Leonid Levitov - mit.edu

35
Supercritical Impurities: Atomic Collapse in Graphene Leonid Levitov (picture courtesy Mike Crommie)

Transcript of Leonid Levitov - mit.edu

Page 1: Leonid Levitov - mit.edu

Supercritical Impurities: Atomic Collapse in Graphene

Leonid Levitov

(picture courtesy Mike Crommie)

Page 2: Leonid Levitov - mit.edu

09/20/2012

Stability of a planetary atomClassical physics: unstable(energy unbounded)

Quantum theory (Bohr, 1913):stable orbits, Rydberg's formula

Heisenberg (1926): uncertainty principle

Planetary atom stabilized by QM (zero-point motion)

Lower bound:

E=K+U

Page 3: Leonid Levitov - mit.edu

09/20/2012

Stability of a Relativistic AtomClassical physics: unstable(energy unbounded)

Relativity: collapsing orbitsv < c

Page 4: Leonid Levitov - mit.edu

09/20/2012

Stability of a Relativistic AtomClassical physics: unstable(energy unbounded)

QM orbitals stabilized by zero point motion

Relativity: collapsing orbitsv < c

E=K+U

Page 5: Leonid Levitov - mit.edu

09/20/2012

Stability of a Relativistic AtomClassical physics: unstable(energy unbounded)

QM orbitals stabilized by zero point motion

Relativity: collapsing orbits Relativity + QM: v < c

Collapse?

?

E=K+U

Page 6: Leonid Levitov - mit.edu

09/20/2012

Dirac atoms can implode:

Dirac (1929)

D = 3

Subcritical (Z < 137)

Complex energies at

Real Complex

Page 7: Leonid Levitov - mit.edu

09/20/2012

Dirac atoms can implode:

Dirac (1929)

What happens at Z > 137?

D = 3

Subcritical (Z < 137)

Complex energies at

Real Complex

Page 8: Leonid Levitov - mit.edu

09/20/2012

Supercritical atom

Finite size of nucleus Pomeranchuk nuclear formfactor

1S level dives into Dirac sea at Z = 170

Pomeranchuk & Smorodinskii (1945); Werner and Wheeler (1957)

Pre-collapse (137 < Z < 170)

r0≈1.2⋅10−12cm

Page 9: Leonid Levitov - mit.edu

09/20/2012

Supercritical atom

Finite size of nucleus Pomeranchuk nuclear formfactor

1S level dives into Dirac sea at Z = 170

Pomeranchuk & Smorodinskii (1945); Werner and Wheeler (1957)

Z > 170?

Pre-collapse (137 < Z < 170)

r0≈1.2⋅10−12cm

Page 10: Leonid Levitov - mit.edu

09/20/2012

Supercritical atomCollapse, vacuum reconstruction (Z > Zc = 170)

Gershteyn, Zeldovich (1969)Popov (1970)

Resonance state in the Dirac seaScreening by pair production?

Quasilocalized spatial structureof the resonance state

Page 11: Leonid Levitov - mit.edu

09/20/2012

U(+92) U(+92)

e+

Darmstadt experiment (1980s, revisited in 1990s)UNILAC (EPOS, ORANGE)3-6 MeV collisions

Signatures: supercritical e+ emission

Page 12: Leonid Levitov - mit.edu

09/20/2012

U(+92) U(+92)

e+

Darmstadt experiment (1980s, revisited in 1990s)UNILAC (EPOS, ORANGE)3-6 MeV collisionsNo signatures of supercritical emission

Signatures: supercritical e+ emission

Page 13: Leonid Levitov - mit.edu

09/20/2012

pseudo-spin (sublattice)

Two sublattices

KK'

4-fold degeneracyspin&valley

Relativistic massless electrons in graphene

Page 14: Leonid Levitov - mit.edu

09/20/2012

pseudo-spin (sublattice)

Two sublattices

KK'

4-fold degeneracyspin&valley

Relativistic massless electrons in graphene

Page 15: Leonid Levitov - mit.edu

09/20/2012

pseudo-spin (sublattice)

Two sublattices

No gap (cond-mat) ≡ No mass (hep) KK'

4-fold degeneracyspin&valley

Relativistic massless electrons in graphene

Page 16: Leonid Levitov - mit.edu

09/20/2012

pseudo-spin (sublattice)

Two sublattices

Slow, but ultra-relativisticDirac fermions

No gap (cond-mat) ≡ No mass (hep) KK'

4-fold degeneracyspin&valley

Relativistic massless electrons in graphene

α=e2/ ℏ v≈2.5

Page 17: Leonid Levitov - mit.edu

09/20/2012

Atomic collapse for massless fermions● Large fine structure constant, , low

collapse threshold Z~1 ● Massless Dirac equation: continuum spectrum only,

no discrete spectrum● Manifestation of collapse: formation of resonances

(infinite family, quasilocalized spatial structure)● Strong effects in vacuum polarization: screening

cloud may extend indefinitely (cf. cutoff at Compton wavelength for massive Dirac electron)

α=e2

ℏ v≈2.5

A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, PRL 99, 236801 (2007), PRL 99, 246802 (2007)

Page 18: Leonid Levitov - mit.edu

09/20/2012

Quasistationary states

Quasi-Rydberg family

Atomic collapse

Page 19: Leonid Levitov - mit.edu

09/20/2012

Resonances in the local density of states, can be probed by STM

Tunneling spectroscopy

Energy scales as the width and as 1/(localization radius)

β=Ze2/κ ℏ v

Page 20: Leonid Levitov - mit.edu

09/20/2012

Reaching collapse (critical Z values)● Vary Z. Critical value affected by intrinsic screening.

Accounting for self-consistent nonlinear screening challenging. Optimistic estimates yield 1<Z<2.

● Experiment (Crommie): Co trimers, Ca dimers● Recent work: AB flux as a vehicle to control

collapse, Z<<1● Can be realized for dislocations (pseudo-B field), or

vortices in a superconductor adjacent to graphene

Page 21: Leonid Levitov - mit.edu

09/20/2012

Atomic collapse in the presence of an Aharonov-Bohm solenoid

H=v σ ( p⃗−A⃗ (ρ))−Z e2

ρ A⃗(ρ)= Φ2πρ

(− y , x )

E⃗

B⃗=Φδ(ρ)

Page 22: Leonid Levitov - mit.edu

09/20/2012

Atomic collapse in the presence of an Aharonov-Bohm solenoid

H=v σ ( p⃗−A⃗ (ρ))−Z e2

ρ A⃗(ρ)= Φ2πρ

(− y , x )

E⃗

B⃗=Φδ(ρ)

Exact solution near bi-critical point =1/2

Page 23: Leonid Levitov - mit.edu

09/20/2012

Screening cloud: transition between dielectric and metallic behavior

● Subcritical regime: dielectric behavior, 1/r potential, screening charge concentrated on the lattice scale

● Supercritical regime: metallic behavior, large-scale screening cloud with a power law tale

● Predict scaling exponent value from exact solution

V (ρ≫a)∼ρ−η 1<η<2

Page 24: Leonid Levitov - mit.edu

09/20/2012

Take-home message

● AB flux a knob to tune collapse (in addition to Z)● A bi-critical point, two regimes: “dielectric” and

“metallic”● Exact solution for vacuum polarization and the

screening cloud structure● Experimental search for supercritical potential.

Page 25: Leonid Levitov - mit.edu

09/20/2012

Take-home message

● AB flux a knob to tune collapse (in addition to Z)● A bi-critical point, two regimes: “dielectric” and

“metallic”● Exact solution for vacuum polarization and the

screening cloud structure● Experimental search for supercritical potential.

Just found it

Page 26: Leonid Levitov - mit.edu

How do we make a supercritical potential? Ca dimers on G/BN, Crommie's Lab (Berkeley)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

1

2

3

Nor

mal

ized

dI/d

V

Sample Bias (eV)

1.9nm 2.7nm 3.6nm 4.5nm 16.9nm

3 nm

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

1

2

3

Nor

mal

ized

dI/d

V

Sample Bias (eV)

1.9nm 2.7nm 3.6nm 4.5nm 16.9nm

STS for 1 Dimer Simulation for 1 Dimer

Subcritical...Z < Zc

Ca dimer

0.6c

Z

Z≈

Experiment Theory

Wang, Brar, Shytov, Wu, Regan, Tsai, Zettl, Levitov, Crommie,Nat Phys 8, 653 (2012)

Previous work (probed intrinsic screening for Co trimers)

Page 27: Leonid Levitov - mit.edu

Ca Dimer Has an Advantage: Can Manipulate it

Ca Dimers are Moveable Charge Centers

Fabricate Artificial Nuclei

+ +

++++

+ +

Tune Z above Zc

n=3 dimer cluster

Page 28: Leonid Levitov - mit.edu

Tuning Z by Building Artificial Nuclei from Ca Dimers

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

1

2

3

Nor

mal

ized

dI/d

V

Sample Bias (eV)

1.9nm 2.7nm 3.6nm 4.5nm 16.9nm

-0.4 -0.2 0.0 0.2 0.4

Sample Bias (eV)

2.4nm 3.3nm 4.2nm 6.0nm 17.1nm

-0.4 -0.2 0.0 0.2 0.4

Sample Bias (eV)

2.6nm 3.4nm 4.3nm 6.0nm 17.1nm

-0.4 -0.2 0.0 0.2 0.4

Sample Bias (eV)

3.2nm 4.1nm 4.9nm 6.7nm 17.6nm

-0.4 -0.2 0.0 0.2 0.4

Sample Bias (eV)

3.7nm 4.6nm 5.5nm 7.3nm 18.9nm

3 nm

Dirac pt.

n=1 n=2 n=3 n=4 n=5

Page 29: Leonid Levitov - mit.edu

Compare to Simulated Behavior

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

1

2

3

Nor

mal

ized

dI/d

V

Sample Bias (eV)

1.9nm 2.7nm 3.6nm 4.5nm 16.9nm

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Sample Bias (eV)

3.7nm 4.6nm 5.5nm 7.3nm 18.9nm

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60

1

2

3

Nor

mal

ized

dI/d

V

Sample Bias (eV)

1.9nm 2.7nm 3.6nm 4.5nm 16.9nm

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Sample Bias (eV)

2.6nm 3.4nm 4.3nm 6.0nm 17.1nm

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Sample Bias (eV)

3.7nm 4.6nm 5.5nm 7.3nm 18.9nm

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Sample Bias (eV)

2.6nm 3.4nm 4.3nm 6.0nm 17.1nm

Experiment:n=1

Theory:Z/Zc = 0.6

Theory:Z/Zc = 1.4

Theory:Z/Zc = 2.2

Experiment:n=3

Experiment:n=5

Theory fit parameter: Z/Zc (Levitov, Shytov)

Atomic Collapse

Page 30: Leonid Levitov - mit.edu

Atomic Collapse Spatial Dependence n=5 Cluster

3 4 5 6 7 8 9 10

1

2

3

4

Nor

mal

ize

d d

I/d

V

Distance (nm)

3 4 5 6 7 8 9 10

2

4

6

8

|ψ|2

Distance (nm)

Theory

Experiment

Page 31: Leonid Levitov - mit.edu

Dependence on Electron Occupation

E

LDOS

EF

Strongly p-doped

Atomic Collapse State(positive impurity)

E

LDOS

EF

Low doping

E

LDOS

EF

Strongly n-doped

Low Screening

High Screening

High Screening

Expect similar behavior in single-particle picture

Page 32: Leonid Levitov - mit.edu

Observed Density Dependence NOT Symmetric

High p-dopedn ~ 3 × 1012 cm-2

High n-dopedn ~ 3 × 1012 cm-2

Low p-dopedn ~ 4 × 1011 cm-2

Strong Suppression

Gate dependent spectra4 nm from 5 Ca-dimer cluster

Page 33: Leonid Levitov - mit.edu

Why the Strong Suppression for Occupied Regime?

STM tip

EF

EF

e-

+

-

Vb

STM tip

EF

EF

e-

+

-

Vb

U=Coulomb repulsion

4 electrons (2 spins x 2 valleys)

Suppression of Single-Particle Spectral Density

p-doped case n-doped case (electron occupied)

At. Coll. state

Possible explanation: electron-electron interactions

Page 34: Leonid Levitov - mit.edu

09/20/2012

Atomic collapse in graphene

1. Graphene: relativistic high-energy physics in a condensed matter system. Atomic collapse near charge impurities, Z~1.

2. Manifestations: formation of resonances and Dirac vacuum polarization. STM experiments with Z~1 impurities. Collapse observed on artificial nuclei (few-impurity clusters)

3. Use Aharonov-Bohm solenoid (B field or pseudo-B field)to bring collapse threshold from Z~1 down to Z<<1. Exact solution for screening cloud near critical point.

Page 35: Leonid Levitov - mit.edu

Future:

(1) New electron-electron interaction effects

(2) Impurity-impurity interactions

(3) Supercriticality in other systems? (Topol. insulators; mass ≠ 0)

(4) Spin Effects