Applications of thermal nanoimprint lithography€¦ · biomedical applications invisible.php nano...

Post on 18-Jun-2020

12 views 0 download

Transcript of Applications of thermal nanoimprint lithography€¦ · biomedical applications invisible.php nano...

Applications of thermal nanoimprint lithography

Chemnitzer Seminar

Systems Integration Technologies

M. Eng. Steffi Proschwitz

Outline

• Research Group

• Motivation

• Basics of thermal Nanoimprint Lithography

• Laser Interference Lithography for Master Structures

• Replication of moth-eye-inspired AR-Structures

• Thermal Imprint of fluorescent Nanoparticles

• Outlook

25.06.2015 Steffi Proschwitz 2

Research Group

main focus: nanotechnology and functional surfaces

• head of group (since October 2011): Prof. Dr. Daniel Schondelmaier

• merge education and research

cleanroom facility

• 100 m² (ISO 5)

• established in 2014

25.06.2015 Steffi Proschwitz 3

Motivation

25.06.2015 Steffi Proschwitz 4

5 µm

self-cleaning surfaces

antireflective properties

[1]http://www.kit.edu/kit/english/pi_2015_037_nature--low-reflection-wings-make-butterflies-nearly-invisible.php biomedical applications

nano structures

[2] Milner KR, Siedlecki CA. Submicron poly(l-lactic acid) pillars affect fibroblast adhesion and proliferation. Journal of Biomedical Materials Research Part A 2007;82:80–91.

Basics of thermal Nanoimprint Lithography

25.06.2015 Steffi Proschwitz 5

nanoimprinting

stamp

heating

thermoplastic polymer

substrate

stamp

heating

temperature

pressure

substrate

demolding

PDMS-Stempel

nanostructured

polymer

Laser Interference Lithography for Master Structures

25.06.2015 Steffi Proschwitz 6

HeCd-Laser (P = 30 mW, λ =325 nm)

double exposure

θ = 15° Λtheoretic = 628 nm

two exposures with t = 275 s

Lloyd-mirror-interferometer

Laser Interference Lithography for Master Structures

• resist structure casted in PDMS soft stamp

25.06.2015 Steffi Proschwitz 7

Imprint

Timp = 160°C p = 4 bar t = 10 min

10 µm

PMMA on Si wafer

Replication of moth-eye-inspired AR-Structures

• Moth-eye effect

application as antireflection layers for optics, photovoltaics

conventional approach: destructive interference within (multi-)layer structures, dependent of wavelength!

moth-eye cornea has antireflection properties due to continuous change in the effective refractive index of air to material

25.06.2015 Steffi Proschwitz 8

n1

n0 ds

neff

[3] http://www.biokon.de/news-uebersicht/ kuenstliches-mottenauge-als-lichtfaenger-wasser stoffproduktion-mit-sonnenlicht/

Replication of moth-eye-inspired AR-Structures

• substrate: electropolished aluminum (99,99 %)

• anodic oxidation

Anodizing voltage: 150 V

Electrolyte concentration: 0,5 %phosphoric acid

Time: 3 h

• etching process for opening pore structures

chromic acid for 2 min

pore diameter ≈ 200 nm

25.06.2015 Steffi Proschwitz 9

1 µm

Replication of moth-eye-inspired AR-Structures

Imprint at 120°C & 4 bar for 10 min

25.06.2015 Steffi Proschwitz 10

polystyrene sheet

5 µm

2 µm

anodized aluminum wafer

Pretreatment: 30 min dip coating with Dynasylan® solution

Replication of moth-eye-inspired AR-Structures

spectral reflectivity

25.06.2015 Steffi Proschwitz 11

reduction of reflectivity

rela

tive

inte

nsity (

reflection)

[%]

Resist: PMMA + PGMEA + CANdots® A plus

Thermal Imprint of fluorescent Nanoparticles (FNP)

25.06.2015 Steffi Proschwitz 12

• elongated coreshell particles (CdSe/CdS in hexane)

• emission maximum λ = 562 nm

• diameter < 5 nm, length < 24 nm

[4] http://www.can-hamburg.de/files/candots_r __series_a_plus.pdf

Thermal Imprint of fluorescent Nanoparticles (FNP)

25.06.2015 Steffi Proschwitz 13

Imprint

Timp = 130°C p = 2 bar t = 10 min

PDMS soft stamp

• remaining fluorescent behavior for temperatures up to 130°C

• no effect of FNP on structure quality

Outlook

Lab-scale roll-to-roll nanoimprint device

• heating the surface of a thermoplastic polymer sheet by flash lamp

25.06.2015 Steffi Proschwitz 14

Thank you for your attention!

M. Eng. Steffi Proschwitz Steffi.Proschwitz@fh-zwickau.de

University of Applied Sciences Zwickau

Department: Physical Technologies Group: Nanotechnology and functional Surfaces

Dr.-Friedrichs-Ring 2A 08056 Zwickau

Germany