ANALOG ELECTRONIC CIRCUIT DESIGN (15 EC 2103 · PDF file · 2016-07-30ANALOG...

Post on 15-Mar-2018

216 views 3 download

Transcript of ANALOG ELECTRONIC CIRCUIT DESIGN (15 EC 2103 · PDF file · 2016-07-30ANALOG...

ANALOGELECTRONICCIRCUITDESIGN(15EC2103)

Dr.M.Durga.PrakashAssociateProfessor

Dept.ofECE

CourseOverviewandinformaKon

OUTLINEOFSYLLABUS

u Part-1:P-NJuncKons

u Part-2:Transistorbiasing&stability

u Part-3:OperaKonalamplifiers

u Part-4:Feedbackamplifier&Oscillators

P-1:P-N JuncKons:Diode theory, forwardandreverse-biased juncDons,reverse-biasbreakdown, loadlineanalysis,diodeapplicaDons-Limiters,clippers,clampers,voltagemulDpliers,halfwave&fullwaverecDficaDon,Capacitor filters, π-secDon filter, ripple factor, Special purpose diodes -Zener diode, Varactor, light emiPng diodes, Laser diodes. Regulators:Series and shunt voltage regulator, percentage regulaDon, Concept ofSMPS.

P-2: Transistor biasing& stability: Q point, Self-Bias-CE, CompensaDontechniques, h-model of Transistor, Expression of voltage gain, currentgain, input&output impedance,Trans-resistance&Trans-conductance,EmiWer follower circuits, High frequency model of Transistor, FETfundamentals, ConfiguraDons, current-voltage characterisDcs,parameters of JFET, Biasing of JFET, Biasing of MOSFET.Transistoramplifiers:RCcoupledamplifier,FuncDonofallcomponents,Equivalentcircuit, derivaDon of voltage gain, Current gain, Input impedance &output impedance, Frequency response characterisDcs, Lower & upperfrequencies,Bandwidth,ConceptofWidebandamplifier,FETsmallsignalmodel,CommondraincommongateconfiguraDons.

P-3: OperaKonal amplifiers: Ideal OPAMP, DifferenDal amplifier,Constantcurrentsource,CMRR,Open&closedloopcircuits,importanceof feedback loop (posiDve & negaDve), inverDng & non-inverDngamplifiers, Voltage follower circuits. ApplicaDon of OperaDonalamplifiers: Adder, Integrator & DifferenDator, Comparator,SchmiWTrigger, InstrumentaDon Amplifier, Log & AnDlog amplifier, Trans-conductancemulDplier,Precision recDfier,Voltage tocurrent&Currenttovoltageconverter.FilterCircuits:AnalysisofLowpass,Highpass,Bandpass, Band reject, All pass filters (first and second order only) usingoperaDonalamplifier.

P-4:Feedbackamplifier&Oscillators:ConceptofFeedback,NegaDve&PosiDvefeedback,Voltage/Current,Series/Shuntfeedback,Barkhausen’scriterion, ColpiW’s, Hartley’s, Phase shia, Wien Bridge, & Crystaloscillators. Power amplifiers: Class A, B, AB, C, Conversion efficiency,DistorDon. MulDvibrators: Monostable, Bistable mulDvibrators,Monostable & Astable operaDon using 555 Dmer. Special funcDoncircuits:VCO&PLL

KLUDr.M.DurgaPrakash

CourseObjecKve

•  TofamiliarizewiththetheoreDcalandmathemaDcalaspectsofElectronicsystems

•  To design Electronic systems and resolve Designorientedproblems

KLUDr.M.DurgaPrakash

DesiredOutcome•  AnalyzingvariousdiodebasedcircuitsanddemonstraDngworking

principlesofBJTandJFET.

•  DesignofBJTamplifer.

•  DemonstraDngtheLinear&Non-linearapplicaDonsofOPAMPs.

•  Design of the concepts of feedback amplifiers, oscillators andpoweramplifiers.

•  DesignandTesDngofAnalogcircuits

KLUDr.M.DurgaPrakash

OtherRelevantInformaKon

•  Prior knowledge required: Some basic Knowledge ofSemiconductorPhysics

•  Levelofdifficulty:Medium

•  MathemaKcs:Simple

KLUDr.M.DurgaPrakash

EvoluKonSchemeEvaluation Component

Weightage/Marks Date Duration CO1 CO2 CO3 CO4 CO5

Marks

COI Number COI-1 COI-2 COI-1 COI-2 COI-1 COI-2 COI-1 COI-2 COI

BTL 2 3 2 3 2 3 2 3

Test 1 Weightage (6%)

1.5 hr

1.2% 4.8% 6M

Max

Marks(30) 6M 24M

Test 2 Weightage (6%)

1.5 hr

1.2% 4.8% 6M

Max

Marks(30) 6M 24M

Test 3 Weightage (6%)

1.5 hr

1.2% 4.8% 6M

Max

Marks(30) 6M 24M

Active Learning

Weightage (15%)

15M

Max

Marks(25)

Attendance Weightage (5%) 5M

Lab Continuous Evaluation

Weightage (5%)

5M

Max Marks(20)

Project

Weightage (7%)

7M

Max Marks(20)

SE Lab Exam

Weightage (5%)

3 hrs

5M

Max Marks(20)

SE Project

Weightage (5%)

5M

Max Marks(30)

Semester End Exam

Weightage (40%)

3 hrs

1.6% 6.4% 1.6% 6.4% 1.6% 6.4% 3.2% 12.8%

40M Max Marks(50) 2M 8M 2M 8M 2M 8M 4M 16M

Question Number

1a 1b 2a 2b 3a 3b 4a & 5a 4b & 5b

TOTAL 100M

KLUDr.M.DurgaPrakash

Reference

TextsBooks1.   MuhammadH.Rashid,“MicroelectronicCircuitsAnalysisandDesign”,2nd

ediKon,CengageLearning.

2.   Sedra&Smith,“Micro-ElectronicCircuitstheoryandapplicaKons”,OxfordPress

ReferenceBooks1.   JacobMillman&ChristosC.Halkias,“IntegratedElectronics”,Tata-

McGrawHill,2ndEdiKon,(2010).

2.   RobertL.BoylestadandLouisNashelsky,“ElectronicDevicesandCircuitTheory”,PHI.9thEdiKon

KLUDr.M.DurgaPrakash

HaveQuesKons?

LocaKon:C–Block,RoomNo:C016

E-Mail:mdprakash@kluniversity.in

KLUDr.M.DurgaPrakash

Lecture:1 Topics

IntroducDon

Diodetheory:operaDon,forwardandreverse-bias,V-I

characterisDcs.

DiodeequaDon,smallsignalandlargesignalequivalentcircuits.

KLUDr.M.DurgaPrakash

IntroducDon

•  Thediode is thesimplestandmost fundamentalnonlinearcircuitelement.

•  Justlikeresistor,ithastwoterminals.

•  Unlikeresistor,ithasanonlinearcurrent-voltagecharacterisDcs.

•  Its use in recDfiers is the most commonapplicaDon.

KLUDr.M.DurgaPrakash

PhysicalStructure

Themostimportantregion,whichiscalledpnjuncDon,istheboundarybetweenn-typeandp-typesemiconductor.

KLUDr.M.DurgaPrakash

SymbolandCharacterisDcfortheIdealDiode

(a)diodecircuitsymbol;(b)i–vcharacterisDc;(c)equivalentcircuitinthereversedirecDon;(d)equivalentcircuitintheforwarddirecDon.

KLUDr.M.DurgaPrakash

CharacterisDcs

•  ConducDng in one direcDon and not in theotheristheI-VcharacterisDcofthediode.

•  The arrowlike circuit symbol shows thedirecDonofconducDngcurrent.

•  Forwardbiasingvoltagemakesitturnon.

•  Reversebiasingvoltagemakesitturnoff.

KLUDr.M.DurgaPrakash

BasicSemiconductorConcepts

•  IntrinsicSemiconductor•  DopedSemiconductor•  Carriersmovement

KLUDr.M.DurgaPrakash

IntrinsicSemiconductor

•  DefiniDonAcrystalofpureandregularla4cestructureiscalledintrinsicsemiconductor.

•  MaterialsØ Silicon---today’sICtechnologyisbasedenDrelyonsilicon

Ø Germanium---earlyusedØ Galliumarsenide---usedformicrowavecircuits

KLUDr.M.DurgaPrakash

IntrinsicSemiconductor(cont’d)

²  Two-dimensionalrepresentaDonofthesiliconcrystal.

²  The circles represent the innercore of silicon atoms, with +4indicaDng its posiDve charge of+4q,whichisneutralizedbythecharge of the four valenceelectrons.

²  Observe how the covalentbondsare formedby sharingofthevalenceelectrons.

²  At 0 K, all bonds are intact andno free electrons are availableforcurrentconducDon.

KLUDr.M.DurgaPrakash

IntrinsicSemiconductor(cont’d)

²  At room temperature,some of the covalentbonds are broken bythermalionizaDon.

²  Each broken bond givesrise to a free electron anda hole, both of whichbecome avai lable forcurrentconducDon.

KLUDr.M.DurgaPrakash

•  ThermalionizaDonØ Valenceelectron---eachsiliconatomhasfourvalenceelectrons

Ø Covalentbond---twovalenceelectronsfromdifferenttwosiliconatomsformthecovalentbond§  Beintactatsufficientlylowtemperature§  Bebrokenatroomtemperature

Ø Freeelectron---producedbythermalionizaDon,movefreelyinthelaPcestructure.

Ø Hole---emptyposiDoninbrokencovalentbond,canbefilledbyfreeelectron,posiDvecharge

IntrinsicSemiconductor(cont’d)

KLUDr.M.DurgaPrakash

KLUDr.M.DurgaPrakash

IntrinsicSemiconductor(cont’d)

•  CarriersAfreeelectronisnegaDvechargeandaholeisposiDvecharge.Bothofthemcanmoveinthecrystalstructure.Theycanconductelectriccircuit.

IntrinsicSemiconductor(cont’d)

•  RecombinaDonSomefreeelectronsfillingtheholesresultsinthedisappearanceoffreeelectronsandholes.

•  ThermalequilibriumAtacertaintemperature,therecombinaDonrateisequaltotheionizaDonrate.SotheconcentraDonofthecarriersisabletobecalculated.

KLUDr.M.DurgaPrakash

IntrinsicSemiconductor(cont’d)

•  CarrierconcentraDoninthermalequilibrium

•  Atroomtemperature(T=300K)

carriers/cm3

inpn ==kTE

iGeBTn −= 32

10105.1 ×≅in

KLUDr.M.DurgaPrakash

IntrinsicSemiconductor(cont’d)

Importantnotes:•  hasastrongfuncDonoftemperature.Thehighthe

temperatureis,thedramaDcallygreatthecarrierconcentraDonis.

•  Atroomtemperatureonlyoneofeverybillionatomsisionized.

•  Silicon’sconducDvityisbetweenthatofconductorsandinsulators.ActuallythecharacterisDcofintrinsicsiliconapproachestoinsulators.

in

KLUDr.M.DurgaPrakash

DopedSemiconductor

•  Dopedsemiconductorsarematerialsinwhichcarriersofonekindpredominate.

•  Onlytwotypesofdopedsemiconductorsareavailable.

•  ConducDvityofdopedsemiconductorismuchgreaterthantheoneofintrinsicsemiconductor.

•  ThepnjuncDonisformedbydopedsemiconductor.

KLUDr.M.DurgaPrakash

DopedSemiconductor(cont’d)

ntypesemiconductor•  Concept

Doped silicon in which the majority of charge carriers are thenega>velychargedelectronsiscalledntypesemiconductor.

•  Terminology

Ø  Donor---impurityprovidesfreeelectrons,usuallyenDrelyionized.

Ø  Posi>ve bound charge---impurity atom donaDng electron givesrisetoposiDveboundcharge

Ø  carriers•  Freeelectron---majority,generatedmostlyby ionizedandslightlybythermalionizaDon.

•  Hole---minority,onlygeneratedbythermalionizaDon.

KLUDr.M.DurgaPrakash

DopedSemiconductor(cont’d)

²  Asiliconcrystaldopedbyapentavalentelement.

²  Each dopant atomdonatesa free electron and is thuscalledadonor.

²  The doped semiconductorbecomesntype.

KLUDr.M.DurgaPrakash

DopedSemiconductor(cont’d)

ptypesemiconductor•  Concept

Dopedsiliconinwhichthemajorityofchargecarriersaretheposi>velychargedholesiscalledptypesemiconductor.

•  Terminology

Ø  acceptor---impurityprovidesholes,usuallyenDrelyionized.

Ø  nega>velyboundcharge---impurityatomaccepDngholegiverisetonegaDveboundcharge

Ø  carriers•  Hole---majority,generatedgeneratedmostlybyionizedandslightlybythermalionizaDon.

•  Freeelectron---minority,onlygeneratedbythermalionizaDon.

KLUDr.M.DurgaPrakash

DopedSemiconductor(cont’d)

²  A silicon crystal dopedwithatrivalentimpurity.

²  Each dopant atom givesrise to a hole, and thesemiconductor becomesptype.

KLUDr.M.DurgaPrakash

DopedSemiconductor(cont’d)

CarrierconcentraDonforntypea)  ThermalequilibriumequaDon

b)  ElectricneutralequaDon

200 inn npn =⋅

nn0 = pn0 + ND

KLUDr.M.DurgaPrakash

DopedSemiconductor(cont’d)

CarrierconcentraDonforptypea)  ThermalequilibriumequaDon

b)  ElectricneutralequaDon

200 ipp nnp =⋅

App Nnp += 00

KLUDr.M.DurgaPrakash

DopedSemiconductor(cont’d)

Becausethemajorityismuchgreatthantheminority,wecangettheapproximateequaDonsshownbelow:

forntypeforptype

⎪⎩

⎪⎨

D

in

Dno

Nnp

Nn2

0 ⎪⎩

⎪⎨

A

ip

Ap

Nnn

Np2

0

0

KLUDr.M.DurgaPrakash

DopedSemiconductor(cont’d)

•  ConclusionØ Majoritycarrier isonlydeterminedbythe impurity,butindependentoftemperature.

Ø Minoritycarrierisstronglyaffectedbytemperature.

Ø Ifthetemperatureishighenough,characterisDcsofdoped semiconductor will decline to the one ofintrinsicsemiconductor.

KLUDr.M.DurgaPrakash

DopedSemiconductor(cont’d)

•  DopingcompensaDon² n type semiconductor is generated by

donordiffusion,theninjecDngacceptorintothespecificarea(assuming )formsptypesemiconductor.

² The boundary between n and p typesemiconductoristhepnjuncDon.

² This is the basic step for VLSIfabricaDontechnology.

ND

NA

DA NN >>

KLUDr.M.DurgaPrakash

CarriersMovement

Therearetwomechanismsbywhichholesandfreeelectronsmovethroughasiliconcrystal.

•  Drig--- The carrier moDon is generated by the electrical fieldacrossapieceofsilicon.ThismoDonwillproducedriacurrent.

•  Diffusion--- The carrier moDon is generated by the differentconcentraDonofcarrierinapieceofsilicon.ThediffusedmoDon,usually carriers diffuse from high concentraDon to lowconcentraDon,willgiverisetodiffusioncurrent.

KLUDr.M.DurgaPrakash

DriaandDriaCurrent

•  DriaØ DriavelociDes

Ø DriacurrentdensiDes

⎪⎩

⎪⎨⎧

−=

=

EvEv

ndrift

pdrift

µ

µnp µµ ,

Jn−drift = (−qn) ⋅ (−µnE) = qnµnEJp−drift = qp ⋅µpE

WherearetheconstantscalledmobilityofholesandelectronsrespecDvely.

KLUDr.M.DurgaPrakash

DriaandDriaCurrent

•  Totaldriacurrentdensity

•  ResisDvity

EpnqJ pndrift )µµ+(=

)(1

pn pnq µµρ+

=

KLUDr.M.DurgaPrakash

DriaandDriaCurrent

•  ResisDviDesfordopedsemiconductor

*Resis@vi@esareinverselypropor@onaltotheconcentra@onof

dopedimpuri@es.•  Temperaturecoefficient(TC)TCforresisDvityofdopedsemiconductorisposiDveduetonegaDveTCofmobility

⎪⎩

⎪⎨

=+=

pA

nD

pnqN

qNpnq

µ

µµµρ

1

1

)(1 Forntype

Forptype

KLUDr.M.DurgaPrakash

DriaandDriaCurrent

•  ResisDvityforintrinsicsemiconductor

*Resis@vityisinverselypropor@onaltothecarrierconcentra@on

ofintrinsicsemiconductor.

•  Temperaturecoefficient(TC)TCforresisDvityofintrinsicsemiconductorisnegaDveduetoposiDveTCof.

)(1

)(1

pnipn qnpnq µµµµρ +=+=

in

KLUDr.M.DurgaPrakash

DiffusionandDiffusionCurrent

•  Diffusion

Abarofintrinsicsilicon(a)inwhichtheholeconcentraDonprofileshownin(b)hasbeencreatedalongthex-axisbysomeunspecifiedmechanism.

KLUDr.M.DurgaPrakash

DiffusionandDiffusionCurrent

wherearethediffusionconstantsordiffusiviDesforholeandelectronrespecDvely.

*Thediffusioncurrentdensityispropor@onaltotheslopeof the the concentra@on curve, or the concentra@ongradient.

dxxdnqDJ

dxxdpqDJ

nn

pp

)(

)(

⋅=

⋅−=

np DD ,

KLUDr.M.DurgaPrakash

EinsteinRelaDonship

Einstein relaDonship exists between the carrierdiffusivityandmobility:

WhereVTisThermalvoltage.

Atroomtemperature,

qkTV

DDT

p

p

n

n ===µµ

mvVT 25=

KLUDr.M.DurgaPrakash

pnJuncDon

•  ThepnjuncDonunderopen-circuitcondiDon

•  I-VcharacterisDcofpnjuncDon

Ø TerminalcharacterisDcofjuncDondiode.Ø PhysicaloperaDonofdiode.

•  JuncDoncapacitance

KLUDr.M.DurgaPrakash

pnJuncDonUnderOpen-CircuitCondiDon

•  UsuallythepnjuncDonisasymmetric,therearep+nandpn+.

•  Thesuperscript“+”denotestheregionismoreheavilydopedthantheotherregion.

KLUDr.M.DurgaPrakash

pnJuncDonUnderOpen-CircuitCondiDon

Fig (a) shows thepn juncDonwith no applied voltage(open-circuitedterminals).

Fig.(b) shows the potenDaldistribuDon along an axisperpendiculartothejuncDon.

KLUDr.M.DurgaPrakash

ProcedureofFormingpnJuncDon

The procedure of forming pn the dynamic equilibrium ofdriaanddiffusionmovementsforcarriers inthesilicon. Indetail,thereare4steps:

a)  Diffusionb)  Spacechargeregion

c)  Driad)  Equilibrium

KLUDr.M.DurgaPrakash

ProcedureofFormingpnJuncDon

•  DiffusionØ Both the majority carriers diffuse across theboundary between p-type and n-typesemiconductor.

Ø ThedirecDonofdiffusioncurrentisfrompsidetonside.

KLUDr.M.DurgaPrakash

ProcedureofFormingpnJuncDon

•  SpacechargeregionØ Majority carriers recombining with minority carriersresultsinthedisappearanceofmajoritycarriers.

Ø Bound charges, which will no longer be neutralized bymajoritycarriersareuncovered.

Ø There isaregionclosetothe juncDonthat isdepletedofmajoritycarriersandcontainsuncoveredboundcharges.

Ø This region is called carrier-depleDon region or spacechargeregion.

KLUDr.M.DurgaPrakash

ProcedureofFormingpnJuncDon

•  DriaØ Electricfieldisestablishedacrossthespacechargeregion.

Ø DirecDonofelectronicfieldisfromnsidetopside.

Ø It helps minority carriers dria through the juncDon. ThedirecDonofdriacurrentisfromnsidetopside.

Ø Itactsasabarrierformajoritycarrierstodiffusion.

KLUDr.M.DurgaPrakash

ProcedureofFormingpnJuncDon

•  EquilibriumØ TwooppositecurrentsacrossthejuncDonisequalinmagnitude.

Ø NonetcurrentflowsacrossthepnjuncDon.

Ø Equilibrium conducDon is maintained by thebarriervoltage.

KLUDr.M.DurgaPrakash

JuncDonBuilt-InVoltage

TheJuncDonBuilt-InVoltage

Ø ItdependsondopingconcentraDonandtemperature

Ø ItsTCisnegaDve.

2lni

DATo n

NNVV =

KLUDr.M.DurgaPrakash

WidthoftheDepleDonRegion

WidthoftheDepleDonRegion:

Ø DepleDonregionexistsalmostenDrelyontheslightlydopedside.

Ø WidthdependsonthevoltageacrossthejuncDon.

oDA

depo VNNq

W )11(2+=

ε

))11(2 VVNNq

W oDA

dep -(+=ε

KLUDr.M.DurgaPrakash

I-VCharacterisDcs

Thediodei–vrelaDonshipwithsomescalesexpandedandotherscompressedinordertorevealdetails

KLUDr.M.DurgaPrakash

I-VCharacterisDcCurve

TerminalCharacterisDcofJuncDonDiodes

•  TheForward-BiasRegion,determinedby

•  TheReverse-BiasRegion,determinedby

•  TheBreakdownRegion,determinedby

ov >

0<<− vVZKZKVv −<

KLUDr.M.DurgaPrakash

ThepnJuncDonUnderForward-BiasCondiDons

Ø ThepnjuncDonexcitedbyaconstant-current sourcesupplying a current I in theforwarddirecDon.

Ø ThedepleDonlayernarrowsand the barrier voltagedecreases by V volts, whichappearsasanexternalvoltageintheforwarddirecDon.

KLUDr.M.DurgaPrakash

ThepnJuncDonUnderForward-BiasCondiDons

Minority-carrierdistribuDoninaforward-biasedpnjuncDon.Itisassumedthatthepregionismoreheavilydopedthanthenregion;NA>>ND.

KLUDr.M.DurgaPrakash

ThepnJuncDonUnderForward-BiasCondiDons

ExcessminoritycarrierconcentraDon:

Ø ExponenDalrelaDonshipØ SmallvoltageincrementalgiverisetogreatincrementalofexcessminoritycarrierconcentraDon.

T

T

Vv

ppp

Vv

nnn

enxn

epxp

0

0

)(

)(

=−

=

KLUDr.M.DurgaPrakash

ThepnJuncDonUnderForward-BiasCondiDons

DistribuDonofexcessminorityconcentraDon:Where

arecalledexcess-minority-carrierlifeDme.

np

pn

Lxx

ppppp

Lxx

nnnnon

enxnnxn

epxppxp)(

00

)(

0

])([)(

])([)(+

−−+=

−+=−

nnn

ppp

DL

DL

τ

τ

=

=

pn ττ ,

KLUDr.M.DurgaPrakash

ThepnJuncDonUnderForward-BiasCondiDons

Thetotalcurrentcanbeobtainedbythediffusioncurrentofmajoritycarriers.

)1)((

)()((

)(

00 −+=

+−=

+=

+=

−==

T

pn

VV

n

pn

p

np

xxxx

nDpD

nDpD

eLnD

LpD

Aq

dxxdnq

dxxdpqA

JJAIII

KLUDr.M.DurgaPrakash

ThepnJuncDonUnderForward-BiasCondiDons

ThesaturaDoncurrentisgivenby:

)(

)(

2

00

An

n

Dp

pi

n

pn

p

nps

nLD

nLD

qAn

LnD

LpD

qAI

+=

+=

KLUDr.M.DurgaPrakash

ThepnJuncDonUnderForward-BiasCondiDons

I-VcharacterisDcequaDon:Diodecurrent

•  ExponenDalrelaDonship,nonlinear.•  IsiscalledsaturaDoncurrent,stronglydepends

ontemperature.•  or2,ingeneral•  VTisthermalvoltage.

)1−= TnVv

s eIi (

1=n 1=n

KLUDr.M.DurgaPrakash

ThepnJuncDonUnderForward-BiasCondiDons

assumingV1atI1andV2atI2then:

* For a decade changes in current, the diodevoltage drop changes by 60mv (for n=1) or120mv(forn=2).

1

2

1

212 lg3.2ln I

InVIInVVV TT ==−

KLUDr.M.DurgaPrakash

ThepnJuncDonUnderForward-BiasCondiDons

•  Turn-onvoltageAconducDondiodehasapproximatelyaconstantvoltagedropacrossit.It’scalledturn-onvoltage.

•  DiodeswithdifferentcurrentraDngwillexhibittheturn-onvoltageatdifferentcurrents.

•  NegaDveTC,

VVVV

onD

onD

25.0

7.0

)(

)(

=

= Forsilicon

Forgermanium

CmvTC !/2−=

KLUDr.M.DurgaPrakash

ThepnJuncDonUnderReverse-BiasCondiDons

Ø The pn juncDon excited by aconstant-current source I in thereversedirecDon.

Ø To avoid breakdown, I is keptsmallerthanIS.

Ø Note that the depleDon layerwidens and the barrier voltageincreases by VR volts, whichappears between the terminals asareversevoltage.

KLUDr.M.DurgaPrakash

ThepnJuncDonUnderReverse-BiasCondiDons

I-VcharacterisDcequaDon:WhereIsisthesaturaDoncurrent,itisproporDonaltoni2whichisastrongfuncDonoftemperature.

sIi =

)(

)(

2

00

An

n

Dp

pi

n

pn

p

nps

nLD

nLD

qAn

LnD

LpD

qAI

+=

+=

Independentofvoltage。

KLUDr.M.DurgaPrakash

ThepnJuncDonIntheBreakdownRegion

ThepnjuncDonexcitedbyareverse-currentsourceI,whereI>IS.ThejuncDonbreaksdown,andavoltageVZ,withthepolarityindicated,developsacrossthe

juncDon.

KLUDr.M.DurgaPrakash

ThepnJuncDonIntheBreakdownRegion

•  Supposing,thecurrentsourcewillmoveholesfromptonthroughtheexternalcircuit.

•  ThefreeelectronsmovethroughoppositedirecDon.

•  This result in the increase of barrier voltage anddecreasealmostzeroofdiffusioncurrent.

•  Toachievedtheequilibrium,anewmechanismsetsinto supply the charge carriers needed to support thecurrentI.

sII >>

KLUDr.M.DurgaPrakash

Lecture:2 Topics

Recap- Diode theory, Diode equation, small signal and large

signal equivalent circuits.

Breakdown:ZenerandAvalanchemechanisms.

Loadlineanalysis

Conclusion&Summary–Breakdown,loadlineanalysis.

KLUDr.M.DurgaPrakash

BreakdownMechanisms

•  ZenereffectØ OccursinheavilydopingsemiconductorØ  Breakdownvoltageislessthan5v.Ø  Carriersgeneratedbyelectricfield---fieldionizaDon.Ø  TCisnegaDve.

•  Avalancheeffect.Ø OccursinslightlydopingsemiconductorØ  Breakdownvoltageismorethan7v.Ø  Carriersgeneratedbycollision.Ø  TCisposiDve.

KLUDr.M.DurgaPrakash

BreakdownMechanisms

Remember: pn junc@on breakdown is not a destruc@veprocess,providedthatthemaximumspecifiedpowerdissipa@onisnotexceeded.

KLUDr.M.DurgaPrakash

ZenerDiode

Circuitsymbol

Thediodei–vcharacterisDcwiththebreakdownregionshowninsomedetail.

KLUDr.M.DurgaPrakash

JuncDonCapacitance

•  DiffusionCapacitanceØ  Chargestoredinbulkregionchangeswiththechangeofvoltage

acrosspnjuncDongivesrisetocapaciDveeffect.

Ø  Small-signaldiffusioncapacitance

•  DepleDoncapacitanceØ  ChargestoredindepleDonlayerchangeswiththechangeofvoltage

acrosspnjuncDongivesrisetocapaciDveeffect.

Ø  Small-signaldepleDoncapacitance

KLUDr.M.DurgaPrakash

DiffusionCapacitance

AccordingtothedefiniDon:Thechargestoredinbulkregionisobtainedfrombelow

equaDons:

Qd dVdQC =

pp

pnonn

x nonp

ILpxpAq

dxpxpAqQn

τ=

⋅−×=

−×= ∫∞

])([

])([

nnn IQ τ=

KLUDr.M.DurgaPrakash

DiffusionCapacitance

Theexpressionfordiffusioncapacitance:

Forward-bias,linearrelaDonship

Reverse-bias,almostinexistence⎪⎩

⎪⎨

⎧≈

=

=

0

)(

)(

][

QT

T

QT

T

VV

sTd

IV

IV

eIdVdC T

τ

τ

τ

KLUDr.M.DurgaPrakash

DepleDonCapacitance

AccordingtothedefiniDon:Actuallythiscapacitanceissimilartoparallelplate

capacitance.

QR VVRj dVdQC

=

=

)1(

))(11(2[

0

0

o

R

j

RBA

depj

VVC

vVNNq

AWAC

+=

++

εε=

KLUDr.M.DurgaPrakash

DepleDonCapacitance

•  AmoregeneralformulafordepleDoncapacitanceis:

•  Wheremiscalledgradingcoefficient.•  IftheconcentraDonchangessharply,•  Forward-biascondiDon,•  Reverse-biascondiDon,

mR

jj V

CC

)V1(0

0

+=

21~

31

=m

21

=m

02 jj CC ≈

dj CC <<

KLUDr.M.DurgaPrakash

JuncDonCapacitance

Remember:a)  Diffusion and deple@on capacitances are

incremental capacitances, only are applied underthesmall-signalcircuitcondi@on.

b)  Theyarenotconstants,theyhaverela@onshipwiththevoltageacrossthepnjunc@on.

KLUDr.M.DurgaPrakash

AnalysisofDiodeCircuit

•  ModelsØ MathemaDcmodelØ Circuitmodel

•  MethodsofanalysisØ GraphicalanalysisØ IteraDveanalysisØ Modelinganalysis

KLUDr.M.DurgaPrakash

TheDiodeModels

MathemaDcModel:

ThecircuitmodelsarederivedfromapproximaDngthecurveintopiecewise-line.

⎪⎩

⎪⎨⎧

−≈

−=

s

nVv

s

nVv

s

IeI

eIi

T

T )1(

Forwardbiased

Reversebiased

KLUDr.M.DurgaPrakash

TheDiodeModels

CircuitModela)  Simplifieddiodemodel

b)  Theconstant-voltage-dropmodel

c)  Small-signalmodel

d)  High-frequencymodel

e)  ZenerDiodeModel

KLUDr.M.DurgaPrakash

SimplifiedDiodeModel

Piecewise-linearmodelofthediodeforwardcharacterisDcanditsequivalentcircuitrepresentaDon.

KLUDr.M.DurgaPrakash

TheConstant-Voltage-DropModel

Theconstant-voltage-dropmodelofthediodeforwardcharacterisDcsanditsequivalent-circuitrepresentaDon.

KLUDr.M.DurgaPrakash

Small-SignalModel

SymbolconvenDon:Ø Lowercasesymbol,uppercasesubscriptstandsfortotalinstantaneousqualiDes.

Ø Uppercasesymbol,uppercasesubscriptstandsfordccomponent.

Ø Lowercasesymbol,lowercasesubscriptstandsforaccomponentorincrementalsignalqualiDes.

Ø Uppercasesymbol,lowercasesubscriptstandsfortherms(root-mean-square)ofac.

)(tId

)(tid

DI

)(tiD

KLUDr.M.DurgaPrakash

Small-SignalModel

Developmentofthediodesmall-signalmodel.Notethatthenumericalvaluesshownareforadiodewithn=2.

KLUDr.M.DurgaPrakash

Small-SignalModel(cont’d)

Incrementalresistance:

*The signal amplitude sufficiently small suchthat the excursionatQalong the i-v curve islimitedtoashort,almostlinearsegment.

DQ

Td IVr =

KLUDr.M.DurgaPrakash

High-FrequencyModel

Highfrequencymodel

rd

rs

cj

KLUDr.M.DurgaPrakash

ZenerDiodeModel

ZZZZ rIVV += 0

KLUDr.M.DurgaPrakash

MethodofAnalysis

Ø LoadlineØ DiodecharacterisDcØ QistheintersectpointØ VisualizaDon

KLUDr.M.DurgaPrakash

Lecture:3 Topics

Recap-Breakdown,loadlineanalysis

Workingofclippers&clampers

WorkingofLimiters&voltagemulDpliers

Conclusion&Summary–Workingofclampers,clippers,Limiters

&voltagemulDpliers.

KLUDr.M.DurgaPrakash

Clippers

²  Clippers or diode limiting is a diode network that have the ability to “clip” off a portion on the i/p signal without distorting the remaining part of the alternating waveform.

²  Clippers are used to eliminate amplitude noise or to

fabricate new waveforms from an existing signal.

²  2 general of clippers: a) Series clippers b) Parallel clippers

Clippers

KLUDr.M.DurgaPrakash

²  The series configuraDon is defined as onewherethediodeisinserieswiththeload.

²  A half-wave recDfier is the simplest formofdiodeclipper-oneresistoranddiode.

SeriesClippers

+

-Vi RL Vo

-

+

KLUDr.M.DurgaPrakash

The diode “clips” any voltage that does not put it in forward bias. That would be a reverse biasing polarity and a voltage less than 0.7V for a silicon diode.

ClipperDiodeCircuit

KLUDr.M.DurgaPrakash

Vm

Vi

t0 T/2 T

+

-Vi

V

RL Vo-

+

²  The half-wave rectifier with addition of dc supply is shown in following figure. The cct known as biased series clipper.

² The dc supply have pronounced effect on the o/p of a clipper.

Biased series clipper KLUDr.M.DurgaPrakash

ClipperDiodeCircuit

•  +ve region turn the diode ON. •  -ve region turn the diode OFF. •  Vi > V to turn ON the diode •  In general diode is open cct (OFF state) and short cct (ON state) •  For Vi > V the Vo = Vi – V •  For Vi = V the Vo= 0 V •  The complete cct shown above

Vm

Vi

t0 T/2 T

+

-Vi=Vm

V

RL Vo

-

++ -

T/20

Vo

tT

Vm-V

Vi=V (diodes change state)

KLUDr.M.DurgaPrakash

ClipperDiodeCircuit

² The diode connection is in parallel configuration with the o/p.

²  Diode is ideal

+

RL

Vo-

+

-

Vi

ParallelClippers

KLUDr.M.DurgaPrakash

By taking the output across the diode, the output is now the voltage when the diode is not conducting. A DC source can also be added to change the diode’s required forward bias voltage.

ChangingOutputPerspecKve

KLUDr.M.DurgaPrakash

ClipperCircuitsSummary

KLUDr.M.DurgaPrakash

KLUDr.M.DurgaPrakash

ClipperCircuitsSummarySimpleShuntclipper(IdealDiodes)

ClipperCircuitsSummary

KLUDr.M.DurgaPrakash

Clampers

²  The clamping network is to “clamp” a signal to a different dc level. Also known as dc restorers. The clamping cct is often used in TV receivers as a dc restorer.

²  The network consists of: a) Capacitor b) Diode c) Resistive element d) Independent dc supply (option)

²  The magnitude of R and C must be chosen such that the time constant

²  τ = RC is large enough to ensure that the voltage across the capacitor does not discharge significantly during the interval the diode is nonconducting.

²  Our analysis basis that all capacitor is fully charge and discharge in 5 time constant.

Clampers

KLUDr.M.DurgaPrakash

+R Vo

-

+

-

Vi

Vi

t0 T/2 T

V

-V

KLUDr.M.DurgaPrakash

Clamper

+ ve region

+

R Vo

-

+-

Vi

C •  0 - T/2: Diode is ON state (short-cct equivalent) •  Assume RC time is small and capacitor charge to V volts very quickly •  Vo=0 V (ideal diode)

- ve region

•  T/2 - T: Diode is OFF state (open-cct equivalent) •  Both for the stored voltage across capacitor and applied signal current through cathode to anode •  KVL: - V- V- Vo = 0 and Vo = -2V

+

R Vo

-

+-

V

C

Vo

-

+V

Vi

t0 T/2 T

V

-V

OperaKonofclamper

KLUDr.M.DurgaPrakash

Tips : Clamping network Total swing o/p signal = the total swing i/p signal

KLUDr.M.DurgaPrakash

SummaryofClamperCircuits

KLUDr.M.DurgaPrakash

VoltageMulKpliers

WhatisaVoltageMulDplier?

² Voltage mulDpliers are AC-to-DC power conversiondevices, comprised of diodes and capacitors, thatproduce a high potenDal DC voltage from a lowervoltageACsource.MulDpliersaremadeupofmulDplestages. Each stage is comprisedof onediode andonecapacitor.

Depending on the output voltage, mulDplierscanbeofdifferenttypes

Ø VoltagedoublersØ VoltageDpplersØ Voltagequadrupler

TypesofvoltagemulDplier

AVoltagedoublerproducesad.c.voltagealmosttwicethermsvalueoftheinputa.c.voltage.

Voltagedoublercanbeoftwotypes;v Halfwavevoltagedoublerv Fullwavevoltagedoubler

Voltagedoublers

CircuitDiagram

HalfwavevoltageDoubler

The circuit for a half wave voltage doubler. During the positive half cycle of the secondary voltage diode D1 conducts and D2 is cut off. Now capacitor C1 charges to the peak rectified voltage Vm, with polarity shown in the figure. During the negative half cycle, the secondary voltage comes in series with voltage across the capacitor C1.

HalfwavevoltageDoubler

Thus C2 will try to charge towards 2Vm(Vm of the input and Vm of the capacitor C1. After few cycles the voltage across the capacitor C2 will be equal to 2Vm Since diode D2 acts as a short during the negative half-cycle (and diode D1 is open), we can sum the voltages around the outside loop. i.e;

−𝑉𝑚 − 𝑉𝐶1−𝑉𝐶2=0 (or) −𝑉𝑚 − 𝑉𝑚 −𝑉𝐶2=0from which, 𝑉𝐶2=2𝑉𝑚

In the circuit capacitor C1 will discharge in the negative half cycle. Again in the positive half cycle, it starts charging. Thus the half wave voltage doubler supplies the voltage to the load in one half cycles. Therefore regulation of the half wave voltage doubler is poor.

²  Another voltage doubler circuit called full wave voltage doubler isshowninfig.

²  During the posiDve half cycle of the secondary voltage diode D1conducts, charging the capacitor the capacitor C1to the peak voltageVm.

²  AtthisDmediodeD2isnon-conducDng.

²  During negaDve half cycle diode D2conducts, charging capacitor C2toVm,withpolarityasmarked,whilediodeD2isnon-conducDng.

²  SincebothcapacitorsC1andC2areinseries,thefinaloutputvoltageisapproximately2Vm.

²  This circuit is called full wave voltage doubler because one of theoutput capacitor is being charged during each half cycle of the inputvoltage

Fullwavevoltagedoubler

Circuitdiagram

Fullwavevoltagedoubler

•  Thevoltagetriplerarrangementaddsanotherdiode/capacitorset.

•  +half-cycle:C1chargestoVpthroughD1,•  -half-cycle:C2chargesto2VpthroughC2,•  Next + half-cycle: C3 charges to 2Vp throughC3.

•  OutputisacrossC1&C3.

VoltageTripler

Circuitdiagram

VoltageTripler

•  Thevoltagetriplerarrangementaddsanotherdiode/capacitorset.

•  +half-cycle:C1chargestoVpthroughD1,•  -half-cycle:C2chargesto2VpthroughC2,•  Next+half-cycle:C3chargesto2VpthroughC3.•  Next-half-cycle:C4chargesto2VpthroughC4•  QuadrupleOutputisacrossC2&C4.

VoltageQuadruplers

Circuitdiagram

VoltageQuadruplers

Originally used for television CRT's, voltagemulDpliersarenowusedfor lasers, x-raysystems,travelingwavetubes (TWT's), photomulDplier tubes, ion pumps,electrostaDc systems, copymachines, andmany otherapplicaDonsthatuDlizehighvoltageDC.

CommonMulDplierApplicaDons

Lecture:4 Topics

Recap-Workingofclampers,clippers,Limiters&voltage

mulDpliers

WorkingofHWR,FWR&BridgeRecDfier

WorkingofFWR&BridgeRecDfier

Conclusion&Summary–WorkingofHWR,FWR&BridgeRecDfier

KLUDr.M.DurgaPrakash

ApplicaDonofDiodeCircuits

•  RecDfiercircuitsØ Half-waverecDfierØ Full-waverecDfier•  Transformerwithacenter-tappedsecondarywinding• BridgerecDfier

Ø ThepeakrecDfier

KLUDr.M.DurgaPrakash

RecKfier•  Rectifiers convert ac into dc

•  Some commercial rectifiers

(Usedtochargebajeries)

BlockdiagramofPowerSupply

RecKfier•  AcircuitthatconvertsacvoltageofmainsupplyintopulsaDngdcvoltageusingoneormorepnjuncDondiodes.

•  HalfWaveRecDfier•  FullWaveRecDfier

•  CenterTapRecDfier•  BridgeRecDfier

Half-WaveRecDfier

KLUDr.M.DurgaPrakash

CircuitDiagram

OperaKonofHalfWaveRecKfier

WaveformofHalfWaveRecKfier

AverageDCloadCurrent(IDC)

AverageDCvoltage(Edc)

RMSLoadCurrent(Irms)

RMSLoadVoltage(Erms)

DCPowerDeliveredtotheload

ACinputpowerfromtransformersecondary

HoweffecKvelyarecKfierconvertsacintodc:

•  RecDfierEfficiency(η)

•  RippleFactor(r)

RecKfierEfficiency(η)Tellsusthepercentageoftotalinputacpowerthatisconvertedintousefuldcoutputpower.

η=40.6%

UnderbestcondiDons(nodiodeloss)only40.6%oftheacinputpowerisconvertedintodcpower.

Therestremainsastheacpowerintheload

RippleFactorMeasureofpurityofthedcoutputofarecDfier

DefinedastheraDoofaccomponentoftheoutputwavetothedccomponentinthewave

RippleFactor

Thisindicatesthattheripplecontentintheoutputare1.211Dmesthedccomponent.

i.e.121.1%ofdccomponent.

Theripplefactorisveryhigh.

ThereforeahalfwaverecDfierisapoorconverterofactodc.

TheripplefactorisminimizedusingfiltercircuitsalongwiththerecDfier.

PeakInverseVoltage(PIV)

PIV=Em

DiodemustbeselectedbasedonthePIVraDngandthecircuitspecificaDon.

DisadvantageofHWR

²  TheripplefactorofhalfwaverecDfieris1.21,whichisquitehigh.

²  Theoutputcontainslotofripples²  ThemaximumtheoreDcalefficiencyis40%.²  ThepracDcalvaluewillbequitelessthanthis.²  ThisindicatesthatHWRisquiteinefficient.

Full-WaveRecDfier

KLUDr.M.DurgaPrakash

WorkingofCenterTapRecDfierCurrentFlowduringtheposiDvehalfoftheinputcycle

CurrentFlowduringthenegaDvehalfoftheinputcycle

Waveforms

AverageDCcurrent

Average(DC)Voltage

RMSLoadCurrent(Irms)

RMSLoadVoltage

DCOutputPower

ACinputpower(Pac)

RecKfierEfficiency(η)

RippleFactor

Thisindicatesthattheripplecontentsintheoutputare48%ofthedc component whichismuchlessthanthatforthehalfwaverecDfier.

PeakInverseVoltage

AdvantagesofFullWaveRecKfier

•  Efficiencyishigher.•  Thelargedcpoweroutput•  Theripplefactorisless

DisadvantagesofFullWaveRecKfier

•  PIVraDngofdiodeishigher.•  HigherPIVdiodesarelargerinsizeandcostlier.•  Thecostofcentertaptransformerishigh.

TheBridgeRecDfier

KLUDr.M.DurgaPrakash

WorkingofBridgeRecKfier

WaveformsofBridgeRecKfier

Parameters:

AdvantagesofBridgeRecKfier

²  Itdoesnotneedcentertaptransformersecondary.

²  The transformer secondaryvoltageofCT recDfier is2Vm,whereas inBridgethetransformersecondarymusthaveapeakvoltageofVm.Thatis the transformer secondary of CT recDfier must have double thenumberofturns.Suchtransformersarecostlier.

²  Ifsteppinguporsteppingdownofvoltageisnotneeded,wemayevendoawaywithouttransformer.

²  Each diode in center tap has a PIV raDng of 2Vm,whereas diodes inbridge recDfierneedsaPIV raDngofVm.Hence thediodes foruse incentertaprecDfierarecostlierthanmeantforbridgerecDfier.

DisadvantagesofBridgeRecKfier

² It requires four diodes, two of which conduct inalternatehalfcycles.Thiscreatesatotalvoltagedropof1.4V(ifSidiodesareused).

² Therefore this creates a problem if low dc voltage isrequired.

² The secondary voltage is low and two diode voltagedropof1.4Vbecomessignificant.

SummaryThemainperformanceparametersdefinedforthethreeconfiguraDons

PeakRecDfier

Ø VoltageandcurrentwaveformsinthepeakrecDfiercircuitwith.

Ø Thediodeisassumedideal.

TCR >>

KLUDr.M.DurgaPrakash

Lecture:5 Topics

Recap-WorkingofHWR,FWR&BridgeRecDfier.

WorkingofCapacitor&π-secDonfilter

WorkingofCapacitor&π-secDonfilter

Conclusion&Summary–WorkingofCapacitor&π-secDonfilter.

KLUDr.M.DurgaPrakash

Lecture:6 Topics

Recap-WorkingofCapacitorfilters&π-secDonfilter.

Specialpurposediodes-Zenerdiode

Q&ASessionVaractor,lightemiPngdiodes,Laserdiodes.

Q&ASession

Conclusion&Summary–Specialpurposediodes

KLUDr.M.DurgaPrakash

Lecture:7 Topics

Recap-Specialpurposediodes

Seriesandshuntvoltageregulator

Q&ASessionPercentageregulaDon,ConceptofSMPS.

Q&ASessionConclusion&Summary–Seriesandshuntvoltageregulator,

SMPS

KLUDr.M.DurgaPrakash