Applicationsof Variational+Bayes+&+DAGs+ inNeuroimagings14ece6504/slides/... · Stephan & Friston...

Post on 29-Jun-2020

4 views 0 download

Transcript of Applicationsof Variational+Bayes+&+DAGs+ inNeuroimagings14ece6504/slides/... · Stephan & Friston...

Applications  of  Variational  Bayes  &  DAGs  in  Neuroimaging  

ECE  6504:    Advanced  Topics  in  Machine  Learning  

     

Rosalyn  Moran  rosalynj@vtc.vt.edu  

ì  Overview  

1.  Dynamics  in  Dynamic  Causal  Modeling  

2.  Graphical  Model  -­‐  VariaFonal  Inversion  

-­‐   StaFsFcal  Inference  from  VB  

3.  Examples    -­‐  ANenFon  in  the  Human  Brain  

-­‐  Synesthesia  

Dynamic  Causal  Modelling  

Friston  et  al  2003;  Stephan  et  al  2008  

Kiebel  et  al,  2006;  Garrido  et  al,  2007  

David  et  al,  2006;  Moran  et  al,  2007    

dxdt

Time  Series  

DCM  is  not  intended  for  ‘modelling’      DCM  is  an  analysis  framework  for  empirical  data    DCM  uses  a  Fmes  series  to  test  mechanisFc  hypotheses    Hypotheses  are  constrained  by  the  underlying  dynamic  generaFve  (biological)  model  

),,( θuxFdtdx

=

Neural state equation:

Electromagnetic forward model:

neural activity→EEGMEG LFP

simple neuronal model complicated forward model

complicated neuronal model simple forward model

fMRI EEG/MEG

Hemodynamicforward model:neural activity→BOLD

Dynamic  Causal  Modelling  (DCM)  

DCM  for  fMRI  

u1   A(1,1)        

A(2,1)        

A(1,2)        

A(2,2)        

x1  

x = (A+uB)x +Cuy = g(x,H )+εε ~ N(0,σ )

u2  B(1,2)        

H{1}  

y  

H{2}  

y  

x2  

C(1)  

),,( θuxFdtdx

=

x1   x2   x3  

System  states  xt  

ConnecFvity  parameters  θ  

Inputs  ut  

Aim:  model  temporal  evoluFon  of  a  set  of  neuronal  states  xt  

Neuronal  model  

State  changes  are  dependent  on:  

–  the  current  state  x  –  external  inputs  u  –  its  connecFvity  θ  

Example:  a  linear  model  of  interacFng  visual  regions  

Visual  input  in  the    visual  field    -­‐  le\  (LVF)    -­‐  right  (RVF)    LG  =  lingual  gyrus  FG  =  fusiform  gyrus  

LG  le\  

LG  right  

RVF   LVF  

FG  right  

FG  le\  

x1   x2  

x4  x3  

u2   u1  

x3 = a31x1 + a33x3 + a34x4

x1 = a11x1 + a12x2 + a13x3 + c12u2

x4 = a42x2 + a43x3 + a44x4

x2 = a21x1 + a22x2 + a24x4 + c21u1

Example:  a  linear  model  of  interacFng  visual  regions  

x1 = a11x1 + a12x2 + a13x3 + c12u2x2 = a21x1 + a22x2 + a24x4 + c21u1x3 = a31x1 + a33x3 + a34x4x4 = a42x2 + a43x3 + a44x4

Visual  input  in  the    visual  field    -­‐  le\  (LVF)    -­‐  right  (RVF)    LG  =  lingual  gyrus  FG  =  fusiform  gyrus  

LG  le\  

LG  right  

RVF   LVF  

FG  right  

FG  le\  

x1   x2  

x4  x3  

u2   u1  

Visual  input  in  the    visual  field    -­‐  le\  (LVF)    -­‐  right  (RVF)    LG  =  lingual  gyrus  FG  =  fusiform  gyrus  

Example:  a  linear  model  of  interacFng  visual  regions  

state changes

effective connectivity

externalinputs

systemstate

input parameters

x1x2x3x4

!

"

######

$

%

&&&&&&

=

a11 a12 a13 0

a21 a22 0 a24a31 0 a33 a340 a42 a43 a44

!

"

######

$

%

&&&&&&

x1x2x3x4

!

"

######

$

%

&&&&&&

+

0c2100

c12000

!

"

#####

$

%

&&&&&

u1u2

!

"

##

$

%

&&

x = Ax +Cu

},{ CA=θ

LG  le\  

LG  right  

RVF   LVF  

FG  right  

FG  le\  

x1   x2  

x4  x3  

u2   u1  

Example:  a  linear  model  of  interacFng  visual  regions  

LG  le\  

LG  right  

RVF   LVF  

FG  right  

FG  le\  

x1   x2  

x4  x3  

u2   u1  

ATTENTION  u3  

x = (A+ u jB( j )

j=1

m

∑ )x +Cu

x1x2x3x4

!

"

######

$

%

&&&&&&

=

a11 a12 a13 0

a21 a22 0 a24a31 0 a33 a340 a42 a43 a44

!

"

######

$

%

&&&&&&

+u3

0 b12(3) 0 0

0 0 0 00 0 0 b34

(3)

0 0 0 0

!

"

#####

$

%

&&&&&

'

(

)))

*

)))

+

,

)))

-

)))

x1x2x3x4

!

"

######

$

%

&&&&&&

+

0c2100

c12000

0000

!

"

#####

$

%

&&&&&

u1u2u3

!

"

####

$

%

&&&&

DeterminisFc  Bilinear  DCM  

CuxBuAdtdx m

i

ii +⎟

⎞⎜⎝

⎛+= ∑

=1

)(

Bilinear state equation:

driving input

modulation

...)0,(),(2

0 +∂∂

∂+

∂∂

+∂∂

+≈= uxuxfu

ufx

xfxfuxf

dtdx

Simply a two-dimensional taylor expansion (around x0=0, u0=0):

A= ∂f∂x u=0

C = ∂f∂u x=0

B = ∂2 f∂x∂u

u2

u1

x1

x2

stimulus u1

context u2

x1

x2

21a

Context-­‐dependent  enhancement  

( )

( ) ⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡+⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡+⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

++=

2

111

2

1221

22

1

2221

11

2

1

22

000

0000

uuc

xx

bu

xx

aaa

xx

CuxBuAxx

endogenous  connecFvity  

direct  inputs  

modulaFon  of  connecFvity  

Neural  state  equaFon   CuxBuAx jj ++= ∑ )( )(

ux

C

xx

uB

xx

A

j

j

∂=

∂=

∂=

)(

hemodynamic  model  H  

x  

y  

integraFon  

Stephan & Friston (2007), Handbook of Brain Connectivity

BOLD  y  y  y  

ac#vity  x1(t)  

ac#vity  x2(t)   ac#vity  

x3(t)  

Neuronal  states  

t  

driving  input  u1(t)  

modulatory  input  u2(t)  

t  

DCM  for  fMRI:  the  full  picture  

ì  Cognitive system is modelled at its underlying neuronal level (not directly accessible for fMRI).

ì  The modelled neuronal dynamics (x) are transformed into area-specific BOLD signals (y) by a hemodynamic model (λ).

ì  Overcomes regional variability at the hemodynamic level

ì  DCM not based on temporal precedence at measurement level

DCM:  Neuronal  and  hemodynamic  level  

hemodynamic  model  

H  

x  

y  

integraFon  

The  hemodynamic  “Balloon”  model  

ì  3  hemodynamic  parameters  

ì  Region-­‐specific  HRFs  

ì  Important  for  model  fibng,  but  of  no  interest  

Hemodynamic  model  

Z: neuronal activity Y: BOLD response

y  represents  the  simulated  observaFon  of  the  bold  response,  including  noise,  i.e.    

y  =  h(u,θ)+e  

BOLD

(with noise added)

BOLD

(with noise added)

y1

y2

u1

u2 z1

z2

0 20 40 60

024

0 20 40 60

024

seconds

Haemodynamics: reciprocal connections

BOLD

with

Noise added

BOLD

with

Noise added

y1

y2

blue: neuronal activity red: bold response

u1

u2 z1

z2

euhy ),( y represents simulated observation of BOLD response, i.e. includes noise

ì  Overview  

1.  Dynamics  in  Dynamic  Causal  Modeling  

2.   Graphical  Model  -­‐  Varia#onal  Inversion  

-­‐   Bayesian  Sta#s#cal  Inference  from  VB  

3.  Examples    -­‐  ANenFon  in  the  Human  Brain  

-­‐  Synesthesia  

y1

y2

u1

u2 x1

x2

 EsFmate  neural  &    hemodynamic  parameters  such  that  the  MODELLED  and  MEASURED  BOLD  signals  are  similar  (model  evidence  is  opFmised),  using  variaFonal  bayes  under  mean  field:    P(X,  λ,  A,  B,  C  |  Y)    

Parameter  estimation:  Bayesian  inversion  

Recall  from  Tuesday  

Main  Issues  in  PGMs    

•  Representa#on  -­‐  How  do  we  store  P(X1,    X2,  …,  XN)  -­‐  What  does  my  model  mean/imply/assume?  (SemanFcs)  

 •  Inference  

-­‐  How  do  I  answer  quesFons/queries  with  my  model,  such  as  -­‐  Marginal  EsFmaFon:  P(X5  |  X1,  X4)  -­‐  Most  Probable  ExplanaFon:  argmax  P(X1,    X2,  …,  XN)  

 •  Learning  

-­‐  How  do  we  learn  parameters  and  structure  of  P(X1,    X2,  …,  XN)  from  data  -­‐   What  is  the  right  model  for  my  data?  

VB:  A  procedure  to  do  inference:    That  implicitly  ‘does  double  duty’  in  Directed  Graphs!    

Key  Results  for  VB  

•   Approximate  Inference  using  constrained  opFmizaFon        

•  Where:  The  approximaFon  arises  from  construcFng  an  approximaFng  distribuFon  over  X:    q(X)  which  is  closest  in  p(X)  “in  the  KL  sense”      •  Derived  a  cost  funcFon  Which  can  be  maximized      •  And  is  equivalent  to  minimizing  KL(q|p)      

)|(ln pqKLZF −=

[ ]qHFq+=∑

φ

φln

•  Z:  ParFFon  FuncFon;  a  normalizaFon  funcFon  equal  to  the  probability  of  the  evidence  in  directed  graphs  

Key  Result  for  Mean-­‐Field,  Structured  VB  

•  The  structured  variaFonal  approach  aims  to  opFmize  F  over  a  coherent  distribuFon  q    (ie.  giving  a  proper  joint  distribuFon),  at  the  expense  of  capturing  all  the  informaFon  in  p.  

 •  Assume  the  approximaFng  or  proposal  density  factorizes  over  groups  of  

parameters  -­‐  where  this  factorizaFon  is  a  relaxaBon  (a  superspace)  of  the  space  of  true  marginals.    

   •  Approximate  q  using  a  factorizaFon      •  Found  iteraFve  update  equaFons  for  q                  using  fixed  point  soluFons      •  F  is  a  guaranteed  lower  bound  on  ln(Z)    

∏=i

ixqXq )()(

ZxIxq i

i)](exp[)( =

)|(ln pqKLZF −=

DCM:  Probabilistic  Graphical  Model  Representation  

y1

y2

u1

u2 x1

x2

b12   a12  

Dynamics  

DCM:  Probabilistic  Graphical  Model  Representation  

y1(t)  

x1(t)  y1

y2

u1

u2 x1

x2

b12   a12  

y1(t+1)  

x1(t+1)  

y1(t+2)  

y2(t)  y2(t+1)  y2(t+2)  

x1(t+2)  

x2(t+1)  x2(t+2)   x2(t)  

Dynamics  

Causal  Links  expressed  through  implicit  delays,    which  makes  the  graph  a  Directed  Acyclic  Graph  

DAG  

DCM:  Probabilistic  Graphical  Model  Representation  

y1

y2

u1

u2 x1

x2

b12   a12  

y  

x  

Dynamics  

A  

B  

H  

C  

λ  

)),,,,,((),,,,( IHXCBAfNHXCBAyp λ→N  

N  

N  =Time  steps    x  #  Regions  

DAG  

DCM:  Probabilistic  Graphical  Model  Representation  

y1

y2

u1

u2 x1

x2

b12   a12  

y  

Dynamics  

A  

B  

H  

C  

λ  

)),,,,,((),,,,( IHXCBAfNHXCBAyp λ→N   N  =Time  steps    x  #  Regions  

Bayes  Net:  PGM  

DCM:  Probabilistic  Graphical  Model  Representation  

y1

y2

u1

u2 x1

x2

b12   a12  

y  

Dynamics  

A  

B  

H  

C  

λ  

)),,,,,((),,,,( IHXCBAfNHXCBAyp λ→N   N  =Time  steps    x  #  Regions  

 Bayes  Net:    ProbabilisFc  Graphical  Model  

DCM:  Probabilistic  Graphical  Model  Representation  

y1

y2

u1

u2 x1

x2

b12   a12  

y  

Dynamics  

θ  

λ  

Goal:  Find  the  set  of  latent  variables  θ,  given  y:  p(θ|y)  Ie.  inference  or  Query  for  the  marginal  distribuFon  of  the  connecFvity  parameters  given  data,  marginalized  w.r.t  noise  parameter  

DCM:  Probabilistic  Graphical  Model  Representation  

y1

y2

u1

u2 x1

x2

b12   a12  

y  

Dynamics  

θ  

λ  

Given  this  type  of  graph  we  know:  )(

),()()(),(

ypyppp

ypλθλθ

λθ =                θ        λ  |y  

Goal:  Find  the  set  of  latent  variables  θ,  given  y:  p(θ|y)  Ie.  inference  or  Query  for  the  marginal  distribuFon  of  the  connecFvity  parameters  given  data,  marginalized  w.r.t  noise  parameter  

DCM:  Probabilistic  Graphical  Model  Representation  

y1

y2

u1

u2 x1

x2

b12   a12  

y  

Dynamics  

θ  

λ  

Given  this  type  of  graph  we  know:  )(

),()()(),(

ypyppp

ypλθλθ

λθ = and  θ        λ  |y  

But  Employ  ApproximaFng  Density  q,    Using  the  mean  field  structure:  

Where:  

Goal:  Find  the  set  of  latent  variables  θ,  given  y:  p(θ|y)  Ie.  inference  or  Query  for  the  marginal  distribuFon  of  the  connecFvity  parameters  given  data,  marginalized  w.r.t  noise  parameter  

DCM:  Probabilistic  Graphical  Model  Representation  

y1

y2

u1

u2 x1

x2

b12   a12  

y  

Dynamics  

θ  

λ  

But  Employ  ApproximaFng  Density  q,    Using  the  mean  field  structure:  

Given  this  type  of  graph  we  know:  

Where:  

)(),()()(

),(ypyppp

ypλθλθ

λθ =

)()(),( yqyqyp λθλθ =

),0()(

),()(

INyq

Nyq

λλ

µθ

∑→

Goal:  Find  the  set  of  latent  variables  θ,  given  y:  p(θ|y)  Ie.  inference  or  Query  for  the  marginal  distribuFon  of  the  connecFvity  parameters  given  data,  marginalized  w.r.t  noise  parameter  

DCM:  Probabilistic  Graphical  Model  Representation  

y1

y2

u1

u2 x1

x2

b12   a12  

Dynamics  

y  

θ  

λ  

But  Employ  ApproximaFng  Density  q,    Using  the  mean  field  structure:  

Given  this  type  of  graph  we  know:  

Where:  

)(),()()(

),(ypyppp

ypλθλθ

λθ =

)()(),( yqyqyp λθλθ =

),0()(

),()(

INyq

Nyq

λλ

µθ

∑→

Goal:  Find  the  set  of  latent  variables  θ,  given  y:  p(θ|y)  Ie.  inference  or  Query  for  the  marginal  distribuFon  of  the  connecFvity  parameters  given  data,  marginalized  w.r.t  noise  parameter  

DCM:  Probabilistic  Graphical  Model  Representation  

y  

θ  

λ  

Goal:  Find  the  set  of  latent  variables  θ,  given  y,  

Daunizeau  et  al.  2009  

),( yp λθ

)()( yqyq λθ

•  Assuming  Independence  of  parameters  &  hyperparameters  •  And  a  Gaussian  form  on  the  PDF  

)( yq θ)( yq λ

VB  with  a  mean-­‐field  approximaFon  

( ) ( ) ( )

( ) ( ) ( )

( )

( )

exp exp ln , ,

exp exp ln , ,

q

q

q I p y

q I p y

θ λ

λ θ

θ θ λ

λ θ λ

⎡ ⎤∝ =⎣ ⎦

⎡ ⎤∝ =⎣ ⎦

�    IteraFve  updaFng  of  sufficient  staFsFcs  of  approx.  posteriors  by  gradient  ascent.  

�    Mean  field  approx.  

�    Free-­‐energy  approx.  to  model  evidence.  

�  Fixed  point  soluFons  for  two  factors  

   

))|,()|,((),,(ln ypyqKLypFq

λθλθλθ −=

)()(),( yqyqyp λθλθ =

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A  

B  C  

θh  

ε

Stephan et al. (2007) NeuroImage

How  independent  are  neural  and  hemodynamic  parameter  esFmates?  

),()( Σ→ µθ Nyq

Regional  responses  Specify  generaFve  forward  model    

(with  prior  distribuFons  of  parameters)    

VariaFonal  ExpectaFon-­‐MaximizaFon  algorithm  

IteraFve  procedure:   1.  Compute  model  response  using    current  set  of  parameters  

2.  Compare  model  response  with  data  3.  Improve  parameters,  if  possible  

1.  Gaussian  posterior  distribuFons  of  parameters    

2.  Model  evidence     )|( myp

),|( myp θ

µθ|y

Roadmap  inversion  

ì  Gaussian  assumpFons  about  the  posterior  distribuFons  of  the  parameters  

ì  posterior  probability  that  a  certain  parameter  (or  contrast  of  parameters)  is  above  a  chosen  threshold  γ:  

ì  By  default,  γ  is  chosen  as  zero  –  the  prior  ("does  the  effect  exist?").  

Inference  about  DCM  parameters:  Bayesian  single  subject  analysis  

NiiN

iN

yy

N

iyyyy

N

iyyy

,...,|1

|1|,...,|

1

1|

1,...,|

11

1

θθθθ

θθ

µµ Σ⎟⎠

⎞⎜⎝

⎛Σ=

Σ=Σ

=

=

−−

group posterior covariance

individual posterior covariances

group posterior mean

individual posterior covariances and means

FFX  group  analysis  

ì  Likelihood  distribuFons  from  different  subjects  are  independent  

ì  Under  Gaussian  assumpFons,  this  is  easy  to  compute  

ì  Simply  ‘weigh’  each  subject’s  contribuFon  by  your  certainty  of  the  parameter  

Inference  about  DCM  parameters:  Bayesian  parameter  averaging  

Separate  fibng  of  idenFcal  models  for  each  subject  

SelecFon  of  parameters  of  interest  

one-­‐sample  t-­‐test:    parameter  >  0  ?  

paired  t-­‐test:    parameter  1  >    parameter  2  ?  

rmANOVA:    e.g.  in  case  of  mulFple  sessions  per  subject  

Inference  about  DCM  parameters:  RFX  analysis  (frequentist)  

ì  ‘Summary  StaFsFc  Approach’  

∑∑ −=kk

mypmypBF )(ln)(ln 212,1

Fixed Effects Model selection via

log Group Bayes factor:

accounts  for  both  accuracy  and  complexity  of  the  model  

allows  for  inference  about  structure  (generalisability)  of  the  model  

( | , )p r y α

Random Effects Model selection

via Model probability:

)( 1 Kkqkr ααα ++= …

ì  Prior  /  instead  of  to  inference  on  parameters  

ì  Which  of  various  mechanisms  /  models  best  explains  my  data  

ì  Use  model  evidence  

Inference  about  models:  Bayesian  model  comparison  

Bayes  factors  

)|()|(

2

112 myp

mypB =

For  a  given  dataset,  to  compare  two  models,  we  compare  their  evidences.  

B12 p(m1|y) Evidence

1 to 3 50-75% weak

3 to 20 75-95% positive

20 to 150 95-99% strong

≥ 150 ≥ 99% Very strong

Kass  &  Ra\ery  classificaFon:  

Kass  &  Ra\ery  1995,  J.  Am.  Stat.  Assoc.  

or  their  log  evidences  

2112)ln( FFB −≈ Ketamine  modulates:  1.  All  extrinsic  connecFons,    2.  Intrinsic  NMDA  and  3.  Inhibitory  /  Modulatory  processes  (one  of  the  red  

arrows)  :  use  log  bayes  factors  

Bayesian  Model  Comparison      One  other  way  to  view  F!!    

( ) ( )[ ]mypqKLmypF ,|,)|(log θθ−=

[ ]

( ) ( )θθθθθθθ µµµµ

θθ

−Σ−+Σ−Σ= −y

Tyy

mpqKL

|1

|| 21ln

21ln

21

)|(),(

Accuracy      -­‐      Complexity  

The  complexity  term  of  F  is  higher  the  more  independent  the  prior  parameters  (↑  effective  DFs)  

the  more  dependent  the  posterior  parameters  

the  more  the  posterior  mean  deviates  from  the  prior  mean    

y1

y2

u1

u2 z1

z2

ì  Overview  

1.  Dynamics  in  Dynamic  Causal  Modeling  

2.  Graphical  Model  -­‐  VariaFonal  Inversion  

-­‐   StaFsFcal  Inference  from  VB  

3.  Examples    -­‐  ANenFon  in  the  Human  Brain  

-­‐  Synesthesia  

Example:  Attention  to  motion    

Friston et al. (2003) NeuroImage

V1

V5

SPC Photic

Motion

Time [s]

Attention

We used this model to assess the site of attention modulation during visual motion processing in an fMRI paradigm reported by Büchel & Friston.

Friston et al. 2003, NeuroImage

Attention to motion in the visual system

- fixation only - observe static dots + photic V1 - observe moving dots + motion V5 - task on moving dots + attention V5 + parietal cortex

?

m1 m2

V1 V5 stim

PPC

Modulation By attention

V1 V5 External stim

PPC

Modulation By attention

m3

V1 V5 stim

PPC

Modulation By attention

m4

V1 V5 stim

PPC

Modulation By attention

V1 V5 stim

PPC

attention

1.25

0.13

0.46

0.39 0.26

0.26

0.10

estimated effective synaptic strengths

for best model (m4)

models marginal likelihood ln p y m( )

Bayesian  model  selection  

V1 V5 stim

PPC

attention

motion -2 -1 0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%1.99)|0( 1,5 => yDp PPCVV

1.25

0.13

0.46

0.39 0.26

0.50

0.26

0.10

MAP = 1.25

Parameter  inference  

Stephan et al. 2008, NeuroImage

V1  V5  PPC  

observed  fiNed  

moFon  &  aNenFon  

moFon  &  no  aNenFon  

staFc    dots  

Data  fits  

ì  Specific  sensory  sFmuli  lead  to  unusual,  addiFonal  experiences  

ì  Grapheme-­‐color  synesthesia:  color    

ì  Involuntary,  automaFc;  stable  over  Fme,  prevalence  ~4%  

ì  PotenFal  cause:  aberrant  cross-­‐ac#va#on  between  brain  areas  ì  grapheme  encoding  area  ì  color  area  V4    ì  superior  parietal  lobule  (SPL)  

Example  2:  Brain  Connectivity  in  Synesthesia  

Hubbard, 2007

Can  changes  in  effecFve  connecFvity  explain  synesthesia  acFvity  in  V4?  

DCM  of  Synesthesia  

Models  

Hubbard, 2007

Van Leeuwen, den Ouden, Hagoort (2011) JNeurosci

DCM  of  Synesthesia  

Van Leeuwen, den Ouden, Hagoort (2011) JNeurosci

Model  Evidence:    F  ≤  Z  

Relative  model  evidence  predicts  sensory  experience  

Van Leeuwen, den Ouden, Hagoort (2011) JNeurosci

DCM  Roadmap  

fMRI  data  

posterior    parameters  

neuronal    dynamics   haemodynamics  

model    comparison  

 Bayesian  Model    

Inversion      

state-­‐space    model  

priors  

Some  useful  references  

•  10  Simple  Rules  for  DCM  (2010).  Stephan  et  al.  NeuroImage  52.  

•  The  first  DCM  paper:  Dynamic  Causal  Modelling  (2003).    Friston  et  al.  NeuroImage  19:1273-­‐1302.    

•  Physiological  validaFon  of  DCM  for  fMRI:  IdenFfying  neural  drivers  with  funcFonal  MRI:  an  electrophysiological  validaFon  (2008).  David  et  al.  PLoS  Biol.  6  2683–2697  

•  Hemodynamic  model:  Comparing  hemodynamic  models  with  DCM  (2007).  Stephan  et  al.  NeuroImage  38:387-­‐401  

•  Nonlinear  DCM:Nonlinear  Dynamic  Causal  Models  for  FMRI  (2008).  Stephan  et  al.  NeuroImage  42:649-­‐662  

•  Two-­‐state  DCM:  Dynamic  causal  modelling  for  fMRI:  A  two-­‐state  model  (2008).  Marreiros  et  al.  NeuroImage  39:269-­‐278  

•  StochasFc  DCM:  Generalised  filtering  and  stochasFc  DCM  for  fMRI  (2011).  Li  et  al.  NeuroImage  58:442-­‐457.  

•  Bayesian  model  comparison:  Comparing  families  of  dynamic  causal  models  (2010).  Penny  et  al.  PLoS  Comput  Biol.  6(3):e1000709.  

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A  

B  C  

θh  

ε

Stephan et al. (2007) NeuroImage

How  independent  are  neural  and  hemodynamic  parameter  esFmates?