Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter...

Post on 11-Aug-2020

0 views 0 download

Transcript of Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter...

Challenges for the Matter Bounce Scenario

Jerome QuintinMcGill University

ITC, CfA, CambridgeSeptember 7, 2018

Based on work with Robert Brandenberger (McGill U.),Yi-Fu Cai (USTC, Hefei, China), and other collaborators

PRD 92, 063532 (2015) [arXiv:1508.04141]JCAP 1611, 029 (2016) [arXiv:1609.02556]JCAP 1703, 031 (2017) [arXiv:1612.02036]JCAP 1801, 011 (2018) [arXiv:1711.10472]

Introduction and Motivation• We search for a causal mechanism that can explain the observed

large scale structures of our universe from primordial fluctuations• The standard picture is ‘horizon exit’ and ‘horizon re-entry’• E.g., inflation: a(t) ∝ eHt, H ' const., H−1 = Hubble radius

tBig Bang

tinflation begins

treheating xp

t H−1λ ∝ k−1

horizon

inflation

post inflation

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 2 / 28

Successes of Inflation

Inflation explains:

• the formation of structure problem

• the horizon problem

• the flatness problem

• the monopole problem

Also, it gives (in general):

• nearly scale-invariant power spectra of curvature and tensorperturbations

• small non-Gaussianities

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 3 / 28

Problems with Inflation• Trans-Planckian problem Brandenberger & Martin [hep-th/0005209, hep-th/0410223]

• Singularity problem Borde & Vilenkin [gr-qc/9612036]; Borde et al. [gr-qc/0110012]; Yoshida & JQ [1803.07085]

• Unpredictability, unlikeliness, initial conditions problem, measureproblem Ijjas, Steinhardt, & Loeb [1304.2785, 1402.6980]

• and more conceptual issues Brandenberger [1203.6698]

tBig Bang

tinflation begins

treheating xp

t H−1λ ∝ k−1

horizon

super-Planckian density

`Pl

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 4 / 28

Aside: Inextendibility of Inflation

• de Sitter spacetime (a(t) = a0eHt in FRW) has a past boundary at

finite affine length (when a→ 0)• Yet, the full spacetime is geodesically complete. It can be extended in

the appropriate coordinate basis (global coordinates, not FRW)

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 5 / 28

Aside: Inextendibility of Inflation

• Similarly, any spacetime is extendible iff Ricci is finite in theappropriate basis (not FRW!)

• Result: extendible iff H/a2 is finite Yoshida & JQ [1803.07085]

• Consequence: if leading energy component is quasi-de Sitter(p ' −ρ), then the spacetime is extendible only if sub-leadingcomponent severely violates the Null Energy Condition (p ≤ −(5/3)ρ)

• E.g. 1: Starobinsky inflation is inextendible→ paralarallelypropagated curvature singularity

• E.g. 2: Small field inflation is C0 extendible, but unstable againstinitial condition fluctuations Brandenberger [1601.01918]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 6 / 28

Alternatives to Inflation

• There are a few alternative scenarios for the very early universe• E.g., nonsingular bouncing cosmology (Ekpyrotic scenario, matter

bounce scenario, pre-Big Bang scenario)

t

a(t)

t

H(t)

→ Need theory beyond Einstein gravity to avoid singularity

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 7 / 28

Nonsingular Bouncing Cosmology• Solves the problems of standard Big Bang cosmology• Free of the trans-Planckian problem• Can avoid the initial Big Bang singularity

τB−

τB

τB+

xc

τ

|H|−1λ ∝ k−1

`Pl

What about the connection to observations?Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 8 / 28

Matter Bounce Scenario• Perturbations exit the Hubble radius in a matter-dominated

contracting phase, when a(τ) ∝ τ2 (p = 0)• With an initial quantum vacuum, curvature perturbations have a

scale-invariant primordial power spectrum Wands [gr-qc/9809062]; Finelli & Brandenberger[hep-th/0112249]

v′′k +

(k2 − 2

τ2

)vk = 0 , ′ ≡ d

vk = aRk√

2ε =√

3aRk , ε ≡ − H

H2=

3

2

(1 +

p

ρ

)=

3

2

• Same for tensor modes:

u′′k +

(k2 − 2

τ2

)uk = 0 , uk =

1

2ahk

• Advantage: implementable with a single canonical scalar field; onlyadiabatic perturbations

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 9 / 28

Power Spectra for the Matter Bounce

• Power spectra:

PR(k) ≡ k3

2π2|Rk|2 =

1

48π2H2B−

M2Pl

Pt(k) ≡ 2× k3

2π2|hk|2 =

1

2π2H2B−

M2Pl

• Tensor-to-scalar ratio:r ≡ PtPR

= 24

• Observations: r < 0.07 (2σ) BICEP2 [1510.09217]

−→ Ruled out!

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 10 / 28

Possible Resolution #1• What if cs � 1, e.g. with a k-essence scalar field?• Curvature perturbations are amplified:

v′′k +

(c2sk

2 − 2

τ2

)vk = 0 =⇒ PR(k) =

1

48π2cs

H2B−

M2Pl

=⇒ r = 24cs

• r < 0.07 ⇐⇒ cs . 0.003• But cs � 1 =⇒ strong coupling Baumann et al. [1101.3320]

• So the scalar three-point function is also amplified Li, JQ et al. [1612.02036]

f localNL ' −165

16+

65

8c2s• Cannot simultaneously satisfy observational bound on r andf localNL = 0.8± 5.0 (1σ) Planck [1502.01592]

• Also, cs � 1 with a fluid =⇒ Jeans (gravitational) instability =⇒black hole formation (see ITC Luncheon talk!) JQ & Brandenberger [1609.02556]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 11 / 28

Small sound speed: non-Gaussianities

• Non-Gaussianity dimensionless shape function for cs = 0.2 (left plot)and cs = 0.87 (right plot)

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 12 / 28

Small sound speed: black hole formation

−10 −8 −6 −4 −2 0log10(|H|/MPl)

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

log10(α

)

cs = 10−4

−12.0

−10.5

−9.0

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

log

10(p

robab

ility)

−10 −8 −6 −4 −2 0log10(|H|/MPl)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

log10(α

)

cs = 10−3

−12.0

−10.5

−9.0

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

log

10(p

robab

ility)

α ≡ RBH/|H|−1

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 13 / 28

Possible Resolution #2

• What if R grows during the nonsingular bounce phase?

rbefore bounce

robs=

∣∣∣∣1 +∆R

Rbefore bounce

∣∣∣∣2• Creates large non-Gaussianities JQ et al. [1508.04141]

fNL ∝(

∆RRbefore bounce

)#

• =⇒ cannot simultaneously satisfy observational constraints on rand fNL

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 14 / 28

Matter Bounce No-Go Theorem

• A lower bound on the amplification of curvature perturbations R⇐⇒ an upper bound on the tensor-to-scalar ratio r⇐⇒ a lower bound on primordial non-Gaussianities fNL

• With Einstein gravity + a single (not necessarily canonical) scalarfield:

satisfying the current observational upper bound on r cannot bedone without contradicting the current observational constraints on

fNL (and vice versa) JQ et al. [1508.04141]; Li, JQ et al. [1612.02036]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 15 / 28

Evading the No-Go Theorem

• Multiple fields, e.g., matter bounce curvaton scenario (entropy modessourcing curvature perturbations) Cai et al. [1101.0822]

• Or with a single field, go beyond Einstein gravity−→ need to modify tensor modes

• Add a nontrivial mass mg to the graviton:

L(2)tensor ⊃ a2[(h′ij)2 − (∇hij)2

]→ a2

[(h′ij)2 − (∇hij)2 −m2

ga2h2ij

]=⇒ u′′k +

(k2 +m2

ga2 − a′′

a

)uk = 0

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 16 / 28

Tensor Power Spectrum with Massive Gravity

• mg � |H∗| at horizon exit:

Pt(k) ' 1

2π2

(k

aMPl

)nt∣∣∣∣HB−MPl

∣∣∣∣2−nt

, nt '8m2

g

3H2∗� 1

• mg � |H∗| at horizon exit:

Pt(k) ' 2

π2

(k

a

)3 1

M2Plmg

• In both cases, r(0.05 Mpc−1)� 0.07 Lin, JQ & Brandenberger [1711.10472]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 17 / 28

Tensor Power Spectrum with Massive Gravity• Note that 0.05 Mpc−1 ≈ 10−58MPl

10-53 10-43 10-33 10-23 10-13

10-13

10-12

10-11

10-10

10-9

10-8

kphysical/MPl

Ptensor

0.00 0.05 0.10 0.15 0.20

0.00

0.02

0.04

0.06

0.08

0.10

mg/|H*|

nt

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 18 / 28

Tensor Power Spectrum with Massive Gravity

0.00 0.05 0.10 0.15 0.20

10-4

0.001

0.010

0.100

1

10

mg/|H*|

r 0.0

5

0.00 0.02 0.04 0.06 0.08 0.10

10-4

0.001

0.010

0.100

1

10

nt

r 0.0

5

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 19 / 28

Tensor Power Spectrum with Massive Gravity

• If mg � |H(t)|, r ≈ 0

10-53 10-43 10-33 10-23 10-13

10-170

10-130

10-90

10-50

10-10

kphysical/MPl

Ptensor

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 20 / 28

Anisotropy problem• Consider

ds2 = −dt2 + a23∑i=1

e2θi(dxi)2 ,

3∑i=1

θi = 0

• Einstein gravity = Friedmann equations + anisotropies:

θi + 3Hθi = 0 =⇒ θi ∼ a−3 =⇒ ρθ ∼3∑i=1

θ2i ∼ a−6

• Analogous to a massless scalar field

Lθ = −1

2∂µθ∂

µθ =⇒ pθ = ρθ (w = 1)

• Anisotropies dominate at high energies:

H2 =1

3M2Pl

(ρ0ma3

+ρ0rada4

)− k

a2+

Λ

3+ρ0θa6

• Not a problem for Ekpyrosis which has w � 1 Garfinkle et al. [0808.0542]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 21 / 28

Anisotropies with Massive Gravity• With a massive graviton Lin, JQ & Brandenberger [1711.10472]

Lθ = −1

2∂µθ∂

µθ − 1

2m2gθ

2

−→ θi + 3Hθi +m2gθi = 0 , ρθ ∼

3∑i=1

(θ2i +m2gθ

2i )

• mg � |H| =⇒ ρθ ∼ a−3 (i.e., pθ = 0)

• No anisotropy problem anymore:

H2 =1

3M2Pl

(ρ0ma3

+ρ0rada4

)− k

a2+

Λ

3+ρ0θa3

• Would need mg � |HB−|, but mg < 7.2× 10−23 eV (2σ) today−→ requires symmetry breaking or mg(t) −→ might be natural withchameleon coupling and solve other problems of massive gravity likethe Higuchi bound De Felice et al. [1711.04655]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 22 / 28

Effective Massive Gravity Action

• ADM decomposition:

ds2 = −N2dt2 + γij(dxi +N idt)(dxj +N jdt)

• Effective massive gravity action:

S =

∫dt d3x

√γ

(N

(M2

Pl

2R− Λ

)−m2

gV [γij ]

)• The nonderivative potential V [γij ] is independent of the lapse N

−→ only 2 DoF propagate (2 polarization states of GWs), butdiffeomorphism invariance is broken Comelli et al. [1407.4991]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 23 / 28

Effective Massive Gravity Action

• In the EFT language, take

V [γij ] ∼M2Plδγ

ij δγij

where δγij denotes the traceless part of the linear perturbations ofthe spatial metric Lin & Labun [1501.07160]

• =⇒ background unaffected (Friedmann equations unchanged)scalar and vector perturbations unaffectedtensor perturbations and anisotropies receive a mass term (mg)

• Can be implemented with Stückelberg scalar fields (additional slides)

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 24 / 28

Conclusions

• The matter bounce scenario is an alternative to inflation

• It naturally predicts a very large tensor-to-scalar ratio (r)

• r cannot be suppressed by enhancing curvature perturbations;otherwise fNL is too large

• Tensor modes can be suppressed with a (Lorentz-violating) massivegraviton

• Anisotropies are suppressed likewise, but need mg(t)

• In sum, the simple idea of the matter bounce doesn’t fit withobservations; needs nontrivial theory to work

• Motivates us to keep looking for and testing alternative scenarios forthe very early universe

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 25 / 28

Acknowledgments

Thank you for your attention!

I acknowledge support from the following agencies:

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 26 / 28

Additional Slides: Action with Stückelberg Scalar Fields

• Introduce 1 timelike (φ0) and 3 spacelike (φi) Stückelberg scalar fieldswith the following VEVs:

φ0 = f(t) , φi = xi

• Impose symmetries:

φi → Λijφj , φi → φi + Ξi(φ0)

Λij : SO(3) rotation operator; Ξi : generic function of φ0

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 27 / 28

Additional Slides: Action with Stückelberg Scalar Fields• The following quantities are invariant under the symmetries Dubovsky et

al. [hep-th/0411158]

X = gµν∂µφ0∂νφ

0

Zij = gµν∂µφi∂νφ

j − (gµν∂µφ0∂νφ

i)(gαβ∂αφ0∂βφ

j)

X

• The following operator is traceless Lin & Sasaki [1504.01373]

δZij =Zij

Z− 3

δk`ZikZj`

Z2, Z = δijZ

ij

• Construct quadratic operator graviton mass term:

Lmass ∼M2Plm

2gδikδj`(δZ

ij)(δZk`)

• Resulting theory has 2 gravitational DoF Lin, JQ & Brandenberger [1711.10472]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 28 / 28