Battery modeling Presentationeda.ee.ucla.edu/.../703991396ChengRuChangMengJieHuang/Present… ·...

Post on 05-Jun-2020

7 views 0 download

Transcript of Battery modeling Presentationeda.ee.ucla.edu/.../703991396ChengRuChangMengJieHuang/Present… ·...

Battery modeling PresentationBattery modeling Presentation

MengJie HuangCheng‐Ru ChangCheng Ru Chang

A new BMS system based on cell redundancy

Antonio Manenti, Andrea Abba, Alessandro Merati, Sergio M. Savaresi

IEEE Transactions on Industrial Electronics

OutlineOutline

• IntroductionIntroduction• Switch networkSi l i i i• Signal acquisition

• Balancing Algorithm• SOC estimation• PrototypingPrototyping• Conclusion

IntroductionIntroduction

• Each cell in battery pack has different characteristicsEach cell in battery pack has different characteristics• Disconnected the cell when a single cell reaches its limitlimit

• Balancing in both charge and discharge• BMS should identify and bypass damaged cell permanently

ArchitectureArchitecture

• Previous workPrevious work– DC‐DC converter, PWM

• Standard Li‐ion cellStandard Li ion cell– 6 connected at the same time, only 1 disconnected

– 4.2V of full charge voltage– 4400mAh of capacity– 10A of maximum continuous current load– 3A of maximum charge current

Switch networkSwitch network

• Switch resistance directly impacts on the y pperformance of the system

• Switch have to interrupt current flow in both charge and discharge phasecharge and discharge phase

• Connect switch – NMOS switchesNMOS switches (low on‐state resistance)

• Bypass switch – PMOS switches

• Only one cell is bypassed

Protection systemProtection system

• Prevent floating situationPrevent floating situation• BJT in open‐collector with pull‐up resisterp p

Border cellBorder cell

• Bottom cell 0Bottom cell 0– Using both NMOS‐based switchesMore efficient due to great conductivity– More efficient due to great conductivity

• Top cell N‐1– both PMOS‐based switches

Terminal voltage jumpingTerminal voltage jumping

• Due to pack reconfigurationDue to pack reconfiguration• But not a issue since

R fi ti d 100– Reconfiguration needs 100us– Standard load (electric motor) has slower dynamics (10ms)dynamics (10ms)

– Load control system between BMS and load can handle and level voltage jumpshandle and level voltage jumps.

AcquisitionAcquisition

• Worst caseWorst case– 25V if all connected cell are fully charged (6 cells)– 6mV resolution for 12‐bit ADC

• Hardware solution– 0~5V 2.5~4.2V0 5V  2.5 4.2V– 6mV  2.4mV

• Software solutionSoftware solution– Oversampling to reduce noise

• Finally 6mV 600uVFinally, 6mV  600uV

MicrocontrollerMicrocontroller

• Microchip (dsPIC30F3014)Microchip (dsPIC30F3014)• Large pinout

2 bi C• 12‐bit ADC

Balancing algorithmBalancing algorithm

• ACQACQ– Cell voltage, pack voltage, current

• Voltage mode– No current acquisition

• SOC mode– OCV, impedance, neural 

t k f l i inetwork, fuzzy logic in previous work

• Ԑvm Ԑsm : deviationԐvm, Ԑsm : deviation• m:cell index

Balancing algorithmBalancing algorithm

• Charge and dischargeCharge and discharge– Find min and max deviation

• Selected cell is bypassed ,and 

l b dpreviously bypassed one is reconnected

SOC estimation algorithmSOC estimation algorithm

• Coulomb‐countingInitial value of SOC– Initial value of SOC

– Only on the current measurement• Model‐based

– Need a good cell model– Need voltage and current input

Voltage mode vs SOC modeVoltage mode vs SOC mode

Refresh time calculationRefresh time calculation

• Ts: SOC estimation time intervalTs: SOC estimation time interval• Tref: pack configuration refresh time interval

l f• Too large Tref– Loss accuracy

• Too small Tref– Increase the stress of the system and cells due to spikes (Voltage jumping)

Refresh time calculationRefresh time calculation

• Q is the integrated absolute error in SOCQ is the integrated absolute error in SOC• Q is low when balancing effect is high

Refresh time calculationRefresh time calculation

• ά is a coefficient related to the discharge rateά is a coefficient related to the discharge rate

T1 T2 T3

Refresh time calculationRefresh time calculation

• The SOC mean valueThe SOC mean value

• The deviation of the SOC of the m‐th cell with respect to average SOC results p g

=

Refresh time calculationRefresh time calculation

• Q is proportional to TrefQ is proportional to Tref• Increase Tref worsen the balancing effect

h b l i li• Increase N worsen the balancing quality

Theoretical trend vs Measured resultTheoretical trend vs Measured result

• Quality factor versus number of cells(N) andQuality factor versus number of cells(N) and refresh time (Tref)

• Discharged at 1C• Discharged at 1C

EfficiencyEfficiency

• Switches that are connected in series to theSwitches that are connected in series to the current flow could overheating of devices and determine a efficiency lossdetermine a efficiency loss

• Best caseF ll h d ll ith l t– Fully charged cell with a low current

ConclusionConclusion

• Optimal balancing of the battery pack duringOptimal balancing of the battery pack during operation

A supervisory control strategy for series hybrid electric vehicles withseries hybrid electric vehicles with 

two energy storage systemsPierluigi Pisu and Giorgio Rizzoni

V hi l P d P l i 2005Vehicle Power and Propulsion, 2005 IEEE Conference

Series Hybrid Electric VehicleSeries Hybrid Electric Vehicle

Fig. 1 Schematic representation of a series hybrid configuration.

Fig. 2 Schematic representation of a connection of two electricala connection of two electrical power sources configuration. 

Energy Management Control ProblemEnergy Management Control Problem

• The overall fuel consumption over a given trip:The overall fuel consumption over a given trip:

• The local criteria becomes at all times:

Equivalent Fuel Consumption Minimization h i l i iStrategy – Physical Viewpoint

• The main idea of the strategy is:The main idea of the strategy is:A present discharge of the RESS corresponds to a future consumption that will be necessary tofuture consumption that will be necessary to recharge the RESS;A present RESS charge corresponds to a future fuelA present RESS charge corresponds to a future fuel savings because this energy will be available in the future to be used at a lower cost.

• The instantaneous fuel consumption:

Equivalent Fuel Consumption Minimization h i l i iStrategy – Physical Viewpoint

Fig. 3 Energy path for equivalent fuel: (a) consumption during RESS discharge; (b) consumption during RESS recharge.

Mathematical Formulation: Discharging Mode for a Single Component RESS

• The future cost of dischargingThe future cost of discharging

• can be represented as: 

Mathematical Formulation: Discharging d f i l

• The total energy recharged in the future is:Mode for a Single Component RESS

Mathematical Formulation: Discharging d f i l

• The cost of the total energy recharged in the

Mode for a Single Component RESS

The cost of the total energy recharged in the future is 

Mathematical Formulation: Discharging d f i l

• After manipulating and approximating we get

Mode for a Single Component RESS

After manipulating and approximating, we get the future cost of                   :

Mathematical Formulation: Discharging d f i l

• The instantaneous fuel flow rate caused by

Mode for a Single Component RESS

The instantaneous fuel flow rate caused by RESS:

Mathematical Formulation: Charging Mode f i l

• The instantaneous fuel flow rate caused by

for a Single Component RESS

The instantaneous fuel flow rate caused by RESS:

Equivalent Fuel Consumption of a lSingle Component RESS

Simulation ResultSimulation Result

Fig.7(a) Batteries SOE for HDUD cycle

Fig.7(b) Battery pack current for HDUD cycle

Fig. 6 HDUD driving cyclecycle

Fig.7(c) UltracapacitorsSOE for HDUD cycle

Fig. 8(d) Ultracapacitorscurrent for HDUD cycle

ConclusionsConclusions• it requires the only knowledge of the efficiency maps for the various systems in the powertrain architecturefor the various systems in the powertrain architecture, and their torque and power limits; 

• it requires a limited number of inputs that include the SOEi of the RESSi (i=1,2) and the torque requested at the wheels by the driver (this can be calculated from y ( fthe accelerator and brake pedal position); 

it i t i l t i l ti b th• it is easy to implement in real‐time because the optimal power split can be determined by an easy and fast minimization of the function 

Conclusions

• in many cases, the optimal power split can be 

Conclusions

a y cases, t e opt a po e sp t ca bepre‐calculated and saved in a multi‐dimensional map as a function of the input variables, avoiding 

l d d h fon‐line minimization procedures and therefore, reducing the computational time; it i it b t t ti ti i th• it is quite robust to estimation errors in the recharging and charging efficiencies and in the power split.power split. 

• It can be easily extended to any number of RESS in parallel. p