Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter...

28
Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7, 2018 Based on work with Robert Brandenberger (McGill U.), Yi-Fu Cai (USTC, Hefei, China), and other collaborators PRD 92, 063532 (2015) [arXiv:1508.04141] JCAP 1611, 029 (2016) [arXiv:1609.02556] JCAP 1703, 031 (2017) [arXiv:1612.02036] JCAP 1801, 011 (2018) [arXiv:1711.10472]

Transcript of Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter...

Page 1: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Challenges for the Matter Bounce Scenario

Jerome QuintinMcGill University

ITC, CfA, CambridgeSeptember 7, 2018

Based on work with Robert Brandenberger (McGill U.),Yi-Fu Cai (USTC, Hefei, China), and other collaborators

PRD 92, 063532 (2015) [arXiv:1508.04141]JCAP 1611, 029 (2016) [arXiv:1609.02556]JCAP 1703, 031 (2017) [arXiv:1612.02036]JCAP 1801, 011 (2018) [arXiv:1711.10472]

Page 2: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Introduction and Motivation• We search for a causal mechanism that can explain the observed

large scale structures of our universe from primordial fluctuations• The standard picture is ‘horizon exit’ and ‘horizon re-entry’• E.g., inflation: a(t) ∝ eHt, H ' const., H−1 = Hubble radius

tBig Bang

tinflation begins

treheating xp

t H−1λ ∝ k−1

horizon

inflation

post inflation

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 2 / 28

Page 3: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Successes of Inflation

Inflation explains:

• the formation of structure problem

• the horizon problem

• the flatness problem

• the monopole problem

Also, it gives (in general):

• nearly scale-invariant power spectra of curvature and tensorperturbations

• small non-Gaussianities

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 3 / 28

Page 4: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Problems with Inflation• Trans-Planckian problem Brandenberger & Martin [hep-th/0005209, hep-th/0410223]

• Singularity problem Borde & Vilenkin [gr-qc/9612036]; Borde et al. [gr-qc/0110012]; Yoshida & JQ [1803.07085]

• Unpredictability, unlikeliness, initial conditions problem, measureproblem Ijjas, Steinhardt, & Loeb [1304.2785, 1402.6980]

• and more conceptual issues Brandenberger [1203.6698]

tBig Bang

tinflation begins

treheating xp

t H−1λ ∝ k−1

horizon

super-Planckian density

`Pl

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 4 / 28

Page 5: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Aside: Inextendibility of Inflation

• de Sitter spacetime (a(t) = a0eHt in FRW) has a past boundary at

finite affine length (when a→ 0)• Yet, the full spacetime is geodesically complete. It can be extended in

the appropriate coordinate basis (global coordinates, not FRW)

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 5 / 28

Page 6: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Aside: Inextendibility of Inflation

• Similarly, any spacetime is extendible iff Ricci is finite in theappropriate basis (not FRW!)

• Result: extendible iff H/a2 is finite Yoshida & JQ [1803.07085]

• Consequence: if leading energy component is quasi-de Sitter(p ' −ρ), then the spacetime is extendible only if sub-leadingcomponent severely violates the Null Energy Condition (p ≤ −(5/3)ρ)

• E.g. 1: Starobinsky inflation is inextendible→ paralarallelypropagated curvature singularity

• E.g. 2: Small field inflation is C0 extendible, but unstable againstinitial condition fluctuations Brandenberger [1601.01918]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 6 / 28

Page 7: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Alternatives to Inflation

• There are a few alternative scenarios for the very early universe• E.g., nonsingular bouncing cosmology (Ekpyrotic scenario, matter

bounce scenario, pre-Big Bang scenario)

t

a(t)

t

H(t)

→ Need theory beyond Einstein gravity to avoid singularity

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 7 / 28

Page 8: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Nonsingular Bouncing Cosmology• Solves the problems of standard Big Bang cosmology• Free of the trans-Planckian problem• Can avoid the initial Big Bang singularity

τB−

τB

τB+

xc

τ

|H|−1λ ∝ k−1

`Pl

What about the connection to observations?Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 8 / 28

Page 9: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Matter Bounce Scenario• Perturbations exit the Hubble radius in a matter-dominated

contracting phase, when a(τ) ∝ τ2 (p = 0)• With an initial quantum vacuum, curvature perturbations have a

scale-invariant primordial power spectrum Wands [gr-qc/9809062]; Finelli & Brandenberger[hep-th/0112249]

v′′k +

(k2 − 2

τ2

)vk = 0 , ′ ≡ d

vk = aRk√

2ε =√

3aRk , ε ≡ − H

H2=

3

2

(1 +

p

ρ

)=

3

2

• Same for tensor modes:

u′′k +

(k2 − 2

τ2

)uk = 0 , uk =

1

2ahk

• Advantage: implementable with a single canonical scalar field; onlyadiabatic perturbations

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 9 / 28

Page 10: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Power Spectra for the Matter Bounce

• Power spectra:

PR(k) ≡ k3

2π2|Rk|2 =

1

48π2H2B−

M2Pl

Pt(k) ≡ 2× k3

2π2|hk|2 =

1

2π2H2B−

M2Pl

• Tensor-to-scalar ratio:r ≡ PtPR

= 24

• Observations: r < 0.07 (2σ) BICEP2 [1510.09217]

−→ Ruled out!

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 10 / 28

Page 11: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Possible Resolution #1• What if cs � 1, e.g. with a k-essence scalar field?• Curvature perturbations are amplified:

v′′k +

(c2sk

2 − 2

τ2

)vk = 0 =⇒ PR(k) =

1

48π2cs

H2B−

M2Pl

=⇒ r = 24cs

• r < 0.07 ⇐⇒ cs . 0.003• But cs � 1 =⇒ strong coupling Baumann et al. [1101.3320]

• So the scalar three-point function is also amplified Li, JQ et al. [1612.02036]

f localNL ' −165

16+

65

8c2s• Cannot simultaneously satisfy observational bound on r andf localNL = 0.8± 5.0 (1σ) Planck [1502.01592]

• Also, cs � 1 with a fluid =⇒ Jeans (gravitational) instability =⇒black hole formation (see ITC Luncheon talk!) JQ & Brandenberger [1609.02556]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 11 / 28

Page 12: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Small sound speed: non-Gaussianities

• Non-Gaussianity dimensionless shape function for cs = 0.2 (left plot)and cs = 0.87 (right plot)

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 12 / 28

Page 13: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Small sound speed: black hole formation

−10 −8 −6 −4 −2 0log10(|H|/MPl)

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

log10(α

)

cs = 10−4

−12.0

−10.5

−9.0

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

log

10(p

robab

ility)

−10 −8 −6 −4 −2 0log10(|H|/MPl)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

log10(α

)

cs = 10−3

−12.0

−10.5

−9.0

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

log

10(p

robab

ility)

α ≡ RBH/|H|−1

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 13 / 28

Page 14: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Possible Resolution #2

• What if R grows during the nonsingular bounce phase?

rbefore bounce

robs=

∣∣∣∣1 +∆R

Rbefore bounce

∣∣∣∣2• Creates large non-Gaussianities JQ et al. [1508.04141]

fNL ∝(

∆RRbefore bounce

)#

• =⇒ cannot simultaneously satisfy observational constraints on rand fNL

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 14 / 28

Page 15: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Matter Bounce No-Go Theorem

• A lower bound on the amplification of curvature perturbations R⇐⇒ an upper bound on the tensor-to-scalar ratio r⇐⇒ a lower bound on primordial non-Gaussianities fNL

• With Einstein gravity + a single (not necessarily canonical) scalarfield:

satisfying the current observational upper bound on r cannot bedone without contradicting the current observational constraints on

fNL (and vice versa) JQ et al. [1508.04141]; Li, JQ et al. [1612.02036]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 15 / 28

Page 16: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Evading the No-Go Theorem

• Multiple fields, e.g., matter bounce curvaton scenario (entropy modessourcing curvature perturbations) Cai et al. [1101.0822]

• Or with a single field, go beyond Einstein gravity−→ need to modify tensor modes

• Add a nontrivial mass mg to the graviton:

L(2)tensor ⊃ a2[(h′ij)2 − (∇hij)2

]→ a2

[(h′ij)2 − (∇hij)2 −m2

ga2h2ij

]=⇒ u′′k +

(k2 +m2

ga2 − a′′

a

)uk = 0

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 16 / 28

Page 17: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Tensor Power Spectrum with Massive Gravity

• mg � |H∗| at horizon exit:

Pt(k) ' 1

2π2

(k

aMPl

)nt∣∣∣∣HB−MPl

∣∣∣∣2−nt

, nt '8m2

g

3H2∗� 1

• mg � |H∗| at horizon exit:

Pt(k) ' 2

π2

(k

a

)3 1

M2Plmg

• In both cases, r(0.05 Mpc−1)� 0.07 Lin, JQ & Brandenberger [1711.10472]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 17 / 28

Page 18: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Tensor Power Spectrum with Massive Gravity• Note that 0.05 Mpc−1 ≈ 10−58MPl

10-53 10-43 10-33 10-23 10-13

10-13

10-12

10-11

10-10

10-9

10-8

kphysical/MPl

Ptensor

0.00 0.05 0.10 0.15 0.20

0.00

0.02

0.04

0.06

0.08

0.10

mg/|H*|

nt

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 18 / 28

Page 19: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Tensor Power Spectrum with Massive Gravity

0.00 0.05 0.10 0.15 0.20

10-4

0.001

0.010

0.100

1

10

mg/|H*|

r 0.0

5

0.00 0.02 0.04 0.06 0.08 0.10

10-4

0.001

0.010

0.100

1

10

nt

r 0.0

5

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 19 / 28

Page 20: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Tensor Power Spectrum with Massive Gravity

• If mg � |H(t)|, r ≈ 0

10-53 10-43 10-33 10-23 10-13

10-170

10-130

10-90

10-50

10-10

kphysical/MPl

Ptensor

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 20 / 28

Page 21: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Anisotropy problem• Consider

ds2 = −dt2 + a23∑i=1

e2θi(dxi)2 ,

3∑i=1

θi = 0

• Einstein gravity = Friedmann equations + anisotropies:

θi + 3Hθi = 0 =⇒ θi ∼ a−3 =⇒ ρθ ∼3∑i=1

θ2i ∼ a−6

• Analogous to a massless scalar field

Lθ = −1

2∂µθ∂

µθ =⇒ pθ = ρθ (w = 1)

• Anisotropies dominate at high energies:

H2 =1

3M2Pl

(ρ0ma3

+ρ0rada4

)− k

a2+

Λ

3+ρ0θa6

• Not a problem for Ekpyrosis which has w � 1 Garfinkle et al. [0808.0542]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 21 / 28

Page 22: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Anisotropies with Massive Gravity• With a massive graviton Lin, JQ & Brandenberger [1711.10472]

Lθ = −1

2∂µθ∂

µθ − 1

2m2gθ

2

−→ θi + 3Hθi +m2gθi = 0 , ρθ ∼

3∑i=1

(θ2i +m2gθ

2i )

• mg � |H| =⇒ ρθ ∼ a−3 (i.e., pθ = 0)

• No anisotropy problem anymore:

H2 =1

3M2Pl

(ρ0ma3

+ρ0rada4

)− k

a2+

Λ

3+ρ0θa3

• Would need mg � |HB−|, but mg < 7.2× 10−23 eV (2σ) today−→ requires symmetry breaking or mg(t) −→ might be natural withchameleon coupling and solve other problems of massive gravity likethe Higuchi bound De Felice et al. [1711.04655]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 22 / 28

Page 23: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Effective Massive Gravity Action

• ADM decomposition:

ds2 = −N2dt2 + γij(dxi +N idt)(dxj +N jdt)

• Effective massive gravity action:

S =

∫dt d3x

√γ

(N

(M2

Pl

2R− Λ

)−m2

gV [γij ]

)• The nonderivative potential V [γij ] is independent of the lapse N

−→ only 2 DoF propagate (2 polarization states of GWs), butdiffeomorphism invariance is broken Comelli et al. [1407.4991]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 23 / 28

Page 24: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Effective Massive Gravity Action

• In the EFT language, take

V [γij ] ∼M2Plδγ

ij δγij

where δγij denotes the traceless part of the linear perturbations ofthe spatial metric Lin & Labun [1501.07160]

• =⇒ background unaffected (Friedmann equations unchanged)scalar and vector perturbations unaffectedtensor perturbations and anisotropies receive a mass term (mg)

• Can be implemented with Stückelberg scalar fields (additional slides)

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 24 / 28

Page 25: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Conclusions

• The matter bounce scenario is an alternative to inflation

• It naturally predicts a very large tensor-to-scalar ratio (r)

• r cannot be suppressed by enhancing curvature perturbations;otherwise fNL is too large

• Tensor modes can be suppressed with a (Lorentz-violating) massivegraviton

• Anisotropies are suppressed likewise, but need mg(t)

• In sum, the simple idea of the matter bounce doesn’t fit withobservations; needs nontrivial theory to work

• Motivates us to keep looking for and testing alternative scenarios forthe very early universe

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 25 / 28

Page 26: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Acknowledgments

Thank you for your attention!

I acknowledge support from the following agencies:

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 26 / 28

Page 27: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Additional Slides: Action with Stückelberg Scalar Fields

• Introduce 1 timelike (φ0) and 3 spacelike (φi) Stückelberg scalar fieldswith the following VEVs:

φ0 = f(t) , φi = xi

• Impose symmetries:

φi → Λijφj , φi → φi + Ξi(φ0)

Λij : SO(3) rotation operator; Ξi : generic function of φ0

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 27 / 28

Page 28: Challenges for the Matter Bounce Scenariojquintin/Harvard-ITC2018.pdf · Challenges for the Matter Bounce Scenario Jerome Quintin McGill University ITC, CfA, Cambridge September 7,

Additional Slides: Action with Stückelberg Scalar Fields• The following quantities are invariant under the symmetries Dubovsky et

al. [hep-th/0411158]

X = gµν∂µφ0∂νφ

0

Zij = gµν∂µφi∂νφ

j − (gµν∂µφ0∂νφ

i)(gαβ∂αφ0∂βφ

j)

X

• The following operator is traceless Lin & Sasaki [1504.01373]

δZij =Zij

Z− 3

δk`ZikZj`

Z2, Z = δijZ

ij

• Construct quadratic operator graviton mass term:

Lmass ∼M2Plm

2gδikδj`(δZ

ij)(δZk`)

• Resulting theory has 2 gravitational DoF Lin, JQ & Brandenberger [1711.10472]

Jerome Quintin (McGill U.) Challenges for the Matter Bounce Scenario 28 / 28