Asymptotic Methods: Introduction to Boundary Function Method (Lectures 7 - 9) Leonid V. Kalachev...

Post on 21-Dec-2015

222 views 1 download

Tags:

Transcript of Asymptotic Methods: Introduction to Boundary Function Method (Lectures 7 - 9) Leonid V. Kalachev...

Asymptotic Methods: Introduction to Boundary Function Method (Lectures 7 - 9)

Leonid V. KalachevDepartment of Mathematical Sciences

University of Montana

Based of the book The Boundary Function Method for Singular Perturbation Problems by A.B. Vasil’eva, V.F. Butuzov and L.V. Kalachev, SIAM, 1995

(with additional material included)

Lectures 7 - 9: Simple BoundaryValue Problems, Method of Vishik and

Lyusternik for Partial Differential Equations. Applied Chemical

Engineering Example.

Leonid V

. Kalachev 2003

UM

Simple Boundary Value Problems

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

!!!

Leonid V

. Kalachev 2003

UM

----------------------------------------

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

============================

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

IMPORTANT !L

eonid V. K

alachev 2003 U

M

!!!

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

!!!

Leonid V

. Kalachev 2003

UM

Illustration of Condition 3΄: one point of intersectionL

eonid V. K

alachev 2003 U

M

Illustration of Condition 3΄: two points of intersectionL

eonid V. K

alachev 2003 U

M

No points of intersection: Condition 3΄ is not satisfied L

eonid V. K

alachev 2003 U

M

!!!

This concludes the construction of the leading order approximation!

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

All the terms of theleading order approximation havenow been determined:

Leonid V

. Kalachev 2003

UM

Generalizations:

Leonid V

. Kalachev 2003

UM

Singularly Perturbed Partial Differential Equations

The Method of Vishik-Lyusternik

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

IMPORTANT !

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Generalization:

Corner layer boundary functions. Natural applicationsinclude singularly perturbed parabolic equations and, e.g, singularly perturbed elliptic equations in rectangular domains.

Leonid V

. Kalachev 2003

UM

Chemical EngineeringExample:

Model reductions for multiphase phenomena(study of a catalyticreaction in a three phase continuously stirred tank reactor[CSTR])

Leonid V

. Kalachev 2003

UM

Series process consisting of the following stages:

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Reaction scheme:

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Some notation (for a detailed notation listSee Haario and Kalachev [2]):

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Initial and boundary conditions:

Leonid V

. Kalachev 2003

UM

Micro-model

Leonid V

. Kalachev 2003

UM

The Limiting Cases

Leonid V

. Kalachev 2003

UM

Uniform asymptotic approximation in the form:

Leonid V

. Kalachev 2003

UM

!!!

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

!!!

Leonid V

. Kalachev 2003

UM

Similar for higher order terms!

Leonid V

. Kalachev 2003

UM

We look for asymptotic expansion in the same form!

Leonid V

. Kalachev 2003

UM

!!!

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Higher order terms can be constructed in a similar way!

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

Asymptotic approximation in the same form!

This case is a combination of Cases 1 and 2. Omitting thedetails, let us write down the formulae for the leading orderapproximation.

Corresponding initial condition:

And

Similar analysis for higher order terms!

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

We apply the same asymptotic procedure!

Corresponding initial condition:

Leonid V

. Kalachev 2003

UM

Comparison of the solutions for a fullmodel (with ‘typical’ numerical values of parameters) and the limiting cases:

Cases 2 and 4 both approximate the full model considerably well!

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

The task then is to design anexperimental setup that allows one to

discriminate between Case 2 and Case 4:

Changing input gas concentration!

With typical experimental noise in thedata, the discrepancy between Cases 2 and 4

might not exceed the error level!

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM

REFERENCES:

1. A.B.Vasil’eva, V.F.Butuzov, and L.V.Kalachev, TheBoundary Function Method for Singular PerturbationProblems, Philadelphia: SIAM, 1995.

2. H.Haario and L.Kalachev, Model reductions for multi-phase phenomena, Intl. J.of Math. Engineeringwith Industrial Applications (1999), V.7, No.4,pp. 457 – 478.

3. L.V.Kalachev, Asymptotic methods: application to reduction of models, Natural Resource Modeling (2000),V.13, No. 3, pp. 305 – 338.

Leonid V

. Kalachev 2003

UM

Leonid V

. Kalachev 2003

UM