

33

Cu Plating

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

34

Electroless Cu Plating

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

35

Low-K Dielectrics

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

36

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

37

Professor N Cheung, U.C. Berkeley

Lecture 16EE143 F2010

38

• Copper interconnects

• Low-K dielectrics(Fluorinated SiO2,polymers, xerogels...)

To further reduce RCtime delay:

Advanced Metalization Materials

*This photo is an idealizationonly, with an airgap betweenthe Cu layers.