Aerospace Astronautics

Post on 07-Nov-2014

60 views 4 download

Tags:

description

course notes

Transcript of Aerospace Astronautics

ARO309  -­‐  Astronau0cs  and  Spacecra6  Design    

Winter  2013    

Try  Lam  CalPoly  Pomona  Aerospace  Engineering  

Earth  Orbiters  

Pork  Chop  Plot  

High  Thrust  Interplanetary  Transfer  

Low-­‐Thrust  Interplanetary  Transfer  

Low-­‐Thrust  Europa  End  Game  

Low-­‐Thrust  Europa  End  Game  

Low-­‐Thrust  Europa  End  Game  

Stable  for  >  100  days  

Orbit  Stability  

Enceladus  Orbit  

Juno  

Other  Missions  

Other  Missions  

Lecture  01  and  02:    Two-­‐Body  Dynamics:  Conics  

Chapter  2  

Equa0ons  of  Mo0on  

!

where r = R 2 " R 1

Equa0ons  of  Mo0on  

•  Fundamental  Equa0ons  of  Mo0on  for  2-­‐Body  Mo0on  

!

˙ r = " µr3 r

!

˙ r = "µr3 r =

˙ x ˙ y ˙ z

#

$

% % %

&

'

( ( (

= "µr3

xyz

#

$

% % %

&

'

( ( (

!

where µ = G M + m( ) and ˙ r = ˙ R 2 " ˙ R 1

Conic  Equa0on  

!

˙ r = " µr3 r

!

r =h2 /µ

1+ ecos"=

p1+ ecos"

!

h = r " v

!

˙ r " h = # µr3 r " h

From 2-body equation to conic equation

Angular  Momentum  

!

v" =hr

=µh1+ ecos#( )

Other Useful Equations

!

h = r " v and h = rv cos#

!

vr =µhesin"

!

rp =h2 /µ1+ e

!

tan" =vrv#

=esin$

1+ ecos$

Energy  

!

" = K + P =v 2

2#

µr

= constant

" = " p =vp2

2#

µrp

= #µ2 /h2

21# e2( )

NOTE: ε = 0 (parabolic), ε > 0 (escape), ε < 0 (capture: elliptical and circular)

Conics  

!

r =p

1+ ecos"=a 1# e2( )1+ ecos"

Circular  Orbits  

!

e = 0 and " < 0

!

vcircular =µr

!

r =p

1+ 0" cos#= p =

h2

µ

!

h = rv

!

Tcircular =2"r

µr

= 2" r3

µ

!

" = #µ2 /h2

2= #

µ2r

Ellip0cal  Orbits  

!

0 < e <1 and " < 0

Ellip0cal  Orbits  

!

r =p

1+ ecos"# ra =

p1$ e

and rp =p

1+ e

!

since 2a = rp + ra " a =p

1# e2

!

" ra = a 1+ e( ) and rp = a 1# e( )

!

NOTE : b = a 1" e2

!

" = #µ2 /h2

21# e2( ) = #

µ2a

!

Telliptical =2"abh

=2"ab

µa 1# e2( )= 2" a3

µ

Ellip0cal  Orbits  

!

e =ra " rpra + rp

!

h = µa 1" e2( )va = h /ra and vp = h /rp

!

tan" =vrv#

=esin$

1+ ecos$

Parabolic  Orbits  

•  Parabolic  orbits  are  borderline  case  between  an  open  hyperbolic  and  a  closed  ellip0cal  orbit    

!

e =1 and " = 0

!

" = 0 =v 2

2#

µr$ vparabolic =

2µr

= vescape

NOTE: as v à 180°, then r à ∞

!

" parabolic = # /2

!

tan" =vrv#

=esin$

1+ ecos$=1 % sin$1+1 % cos$

Hyperbolic  Orbits  

!

e >1 and " > 0

!

sin"# =e2 $1e

!

" = cos#11e$

% & '

( )

!

r = "a 1" e2( )1+ ecos#

!

" = a e2 #1

Hyperbolic  Orbits  

!

" =µ2a

!

" =v 2

2#

µr

=µ2a

!

v" =µa

=µhesin#" =

µh

e2 $1Hyperbolic excess speed

!

" =v 2

2#

µr

=v$2

2#

µr$

=v$2

2

!

v 2 = v"2 +2µr

= v"2 + vescape

2

!

C3 = v"2

Proper0es  of  Conics  

0 < e < 1

Conic  Proper0es  

Vis-­‐Viva  Equa0on  

!

" =v 2

2#

µr

= #µ2a

!

v 2 = µ2r"1a

#

$ %

&

' ( Vis-viva equation

Mean  Mo0on  

!

n =2"T

=µa3

Perifocal  Frame    “natural  frame”  for  an  orbit  centered  at  the  focus  with  x-­‐axis  to  periapsis  and  z-­‐axis  toward  the  angular  momentum  vector  

!

r = x ˆ p + y ˆ q and ˆ w = h /h

r = rcos" ˆ p + rsin" ˆ q

v = ˙ r = ˙ x ˆ p + ˙ y ˆ q

v = ˙ r cos" # r ˙ " sin"( ) ˆ p

+ ˙ r sin" + r ˙ " cos"( ) ˆ q

Perifocal  Frame  

FROM

!

˙ r = vr =µh

esin" and r ˙ " = v# =µh

1+ ecos"( )

!

˙ x = "µh

sin# and ˙ y =µh

e + cos#( )THEN

!

v = ˙ r = ˙ x ˆ p + ˙ y ˆ q

v =µh

"sin#( ) ˆ p + e + cos#( ) ˆ q [ ]

!

h = r " v =ˆ p ˆ q ˆ w x y 0˙ x ˙ y 0

= x ˙ y # y ˙ x ( ) ˆ w and h = x ˙ y # y ˙ x ( )

Lagrange  Coefficients  •  Future  es0mated  state  as  a  func0on  of  current  state  

!

r = x ˆ p + y ˆ q

v = ˙ x ˆ p + ˙ y ˆ q

!

r = f r 0 + g v 0v = ˙ f r 0 + ˙ g v 0

Solving unit vector based on initial conditions

!

f =1"µ rh2 1" cos#$( ); ˙ f =

µh

1" cos#$sin#$

%

& '

(

) *

µh2 1" cos#$( ) " 1

r0

"1r

+

, -

.

/ 0

g =r r0

hsin#$; ˙ g =1"

µ r0

h2 1" cos#$( )

!

r =h2 /µ

1+h2

µ r0"1

#

$ % %

&

' ( ( cos)* "

h vr0µ

#

$ %

&

' ( sin)*

!

vr0 =r 0 " v 0

r0and Where

Lagrange  Coefficients  •  Steps  finding  state  at  a  future  Δθ  using  Lagrange  Coefficients  

1.  Find  r0  and  v0  from  the  given  posi0on  and  velocity  vector  2.  Find  vr0  (last  slide)  3.  Find  the  constant  angular  momentum,  h  

4.  Find  r  (last  slide)  5.  Find  f,  g,  fdot,  gdot  6.  Find  r  and  v      !

h = r0v" 0 = r0 v02 # vr0

2

Lagrange  Coefficients  •  Example  (from  book)  

Lagrange  Coefficients  •  Example  (from  book)  

Lagrange  Coefficients  •  Example  (from  book)  

•  Example  (from  book)  

Lagrange  Coefficients  

ALSO

Since Vr0 is < 0 we know that S/C is approaching periapsis (so 180°<θ<360°)

CR3BP  •  Circular  Restricted  Three  Body  Problem  (CR3BP)  

!

" = µ /r123 = GM /r12

3

M = m1 +m2

#1 =m1

m1 +m2

# 2 =m2

m1 +m2

!

m1x1 +m2x2 = 0x1 + r12 = x2

!

x1 = "# 2r12x2 = #1r12

!

"1 =1#"2

CR3BP  

!

r1 = x +"2r12( )ˆ i + yˆ j + z ˆ k

r2 = x #"1r12( )ˆ i + yˆ j + z ˆ k

r = xˆ i + yˆ j + z ˆ k

!

˙ r = v inertialCM +"# r + v rel

˙ r = ˙ a inertialCM + ˙ " # r +"# " # r ( ) + 2"# v rel + a rel

where v rel = ˙ x i + ˙ y j + ˙ z k

where a rel = ˙ x i + ˙ y j + ˙ z k

Kinematics (LHS):

!

m˙ r = F1 +F2

!

˙ r = ˙ x " 2#˙ y "#2x( )ˆ i + ˙ y + 2#˙ x "#2y( ) ˆ j + ˙ z k

CR3BP  

!

F1 = "µ1mr13 r 1 and F2 = "

µ2mr23 r 2

Kinematics (RHS):

!

m˙ r = F1 +F2

!

˙ x " 2#˙ y "#2x = "µ1

r13 x +$ 2r12( ) " µ2

r23 x "$1r12( )

˙ y + 2#˙ x "#2y = "µ1

r13 y "

µ2

r23 y

˙ z = "µ1

r13 z "

µ2

r23 z

CR3BP  

CR3BP Plots are in the rotating frame

Tadpole Orbit Horseshoe Orbit

Lyapunov Orbit

DRO

CR3BP:  Equilibrium  Points  

!

"#2x = "µ1r13 x +$ 2r12( ) " µ2

r23 x "$1r12( )

"#2y = "µ1r13 y "

µ2r23 y

0 = "µ1r13 z "

µ2r23 z

Equilibrium points or Libration points or Lagrange points

!

˙ x = ˙ y = ˙ z = ˙ x = ˙ y = ˙ z = 0

!

z = 0L1 L2 L3

L4

L5

!

JC =12v 2 "

12#2 x 2 + y 2( ) " µ1

r1"

µ2r2

Jacobi Constant

Lecture  03  and  04:    Two-­‐Body  Dynamics:    

Orbit  Posi0on  as  a  Func0on  of  Time  

Chapter  3  

Introduc0ons  

•  Chapter  2  (Lec0on  1  and  2)  relates  posi0on  as  a  func0on  of  θ  (true  anomaly)  but  not  0me  

•  Time  was  only  introduced  when  referring  to  orbit  period  

•  Here  we  acempt  to  find  the  rela0ons  between  posi0on  of  the  S/C  and  0me  à  Kepler’s  Equa4on  

Time  versus  True  Anomaly  

•  Recall  from  Chapter  2  

!

v" =hr

= r ˙ # therefore h = r2 ˙ #

!

d"dt

=hr2

!

r =h2 /µ

1+ ecos"Since Then

!

µ2

h3dt =

d"1+ ecos"( )2

Integrating from 0 (assuming tp = 0) to t and from 0 to θ

!

µ2

h3t =

d"1+ ecos"( )20

#

$

Time  versus  True  Anomaly  

!

µ2

h3t =

d"1+ ecos"( )20

#

$

Time  versus  True  Anomaly  

!

µ2

h3t =

d"1+ ecos"( )20

#

$

Simple Case: Circular Orbits (e=0)

If e = 0, then

!

µ2

h3t = d" = #

0

#

$ therefore

!

t =h3

µ2 "

Since for a circular orbit we have

!

r = h2 /µ then

!

t =r3

µ"

FOR CIRCULAR ORBIT OR

!

t ="2#

Tcir

Time  versus  True  Anomaly  

!

µ2

h3t =

d"1+ ecos"( )20

#

$

Elliptical Orbits (0<e<1)

Then a = 1 and b = e, therefore we have b < a

!

µ2

h3t =

d"1+ ecos"( )20

#

$ =1

1% e2( )3 / 22tan%1

1% e1+ e

tan#2

&

' (

)

* + %

e 1% e2 sin#1+ ecos#

,

- . .

/

0 1 1

Me = Mean anomaly for the ellipse

Time  versus  True  Anomaly  

!

µ2

h31" e2( )3 / 2 t = Me = 2tan"1

1" e1+ e

tan#2

$

% &

'

( ) "

e 1" e2 sin#1+ ecos#

*

+ , ,

-

. / /

Therefore we have

From the orbit period of an ellipse we know (or can derive) that

!

Tellipse =2"abh

=2"µ2

h1# e2

$

% &

'

( )

3

= 2" a3

µ

Therefore we can solve for me as function orbit period as

!

Me =2"Tellipse

t OR

!

Me = n t where n = mean motion = 2π/Te

Elliptical Orbits (0<e<1)

Time  versus  True  Anomaly  

!

Me = n t = 2tan"11" e1+ e

tan#2

$

% &

'

( ) "

e 1" e2 sin#1+ ecos#

*

+ , ,

-

. / /

We need to fine out Me still ?

Let’s introduce another variable E = eccentric anomaly

!

acosE = ae + rcos"

= ae +a 1# e2( )1+ ecos"

cos"

!

cosE =e + cos"1+ ecos"

Elliptical Orbits (0<e<1)

Time  versus  True  Anomaly  

!

cosE =e + cos"1+ ecos"

This relates E and θ, but it leaves the quadrant of the solution unknown and you get two values of E for the equation. To eliminate this ambiguity we use the following identity

!

sinE =1" e2 sin#1+ ecos#

OR

!

tan2E2

=sin2 E /2( )cos2 E /2( )

=1" cosE( ) /21+ cosE( ) /2

=1" cosE1+ cosE

tan2 E2

=1" e1+ e

1" cos#1+ cos#$

% &

'

( ) =1" e1+ e

tan2 #2

!

tan E2

=1" e1+ e

tan#2Therefore

!

E = 2tan"1 1" e1+ e

tan#2

$

% &

'

( ) or

Elliptical Orbits (0<e<1)

Time  versus  True  Anomaly  

!

Me = n t = 2tan"11" e1+ e

tan#2

$

% &

'

( ) "

e 1" e2 sin#1+ ecos#

*

+ , ,

-

. / /

We need to fine out Me still

E

!

esinE

!

Me = E " esinE

This is Kepler’s Equation

Elliptical Orbits (0<e<1)

To  find  t  given  Δθ  

•  Given  orbital  parameters,  find  e  and  h  (assume  θ  =  0  deg)  

•  Find  E:  

•  Find  T  (orbit  period):  

Time  versus  True  Anomaly  

!

h = µ rp 1+ e( )

!

tan E2

=1" e1+ e

tan#2

!

Telliptical = 2" a3

µ=2"µ2

h1# e2

$

% &

'

( )

3

Elliptical Orbits (0<e<1)

To  find  t  given  Δθ  

•  Fine  Me:  

•  Find  t:  

Time  versus  True  Anomaly  

!

t =Me

2"Telliptical

!

Me = E " esinE

Question: What if you are going from a θ = θa to θ = θb? Answer: Find the time from θ = 0 to θ = θa and the time from θ = 0 to θ = θb. Then subtract the differences.

Elliptical Orbits (0<e<1)

To  find  θ  given  Δt  

•  Given  orbital  parameters,  find  e  and  h  (assume  θ  =  0  deg  

•  Find  T  (orbit  period):      

•  Find  Me:  

•  Find  E  using  Newton’s  method  (or  a  transcendental  solver)  

Time  versus  True  Anomaly  

!

Telliptical = 2" a3

µ=2"µ2

h1# e2

$

% &

'

( )

3

!

Me = 2" t /Telliptical

!

Me = E " esinE

Elliptical Orbits (0<e<1)

To  find  θ  given  Δt  

•  Using  Newton’s  Method:  

–  Ini0alize  E  =  Eo:  

–  Find  f(E):  

–  Find  f’(E):  

–  If  abs(  f(E)  /  f’(E)  )  >  TOL,  then  repeat  with    

–  Else  Econverged  =  En  

Time  versus  True  Anomaly  

!

Ei+1 = Ei " f Ei( ) / f / Ei( )!

f E( ) = E " esinE "Me

!

f / E( ) =1" ecosE!

E0 = Me + e /2 or E0 = Me " e /2

Elliptical Orbits (0<e<1)

For Me < 180 deg For Me > 180 deg

To  find  θ  given  Δt  

•  A6er  finding  the  converged  E,  then  find  θ  

Time  versus  True  Anomaly  

!

tan E2

=1" e1+ e

tan#2

Elliptical Orbits (0<e<1)

Time  versus  True  Anomaly  

!

µ2

h3t =

d"1+ ecos"( )20

#

$

Parabolic Orbits (e = 1)

Then a = 1 and b = e, therefore we have b = a

!

µ2

h3t =

d"1+ ecos"( )20

#

$ =12tan

#2

+16tan3

#2

= MP

MP = Parabolic Mean Anomaly

Time  versus  True  Anomaly  Parabolic Orbits (e = 1)

!

16tan"2

#

$ %

&

' ( 3

+12tan"2)MP = 0

Thus given t or Δt we can find MP

!

MP =µ2

h3t

To fine θ we can find the root of the below equation

Which has one real root

!

tan"2

= 3MP + 9MP2 +1( )

1/ 3# 3MP + 9MP

2 +1( )#1/ 3

STEPS:  Find  h  Find  MP  Find  θ  

Time  versus  True  Anomaly  

!

µ2

h3t =

d"1+ ecos"( )20

#

$

Hyperbolic Orbits (e > 1)

Then a = 1 and b = e, therefore we have b > a

!

µ2

h3t =

1e2 "1

esin#1+ ecos#

"1e2 "1

lne +1 + e "1tan # /2( )e +1 " e "1tan # /2( )

$

% &

'

( )

*

+ , ,

-

. / /

Time  versus  True  Anomaly  Hyperbolic Orbits (e > 1)

!

Mh =e e2 "1sin#1+ ecos#

" lne +1 + e "1tan # /2( )e +1 " e "1tan # /2( )

$

% &

'

( )

Where the Hyperbolic mean anomaly is

Thus we have

!

Mh =µ2

h3e2 "1( )3 / 2 t

Similar with Ellipse we will intro a new variable, F, the hyperbolic eccentric anomaly to help solve for the Mean Hyperbolic anomaly, Mh.

Time  versus  True  Anomaly  Hyperbolic Orbits (e > 1)

!

sinhF = y /b and coshF = x /a

Hyperbolic eccentric anomaly for the Hyperbola

Since:

!

sinh x = ex " e"x( ) /2cosh x = ex + e"x( ) /2

y = rsin#

r =a e2 "1( )1+ ecos#

b = a e2 "1

Time  versus  True  Anomaly  Hyperbolic Orbits (e > 1)

!

sinhF =e2 "1sin#1+ ecos#We now have

Solving for F and since

!

sin" =2tan " /2( )1+ tan2 " /2( )

and cos" =1# tan2 " /2( )1+ tan2 " /2( )

!

sinh"1 x = ln x + x 2 +1( ) we now have

Using the following trig identities for sine and cosine

!

F = lne2 "1sin# + cos# + e

1+ ecos#

$

% & &

'

( ) )

Time  versus  True  Anomaly  Hyperbolic Orbits (e > 1)

We now have

!

F = ln e +1 + e "1tan # /2( )e +1 " e "1tan # /2( )

$

% &

'

( )

Therefore we now have:

!

Mh = esinhF " F

This is Kepler’s Equation for Hyperbola

Similar to Elliptical orbits we can solve for F as a function of θ, which is found to be. Thus given θ we can find F, and Mh, and finally t.

!

tanh F2

=e "1e +1

tanh#2

STEPS  TO  FIND  θ  (given  t)  •  Set  ini0al  F0  =  Mh  where    

•  Find  f  and  f’  

•  If  abs(  f  /  f’  )  >  TOL,  repeat  steps  with  updated  F  

•  Else,  Fconverged  =  Fi.    Now  find  θ      

Time  versus  True  Anomaly  Hyperbolic Orbits (e > 1)

If time, t, was given and θ is to be found then we have to solve for Kepler’s equation for hyperbola iteratively using Newton’s method

!

f F( ) = esinhF " F "Mh

!

f / F( ) = ecoshF "1

!

Fi+1 = Fi " f Fi( ) / f / Fi( )

!

Mh =µ2

h3e2 "1( )3 / 2 t

!

tanh"2

=e +1e #1

tanh F2

Universal  Variables  •  What  happens  if  you  don’t  know  what  type  of  orbit  you  are  

in?    Why  use  3  set  of  equa0ons?  

•  Kepler’s  equa0on  can  be  wricen  in  terms  of  a  universal  variable  or  universal  anomaly,  Χ,  and  Kepler’s  equa0on  becomes  the  universal  Kepler’s  equa4on.  

!

µ "t =r0vr0

µ#2 C $#2( ) + 1%$ r0( )#3 S $#2( ) + r0#

Where

!

" =1/aIf α < 0, then orbit is hyperbolic If α = 0, then orbit is parabolic If α > 0, then orbit is elliptical

Universal  Variables  

•  Stumpff  func0ons  

 or  for  z  =  αΧ2  

!

S z( ) =

z " sin z( ) z( )3

(z > 0)

sinh "z " "z( ) "z( )3(z < 0)

1/6 (z = 0)

#

$

% %

&

% %

!

C z( ) =

1" cos z( ) z (z > 0)

cosh "z "1( ) "z (z < 0)1/2 (z = 0)

#

$ % %

& % %

,

Universal  Variables  

•  To  use  Newton’s  method  we  need  to  define  the  following  func0on  and  it’s  deriva0ve  

•  Iterate  with  the  following  algorithm  

!

f / "( ) =r0vr0

µ" 1#$"2 S $"2( )[ ] + 1#$ r0( )"2 C $"2( ) + r0

!

f "( ) =r0vr0

µ"2 C #"2( ) + 1$# r0( )"3 S #"2( ) + r0"$ µ %t

!

"0 = µ # $twith

!

"i+1 = "i #f "( )f / "( )

Universal  Variables  

•  Rela0on  ship  between  X  and  the  orbits  

!

" =

h tan # /2( ) $ tan #0 /2( )( ) µ parabolaa E $ E0( ) ellipse$a F $ F0( ) hyperbola

%

& '

( '

!

" =

h tan # /2( ) µ parabolaaE ellipse$aF hyperbola

%

& '

( '

For t0 = 0 at periapsis

Universal  Variables  

•  Example  3.6  (Textbook:  Cur0s’s)  

Find h and e

!

h = µ r0 1+ ecos"0( ) = 63135 1+ 0.866e

v# 0 = h /r0 = 6.314 1+ 0.866e

vr0 =µhesin"0 = 3.16 e

1+ 0.866e

Since , then

!

v02 = v" 0

2 + vr02

!

3.16 e1+ 0.866e

"

# $

%

& ' 2

+ 6.314 1+ 0.866e( )2

=102

!

e =1.47

Universal  Variables  

•  Example  3.6  (Textbook:  Cur0s’s)  

Therefore

!

vr0 = 3.075 km2 /s

!

" =1a

=1

h2 /µ1# e2

=1

#19,655 km= #5.09E # 05 km#1

!

"0 = µ # $t =115.6

So X0 is the initial X to use for the Newton’s method to find the converged X

Universal  Variables  

•  Example  3.6  (Textbook:  Cur0s’s)  

Universal  Variables  

•  Example  3.6  (Textbook:  Cur0s’s)  

Thus we accept the X value of X = 128.5

!

" = #a F # F0( )

!

tanh F02

=e "1e +1

tan#02

= 0.1667

!

F0 = 0.23448 rad

where

!

"F =1.15

!

tanh"2

=e +1e #1

tan F2

=1.193

!

" =100°

Lagrange  Coefficients  II  •  Recall  Lagrange  Coefficients  in  terms  of  f  and  g  coefficients  

•  From  the  universal  anomaly  X  we  can  find  the  f  and  g  coefficients    

!

r = f r 0 + g v 0v = ˙ f r 0 + ˙ g v 0

!

f =1" #2

r0C $#2( )

g = %t " 1µ#3S $#2( )

!

˙ f =µ

r r0

"#3S "#2( ) $ #[ ]

˙ g =1$ #2

rC "#2( )

Lagrange  Coefficients  II  

!

vr0 =r 0 " v 0

r0and Where

!

" =1a

=2r0#v02

µ

•  Steps  finding  state  at  a  future  Δθ  using  Lagrange  Coefficients  

1.  Find  r0  and  v0  from  the  given  posi0on  and  velocity  vector  2.  Find  vr0  and  α  3.  Find  X  4.  Find  f  and  g  5.  Find  r,  where  r  =  f  r0  +  g  v0    6.  Find  fdot  and  gdot  7.  Find  v      

Lecture  05  and  06:    Two-­‐Body  Dynamics:    

Orbits  in  3D  

Chapter  4  

Introduc0ons  

•  So  far  we  have  focus  on  the  orbital  mechanics  of  a  spacecra6  in  2D.  

•  In  this  Chapter  we  will  now  move  to  3D  and  express  orbits  using  all  6  orbital  elements  

Geocentric  Equatorial  Frame  

!

r = X 2 +Y 2 + Z 2

" = sin#1 Z /r( )

$ =cos#1 X /r

cos"%

& '

(

) * (Y /r > 0)

2+ # cos#1 X /rcos"%

& '

(

) * (Y /r , 0)

-

. / /

0 / /

Orbital  Elements  

•  Classical  Orbital  Elements  are:  a  =  semi-­‐major  axis  (or  h  or  ε)  e  =  eccentricity  i  =  inclina0on  Ω  =  longitude  of  ascending  node  ω  =  argument  of  periapsis    θ  =  true  anomaly    

Orbital  Elements  

!

vr = r" v /r

h = r # v =

ˆ i ˆ j ˆ k X Y ZVx Vy Vz

n = ˆ k # h =

ˆ i ˆ j ˆ k 0 0 1hx hy hz

Orbital  Elements  

!

i = cos"1hzh

#

$ %

&

' (

!

" =cos#1

nxn

$

% &

'

( ) (ny * 0)

2+ # cos#1nxn

$

% &

'

( ) (ny < 0)

,

- . .

/ . .

!

e =1µ

v 2 "µr

#

$ %

&

' ( r " rvrv

)

* +

,

- . and e = e/ e or e = 1+

h2

µ2 v 2 "2µr

#

$ %

&

' ( !

" =cos#1

n$ ene

%

& '

(

) * (ez + 0)

2, # cos#1n$ ene

%

& '

(

) * (ez < 0)

-

. / /

0 / /

Orbital  Elements  

!

" =cos#1

e$ rer

%

& '

(

) * (vr + 0)

2, # cos#1e$ rer

%

& '

(

) * (vr < 0)

-

. / /

0 / /

=

cos#1 1eh2

µr#1

%

& '

(

) *

%

& '

(

) * (vr + 0)

2, # cos#1 1eh2

µr#1

%

& '

(

) *

%

& '

(

) * (vr < 0)

-

.

/ /

0

/ /

Coordinate  Transforma0on  •  Answers  the  ques0on  of  “what  are  the  parameters  in  another  coordinate  frame”  

Q

Transformation (or direction cosine)

matrix

x

y

z

x’

y’

z’

!

Q[ ]T Q[ ] = 1[ ] =

1 0 00 1 00 0 1

"

#

$ $ $

%

&

' ' '

Q is a orthogonal transformation matrix

!

Q[ ] Q[ ]T = 1[ ]

Coordinate  Transforma0on  

!

x '[ ] = Q[ ] x[ ]

x[ ] = Q[ ]T x'[ ]Where

!

Q[ ] =

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

"

#

$ $ $

%

&

' ' '

=

ˆ i / ( ˆ i ˆ i / ( ˆ j ˆ i / ( ˆ k ˆ j / ( ˆ i ˆ j / ( ˆ j ˆ j / ( ˆ k ˆ k / ( ˆ i ˆ k / ( ˆ j ˆ k / ( ˆ k

"

#

$ $ $

%

&

' ' '

And

Where is made up of rotations about the axis {a, b, or c} by the angle {θd, θe, and θf}

!

Q[ ] = Ra "d( )[ ] Rb " e( )[ ] Rc " f( )[ ]

1st rotation 2nd rotation 3rd rotation

Coordinate  Transforma0on  

!

Q[ ] = R3 "( )[ ] R1 #( )[ ] R3 $( )[ ]

For example the Euler angle sequence for rotation is the 3-1-3 rotation

!

0 " # < 360°( ) 0 " $ "180°( ) 0 " % < 360°( )

where you rotate by the angle α along the 3rd axis (usually z-axis), then by β along the 1st axis, and then by γ along the 3rd axis.

!

Q[ ]313 =

"sin# cos$sin% + cos# cos% cos# cos$sin% + sin# cos% sin$sin%"sin# cos$cos% " cos# sin% cos# cos$cos% " sin# sin% sin$cos%

sin# sin$ "cos# sin$ cos$

&

'

( ( (

)

*

+ + +

!

tan" =Q31

#Q32

cos$ =Q33 tan% =Q13Q23

Thus, the angles can be found from elements of Q

Coordinate  Transforma0on  Classic Euler Sequence from xyz to x’y’z’

Coordinate  Transforma0on  

!

Q[ ] = R1 "( )[ ] R2 #( )[ ] R3 $( )[ ]

For example the Yaw-Pitch-Roll sequence for rotation is the 1-2-3 rotation

!

0 " # < 360°( ) $90 < % < 90°( ) 0 " & < 360°( )

where you rotate by the angle α along the 3rd axis (usually z-axis), then by β along the 2nd axis, and then by γ along the 1st axis.

!

Q[ ]123 =

cos" cos# sin" cos# $sin#cos" sin#sin% $ sin" cos% sin" sin#sin% + cos" cos% cos#sin%cos" sin#cos% + sin" sin% sin" sin#cos% $ cos" sin% cos#cos%

&

'

( ( (

)

*

+ + +

!

tan" =Q12Q11

sin# = $Q13 tan% =Q23

Q33

Thus, the angles can be found from elements of Q

Coordinate  Transforma0on  Yaw, Pitch, and Roll Sequence from xyz to x’y’z’

Transforma0on  between  Geocentric  Equatorial  and  Perifocal  Frame  

Transferring between pqw frame and xyz

!

r{ }pqw =h2 /µ

1+ ecos"

cos"sin"0

#

$ %

& %

'

( %

) %

v{ }pqw =µh

*sin"e + cos"0

#

$ %

& %

'

( %

) %

!

Q[ ]xyz" pqw = R3 #( )[ ] R1 $( )[ ] R3 %( )[ ] = R3 &( )[ ] R1 i( )[ ] R3 '( )[ ]

Transformation from geocentric equatorial to perifocal frame

Transforma0on  between  Geocentric  Equatorial  and  Perifocal  Frame  

Transformation from perifocal to geocentric equatorial frame is then

Therefore

!

Q[ ]pqw" xyz = Q[ ]xyz" pqwT

!

r{ }xyz = Q[ ]xyz" pqwT r{ }pqw

v{ }xyz = Q[ ]xyz" pqwT v{ }pqw

!

r{ }pqw= Q[ ]xyz" pqw r{ }xyz

v{ }pqw= Q[ ]xyz" pqw v{ }xyz

!

Q[ ]xyz" pqw =

cos# sin# 0$sin# cos# 00 0 1

%

&

' ' '

(

)

* * *

1 0 00 cosi sini0 $sini cosi

%

&

' ' '

(

)

* * *

cos+ sin+ 0$sin+ cos+ 00 0 1

%

&

' ' '

(

)

* * *

Perturba0on  to  Orbits  

•  Planets  are  not  perfect  spheres  Oblateness

!

oblateness =Req " Rpole

Req

Perturba0on  to  Orbits  Oblateness

!

˙ r = " µr3 r + p

!

p = pr ˆ u r + pt ˆ u t + phˆ h

!

pr = "1.5 µr2J2

Rr

#

$ %

&

' ( 2

1" 3sin2 i( ) sin2 ) +*( )[ ]

pt = "1.5 µr2J2

Rr

#

$ %

&

' ( 2

sin2 i( ) sin2 2 ) +*( )( )

ph = "1.5 µr2J2

Rr

#

$ %

&

' ( 2

sin 2i( ) sin2 ) +*( )

Perturba0on  to  Orbits  Oblateness

Perturba0on  to  Orbits  Oblateness

!

˙ " = #1.5µa7

J2R2

1# e2( )2

$

%

& &

'

(

) ) cosi

!

if 0 " i < 90°( ) # ˙ $ < 0

if 90° < i "180°( ) # ˙ $ > 0

Perturba0on  to  Orbits  Oblateness

!

˙ " = #1.5µa7

J2R2

1# e2( )2

$

%

& &

'

(

) )

52

sin2 i # 2$

% &

'

( )

= ˙ * 5 /2( )sin2 i # 2

cosi$

% &

'

( )

!

if 0 " i < 63.4°( ) or 116.6 < i "180°( ) # ˙ $ > 0

if 63.4° < i "116.6°( ) # ˙ $ < 0

Sun-­‐Synchronous  Orbits  Orbits where the orbit plane is at a fix angle α from the Sun-planet line

Thus the orbit plane must rotate 360° per year (365.25 days) or 0.9856°/day

!

˙ " SunSync =2#$ rad

365.25$ 86400$ sec˙ " SunSync =1.991E % 07 rad /s

Finding  State  of  S/C  w/Oblateness  •  Given:  Ini0al  State  Vector  •  Find:  State  a6er  Δt  assuming  oblateness  (J2)  

•  Steps  finding  updated  state  at  a  future  Δt  assuming  perturba0on  

1.  Compute  the  orbital  elements  of  the  state  2.  Find  the  orbit  period,  T,  and  mean  mo0on,  n  3.  Find  the  eccentric  anomaly  4.  Calculate  0me  since  periapsis  passage,  t,  using  Kepler’s  equa0on  

!

Me = nt = E " esinE

Finding  State  of  S/C  w/Oblateness  5.  Calculate  new  0me  as  tf  =  t  +  Δt  6.  Find  the  number  of  orbit  periods  elapsed  since  original  periapsis  passage  

7.  Find  the  0me  since  periapsis  passage  for  the  final  orbit  

8.  Find  the  new  mean  anomaly  for  orbit  n    

9.  Use  Newton’s  method  and  Kepler’s  equa0on  to  find  the  Eccentric  anomaly  (See  slide  57)  

!

np = t f /T

!

torbit _ n = np " floor np( )[ ] T

!

Me )orbit _ n = n torbit _ n

Finding  State  of  S/C  w/Oblateness  10.  Find  the  new  true  anomaly  

11.  Find  posi0on  and  velocity  in  the  perifocal  frame  

!

r{ }pqw =h2 /µ

1+ ecos"

cos"sin"0

#

$ %

& %

'

( %

) %

v{ }pqw =µh

*sin"e + cos"0

#

$ %

& %

'

( %

) %

!

tan"orbit _ n2

=1+ e1# e

tanEorbit _ n

2

Finding  State  of  S/C  w/Oblateness  12.  Compute the rate of the ascending node

13.  Compute the new ascending node for orbit n

14.  Find the argument of periapsis rate

15.  Find the new argument of periapsis

!

"orbit _ n ="0 + ˙ " #t

!

" orbit _ n =" 0 + ˙ " #t

!

˙ " = #1.5µa7

J2R2

1# e2( )2

$

%

& &

'

(

) ) cosi

!

˙ " = ˙ # 5 /2( )sin2 i $ 2

cosi%

& '

(

) *

Finding  State  of  S/C  w/Oblateness  16.  Compute the transformation matrix [Q] using the inclination, the

UPDATED argument of periapsis, and the UPDATED longitude of ascending node

17.  Find the r and v in the geocentric frame

!

r{ }xyz = Q[ ]pqw" xyz r{ }pqw

v{ }xyz = Q[ ]pqe" xyz v{ }pqw

!

Q[ ]pqw" xyz =

#sin $( )cos i( )sin %( ) + cos $( )cos %( ) #sin $( )cos i( )cos %( ) # cos $( )sin %( ) sin $( )sin i( )cos $( )cos i( )sin %( ) + sin $( )cos %( ) cos $( )cos i( )cos %( ) # sin $( )sin %( ) #cos $( )sin i( )

sin i( )sin %( ) sin i( )cos %( ) sin i( )

&

'

( ( (

)

*

+ + +

Ground  Tracks  Projection of a satellite’s orbit on the planet’s surface

Ground  Tracks  Projection of a satellite’s orbit on the planet’s surface

!

"E #15.04 deg/hr

Ground  Tracks  Projection of a satellite’s orbit on the planet’s surface

Ground Tracks reveal the orbit period

!

T ="LONequator deg15.04 deg/hr

Ground Tracks reveal the orbit inclination

!

i = LATmax ormin

If the argument of perispais, ω, is zero, then the shape below and above the equator are the same.

Lecture  07:    Preliminary  Orbit  Determina0on  

Chapter  5  

Introduc0ons  

•  This  chapter  only  covers  the  basic  concept  of  determining  an  orbit  from  some  observa0on  

•  In  prac0ce,  this  is  not  referred  to  as  orbit  determina0on  

•  Space  OD  is  actually  a  sta0s0cal  es0ma0on  or  filtering  method  (example:  Kalman  Filter)  

•  We  will  only  cover  Lambert’s  problem  (Sec0on  5.3)  from  this  Chapter  

Lambert’s  Problem  

•  Given  2  posi0ons  on  an  orbit  r1  and  r2  and  Δt,  what  are  the  veloci0es  at  those  two  points,  v1  and  v2.  

Lambert  Fit  •  Steps  to  find  v1  and  v2:  

1.  Find  the  magnitude  of  r1  and  r2  2.  Decide  if  the  orbit  is  prograde  or  retrograde  

3.  Compute  the  following  

4.  Compute  Δθ  

!

r1 " r2( )z= r1 " r2( )# ˆ k

!

"# =

cos$1 r1 % r2r1 r2

&

' ( (

)

* + + if r1 , r2( )Z - 0

2. $ cos$1r1 % r2r1 r2

&

' ( (

)

* + + if r1 , r2( )Z < 0

/

0

1 1

2

1 1

!

"# =

cos$1 r1 % r2r1 r2

&

' ( (

)

* + + if r1 , r2( )Z < 0

2- $ cos$1r1 % r2r1 r2

&

' ( (

)

* + + if r1 , r2( )Z . 0

/

0

1 1

2

1 1

for prograde for retrograde

Lambert  Fit  5.  Compute  the  func0on  

6.  Find  z  by  itera0ng  using  Newton’s  method  un0l  convergence  

 you  can  start  with  z0  =  0  (or  posi0ve  z0  if  an  ellip0cal  orbit),  where    

!

A = sin"#r1 r2

1$ cos"#

!

zi+1 = zi "F zi( )F ' zi( )

!

F z( ) =y z( )C z( )"

# $

%

& '

3 / 2

S z( ) + A y z( ) ( µ)t

!

F / z( ) =

y z( )C z( )"

# $

%

& '

3 / 2 C z( ) ( 3S z( )2C z( )2z

+3S z( )2

4C z( )

"

#

$ $ $ $

%

&

' ' ' '

+A83 S z( )C z( )

y z( ) + A C z( )y z( )

"

# $ $

%

& ' '

if z ) 0

240

y 0( )3 / 2 +A8

y 0( ) + A 12y 0( )

"

# $

%

& ' if z = 0

*

+

, , ,

-

, , ,

Lambert  Fit    where  

               7.  Note:  the  sign  of  the  converged  z  tells  you  the  orbit  type:  

z < 0 à Hyperbolic Orbit z = 0 à Parabolic Orbit z > 0 à Elliptical Orbit

!

y z( ) = r1 + r2 + Az S z( ) "1C z( )

#

$ % %

&

' ( (

!

S z( ) =

z " sin zz3 if z > 0

sinh "z " "z"z

3 if z < 0

16

if z = 0

#

$

% % % %

&

% % % %

!

C z( ) =

1" cos zz

if z > 0

cosh "z "1"z

if z < 0

12

if z = 0

#

$

% % % %

&

% % % %

Lambert  Fit  8.  Compute  the  func0on  y(z)  using  the  converged  z  

9.  Compute  f,  g,  fdot,  gdot  

10.  Compute  

!

y z( ) = r1 + r2 + Az S z( ) "1C z( )

#

$ % %

&

' ( (

!

f =1" y z( )r1

; ˙ f =µ

r1 r2

y z( )C z( )

z S z( ) "1[ ]

g = A y z( )µ

; ˙ g =1" y z( )r2

!

v1 =1gr2 " f r1( ); v2 =

1g

˙ g r2 " r1( )

Lecture  08  and  10:    Orbital  Maneuvers  

Chapter  6  

Maneuvers  

•  We  assume  our  maneuvers  are  “instantaneous”    •  ΔV  changes  can  be  applied  by  changing  the  magnitude  “pump”  or  by  changing  the  direc0on  “crank”  

•  Rocket  equa0on:  rela0ng  ΔV  and  change  in  mass  

 where  g0  =  9.806  m/s2      

⎟⎟⎠

⎞⎜⎜⎝

⎛=Δ

final

initialSP m

mIgV ln0

⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ=

SP

initialfinal

IgV

mm

0

expor

Isp  •  Isp  is  the  specific  impulse  (units  of  seconds)  and  measures  the  performance  of  the  rocket    

ΔV  •  ΔV  (“delta”-­‐V)  represents  the  instantaneous  change  in  

velocity  (from  current  velocity  to  the  desired  velocity).  

12 VV −=ΔVCircular Orbit Velocity

Elliptical Orbit Velocity

RVC

µ=

⎟⎠

⎞⎜⎝

⎛ −=aR

VE12

µ

Tangent  Burns  

Your Spacecraft

Your Initial Orbit

R1

•  Ini0ally  you  are  in  a  circular  orbit  with  radius  R1  around  Earth  

11 R

VCµ

=

Tangent  Burns  

ΔV Your new orbit after the ΔV burn

R1 R2

•  Ini0ally  you  are  in  a  circular  orbit  with  radius  R1  around  Earth  

 •  You  perform  a  burn  now  which  

puts  in  into  the  red-­‐doced  orbit.    So  you  perform  a  ΔV.  

11 R

VCµ

=

11 CE VVV −=Δ

Tangent  Burns  

R1 R2

•  Ini0ally  you  are  in  a  circular  orbit  with  radius  R1  around  Earth  

 •  You  perform  a  burn  now  which  

puts  in  into  the  red-­‐doced  orbit.    So  you  perform  a  ΔV.  

!V = VE1"VC1

where

VE1= µ

2R1

"1a

#

$%

&

'( and a = 1

2R1 + R2( )

11 R

VCµ

=

Hohmann  Transfer  

⎟⎟⎠

⎞⎜⎜⎝

+−=Δ

⎟⎟⎠

⎞⎜⎜⎝

⎛−

+=Δ

Δ+Δ=Δ

21

1

22

21

2

11

21

21

12

RRR

RV

RRR

RV

VVV

µ

µ

ΔV1

R1 R2

ΔV2

The most efficient 2-burnmaneuver to transfer between 2 co-planar circular orbit

µπ

3

21 aPTOF ==

Hohmann  Transfer  (non-­‐circular)  

•  Another  way  to  view  it  is  using  angular  momentum  

h = 2µrarpra + rp

!

"##

$

%&&

!Vtotal _3 = !VA +!VB!Vtotal _3' = !VA ' +!VB '

Hohmann  Transfer  (non-­‐circular)  

h1 = 2µ rArA 'rA + rA '

!

"#

$

%&

h2 = 2µ rBrB 'rB + rB '

!

"#

$

%&

h3 = 2µ rArBrA + rB

!

"#

$

%&

h3' = 2µ rA 'rB 'rA ' + rB '

!

"#

$

%&

VA 1 = h1 / rAVB 1 = h2 / rBVA ' 1 = h1 / rA 'VB ' 1 = h2 / rB '

VA 3= h3 / rA

VB 3= h3 / rB

VA ' 3' = h3' / rA 'VB ' 3' = h3' / rB '

!VA = abs VA 3"VA 1( )

!VA ' = abs VA ' 3 "VA ' 1( )!VB = abs VB 2

"VB 3( )!VB ' = abs VB ' 2 "VB ' 3'( )

Bi-­‐Ellip0c  Transfer  

Bi-­‐Ellip0c  Transfer  If rc/ra < 11.94 then Hohmann is more efficient If rc/ra > 15.58 then Bi-Elliptic is more efficient

Non-­‐Hohmann  Transfers  w/Common  Line  of  Aspides  

Non-­‐Hohmann  Transfers  w/Common  Line  of  Aspides  

etransfer = !rA ! rB

rA cos!A ! rB cos!B

htransfer = µrArBcos!A ! cos!B

rA cos!A ! rB cos!B

"

#$

%

&'

!VA = V12 +Vtrans

2 " 2V1Vtrans cos!!A

A

tan! = !vr@A

!v"@A

=vr@A orbit2

# vr@A orbit1

v"@A orbit2# v"@A orbit1

Non-­‐Hohmann  Transfers  w/Common  Line  of  Aspides  

!1 = tan!1 µ / h1( )e1 sin!1

h1 / rA

"

#$

%

&'

" trans = tan!1 µ / htrans( )etrans sin!1

htrans / rA

"

#$

%

&'

!!A = ! trans "!1( )@A

! i = tan"1 VrV#

$

%&

'

()i @A

!VA = V12 +Vtrans

2 " 2V1Vtrans cos!!A

Apse  Line  Rota0on  Opportunity to transfer from one orbit to another using a single maneuver

occurs at intersection points of the orbits

! ="1 !"2

Apse Line Rotation Angle

rorbit1@I = rorbit2@I

h12 /µ

1+ e1 cos!1=

h22 /µ

1+ e2 cos!2

NOTE:

Apse  Line  Rota0on  Opportunity to transfer from one orbit to another using a single maneuver

occurs at intersection points of the orbits

!2 =!1 !"Setting and using the following identity

cos !1 !"( ) = cos!1 cos" + sin!1 sin"

Then has two solution corresponding to point I and J !1

!1 =" ± cos!1 h1

2 ! h22

e1h22 ! e2h1

2 cos#cos"

"

#$

%

&'

" = tan!1 !e2h12 sin#

e1h22 ! e2h1

2 cos#"

#$

%

&'

Apse  Line  Rota0on  Opportunity to transfer from one orbit to another using a single maneuver

occurs at intersection points of the orbits

Given the orbit information of the two orbits Next, compute r, v!i, vri, ! i using "1 and "2 ="1 "#

r = h12 /µ

1+ e1 cos!1v!1 = h1 / rvr1 = µ / h1( )e1 sin!1"1 = tan

"1 vr1 / v!1( )

v1 = vr12 + v!1

2

v!2 = h2 / rvr2 = µ / h2( )e2 sin!2"2 = tan

"1 vr2 / v!2( )

v2 = vr22 + v!2

2

#v = v12 + v2

2 " 2v1v2 cos !2 "!1( )

Apse  Line  Rota0on  Opportunity to transfer from one orbit to another using a single maneuver

occurs at intersection points of the orbits

tan! = !vr@I

!v"@I

=vr@I orbit2

# vr@I orbit1

v"@I orbit2# v"@I orbit1

If you want to find the effect of a !v on orbit 1 at !1

tan!2 =v!1 +"v!( ) vr1 +"vr( )

v!1 +"v!( )2 e1 cos!1 + 2v!1 +"v!( )"v!v!12

µ / r( )

If !1 = vr = !v" = 0 then tan! = ! rv"1µe1

#vr (at periapsis)

Apse  Line  Rota0on  Opportunity to transfer from one orbit to another using a single maneuver

occurs at intersection points of the orbits

Another useful equation:

e2 =h1 + r1!v"( )2 e1 cos!1 + 2h1 + r1!v"( )r1!v"

h12 cos!2

Plane  Change  Maneuvers  In general a plane change maneuver changes the orbit plane

!

v1

v2

!v = v2 " v1 = vr2 " vr1( ) ur + v#2u#2 " v#1u#1!v = !v " !v

!v = vr2 # vr1( )2 + v$12 + v$12 # 2v$2v$1 cos!

or

!v = v122 + v2

2 " 2v1v2 cos!! " cos!1 cos!2 1" cos"( )#$ %&

where !! = !2 "!1

Plane  Change  Maneuvers  In general a plane change maneuver changes the orbit plane

!v = v122 + v2

2 " 2v1v2 cos!!

If there is no plane change, then ! = 0

and we get the same equation as from slide 130.

If then vr1 = vr2 = 0 and v!1 = v1 and v!2 = v2

!v = v122 + v2

2 " 2v1v2 cos!

No plane change

Pure plane change (common line of apisdes)

Plane  Change  !vPC = 2vC sin

!2"

#$%

&'= 2vC sin

!i2

"

#$

%

&'

Pure plane change (circular to circular)

!v(a) = v2 " v1( )2 + 4v1v2 sin2 ! / 2( )

!v(b) = 2v1 sin ! / 2( )+ v2 " v1 !v(c) = v2 " v1 + 2v2 sin ! / 2( )

Rendezvous  Catching a moving target: Hohmann transfer assume the target will be there

independent of time, but for rendezvousing the target body is always moving.

target

spacecraft

TIME = 0

φ0

motionmean

where

32

2

20

≡=

⋅−=

an

TOFn

µ

πφΔV

Rendezvous  

target

spacecraft

TIME = TOF

φ0

motionmean

where

3target

target

target0

≡=

⋅−=

an

TOFn

µ

πφΔV

Catching a moving target: Hohmann transfer assume the target will be there independent of time, but for rendezvousing the target body is always moving.

Wait  Time  (WT)  How long do you wait before you can perform (or initiate) the transfer?

target

spacecraft

TIME = -WT

φ0

scnnW

−=

target

0-T φφ

φ

ΔV

Co-­‐orbital  Rendezvous  

target

spacecraft

Chasing your tail

φ0

ΔV

Reverse thrust to speed up

Forward thrust to

slow down

Phasing orbit size

3/12

target

initialphasing 2

2⎥⎥

⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

−=

na

πφπ

µ

Patched-­‐Conic  An approximation breaks the interplanetary trajectory into

regions where conic approximation is applicable

Sphere of Influence 5/2

⎟⎟⎠

⎞⎜⎜⎝

⎛=

Sun

planetplanetSOI m

maR

Patched-­‐Conic  An approximation breaks the interplanetary trajectory into

regions where conic approximation is applicable

•  Computational Steps –  PATCH 1: Compute the Hohmann transfer ΔVs –  PATCH 2: Compute the Launch portion –  PATCH 3: Compute the Arrival portion

•  PATCH 1 –  The ΔV1 from the interplanetary Hohmann is V∞ at Earth –  The ΔV2 from the interplanetary Hohmann is V∞ at target

body arrival

Patched-­‐Conic  An approximation breaks the interplanetary trajectory into

regions where conic approximation is applicable

ΔVDEP

VEarth V∞ @Earth

RC@DEP DEP

DEP

DEP

DEP

C

DEPC

C

departureCDEP

RV

VV

VV

µ=

⎥⎥⎥

⎢⎢⎢

⎡−⎟

⎟⎠

⎞⎜⎜⎝

⎛+=Δ ∞

where

12 2

@

Earth Departure (assume circular orbit)

RSOI

Patched-­‐Conic  An approximation breaks the interplanetary trajectory into

regions where conic approximation is applicable

ΔVCAP

VMars V∞ @Mars

RC@CAP

CAP

CAP

CAP

CAP

C

CAPC

C

arrivalCCAP

RV

VV

VV

µ=

⎥⎥⎥

⎢⎢⎢

⎡−⎟

⎟⎠

⎞⎜⎜⎝

⎛+=Δ ∞

where

12 2

@

Target Body Capture (assume circular orbit)

RSOI

Patched-­‐Conic  An approximation breaks the interplanetary trajectory into

regions where conic approximation is applicable

CAPDEPMISSION VVV Δ+Δ=Δ

Total Mission ΔV for a simple 2 burn transfer

ΔVCAP

ΔVDEP

Planetary  Flyby  

•  Gravity-­‐assists  or  flybys  are  used  to  –  Reduce  or  increase  the  heliocentric  (wrt.  Sun)  energy  of  the  spacecra6  

(orbit  pumping),  or  –  Change  the  heliocentric  orbit  plane  of  the  spacecra6  (orbit  cranking),  

or  both  

Getting a boost

Planetary  Flyby  Getting a boost

Planetary  Flyby  Getting a boost

Planetary  Flyby  Getting a boost

Stationary Jupiter Moving Jupiter

Planetary  Flyby  Getting a boost

Vplanet

Fg Fg

Decrease energy wrt. Sun Increases energy wrt. Sun

Planetary  Flyby  

•  V∞  leveraging  is  the  use  of  deep  space  maneuvers  to  modify  the  V∞  at  a  body.    A  typical  example  is  an  Earth  launch,  ΔV  maneuver  (usually  near  apoapsis),  followed  by  an  Earth  gravity  assist  (ΔV-­‐EGA).  

Getting a boost

ΔV

If no maneuver

post maneuver

Lecture  11and  12:    Rela0ve  Mo0on  

Chapter  7  

Rela0ve  Mo0on  and  Rendezvous  

•  In  this  chapter  we  will  look  at  the  rela0ve  dynamics  between  2  objects  or  2  moving  coordinate  frames,  especially  in  close  proximity  

•  We  will  also  look  at  the  linearized  mo0on,  which  leads  to  the  Clohessy-­‐Wiltshire  (CW)  equa4ons  

Co-­‐Moving  LVLH  Frame  (7.2)  

Local Vertical Local Horizontal (LVLH) Frame i = rA

rA, j= k! i, k = hA

hA

TARGET

CHASER (or observer)

•  The  target  frame  is  moving  at  an  angular  rate  of  Ω  

 where          and    

•  Chapter  1:  Rela0ve  mo0on  in  the  INERTIAL  (XYZ)  frame  

Co-­‐Moving  LVLH  Frame  

hA = rA ! vA = rAvA"k = rA2# k = rA

2!

! =rA ! vArA2

!! = hAddt

1rA2

!

"#

$

%&= '2

vA ( rArA2 !

rrel = rB ! rAvrel = vB ! vA !! " rrelarel = aB ! aA ! !! " rrel !! " ! " rrel( )! 2! " vrel

•  We  need  to  find  the  mo0on  in  the  non-­‐iner4al  rota0ng  frame  

   where  Q  is  the  rota0ng  matrix  from  

Co-­‐Moving  LVLH  Frame  

rrel _ rot =Qiner _ to_ rot rrel _ inervrel _ rot =Qiner _ to_ rot vrel _ inerarel _ rot =Qiner _ to_ rot arel _ iner

Qiner _ to_ rot =

ij

k

!

"

####

$

%

&&&&

=

rA / rAk' ihA / hA

!

"

####

$

%

&&&&

•  Steps  to  find  the  rela0ve  state  given  the  iner0al  state  of  A  and  B.  

Co-­‐Moving  LVLH  Frame  

1.  Compute the angular momentum of A, hA

2.  Compute the unit vectors

3.  Compute the rotating matrix Q

4.  Compute

5.  Compute the inertial acceleration of A and B

i, j, and k

! and !!

aA = !µ rA / rA3, and aB = !µ rB / rB

3

•  Steps  to  find  the  rela0ve  state  given  the  iner0al  state  of  A  and  B.  

Co-­‐Moving  LVLH  Frame  

6.  Compute the relative state in inertial space

7.  Compute the relative state in the rotating coordinate system

rrel _ rot =Qiner _ to_ rot rrel _ inervrel _ rot =Qiner _ to_ rot vrel _ inerarel _ rot =Qiner _ to_ rot arel _ iner

Co-­‐Moving  LVLH  Frame  

Rotating Frame

Lineariza0on  of  the  EOM  (7.3)  

r =R+!r

!r / R <<1

!!!r = ! !!R!µ R+!rR+!r 3

!!!r = ! µR3

!r! 3R2

R "!r( ) R#

$%&

'(

neglecting higher order terms

Lineariza0on  of  the  EOM  

!!!r = ! µR3

!2 !x!y!z

"

#

$$$

%

&

'''= !!rB ! !!rA = aB ! aA

Assuming R = R i

Acceleration of B relative to A in the inertial frame

!arel = !!!r! !! "!r!! " ! "!r( )! 2! "!vrel

! =hR2k !! = !

2 V "R( )hR4

k

Lineariza0on  of  the  EOM  

After further simplification we get the following EOM

!!!x ! 2µR3

+h2

R4"

#$

%

&'!x +

2 V (R( )hR4

!y! 2hR2! !y = 0

!!!y+ µR3

!h2

R4"

#$

%

&'!y!

2 V (R( )hR4

!x + 2hR2! !x = 0

!!!z + µR3!z = 0

Thus, given some initial state R0 and V0 we can integrate the above EOM (makes no assumption on the orbit type)

Lineariza0on  of  the  EOM  

e = 0.1

e = 0

Clohessy-­‐Whiltshire  (CW)  Equa0ons  (7.4)  

Assuming circular orbits: Then EOM becomes

!!!x !3n2!x ! 2n ! !y = 0!!!y+ 2n ! !x = 0!!!z + n2!z = 0

where

V !R( ) = 0 and h = µR

n = µR3

=V / R

Clohessy-­‐Whiltshire  (CW)  Equa0ons  

Where the solution to the CW Equations are:

!x = 4!x0 +2n! !y0 +

1n! !x0 sin nt( )! 3!x0 +

2n! !y0

"

#$

%

&'cos nt( )

!y = !y0 !2n! !x0 !3 2n !x0 +! !y0( ) t + 2 3!x0 + 2n! !y0

"

#$

%

&'sin nt( )+ 2

n! !x0 cos nt( )

!z = 1n! !z0 sin nt( )+!z0 cos nt( )

Maneuvers  in  the  CW  Frame  (7.5)  The position and velocity can be written as where

!r t( ) =!rr!r0 +!rv!v0!v t( ) =!vr!r0 +!vv!v0

!rr =

4"3cos nt( ) 0 0

6 sin nt( )" nt( ) 1 0

0 0 cos nt( )

#

$

%%%%

&

'

((((

!rv =

1/ n( )sin nt( ) 2 / n( ) 1" cos nt( )( ) 0

2 / n( ) cos nt( )"1( ) 1/ n( ) 4sin nt( )"3nt( ) 0

0 0 1/ n( )sin nt( )

#

$

%%%%%

&

'

(((((

Maneuvers  in  the  CW  Frame  

!vv =

cos nt( ) 2sin nt( ) 0

"2sin nt( ) 4cos nt( )"3 0

0 0 cos nt( )

#

$

%%%%

&

'

((((

!vr =

3nsin nt( ) 0 0

6n cos nt( )"1( ) 0 0

0 0 "nsin nt( )

#

$

%%%%

&

'

((((

and

Maneuvers  in  the  CW  Frame  

Two-Impulse Rendezvous: from Point B to Point A

Maneuvers  in  the  CW  Frame  Two-Impulse Rendezvous: from Point B to Point A where

where is the relative velocity in the Rotating frame, i.e., If the target and s/c are in the same circular orbits then

!v = !v@B t = 0( ) + !v@A t = t f( )

!v@B = " #rv t f( )$% &'"1#rr t f( )$% &'( )!r0 "!v0"

!v@A = "vr t f( )#$ %&' "vv t f( )#$ %& "rv t f( )#$ %&'1"rr t f( )#$ %&( )!r0

!v0!

!v0! =Qinertial _ to_ rotating!v =QXx vs/c ! vtar !! tar!r( )

!v0! = 0

Maneuvers  in  the  CW  Frame  Two-Impulse Rendezvous example:

Lecture  13:    Rigid  Body  Dynamics  Aytude  Dynamics  

Chapter  9-­‐10  

Rigid  Body  Mo0on  RB =RA +RB/A

RB/A = constant

vB = vA +! !RB/A

Note:

dRB/A / dt =! !RB/A

aB = aA +! !RB/A +! ! ! !RB/A( )

Position, Velocity, and Acceleration of points on a rigid body, measure in the same inertial frame of reference.

Angular  Velocity/Accelera0on  

•  When  the  rigid  body  is  connected  to  and  moving  rela0ve  to  another  rigid  body,  (example:  solar  panels  on  a  rota0ng  s/c)  computa0on  of  its  iner0al  angular  velocity  (ω)  and  the  angular  accelera0on  (α)  must  be  done  with  care.    

•  Let  Ω  be  the  iner0al  angular  velocity  of  the  rigid  body        

! =d"dt

+! !"

Note: if ! =d"dt

! =!

Example  9.2  

Angular Velocity of Body

! = N k

Angular Velocity of Panel

! = ! !! j + N k

rA/O = !w2sin! i + d j + w

2cos! k

vA/O =! ! rA/O = "w2!! cos! + Nd

#

$%

&

'( i "

w2N sin! j " w

2!! sin! k

Example  9.2  (con0nues)  

aA/O =! ! rA/O +! ! ! ! rA/O( )

aA/O =w2N 2 + !! 2( )sin! i ! N Nd +w !! cos!( ) j ! w

2!! 2 cos! k

! =d"dt

+! !! =ddt

" !! j + N k( )+ N k( )! " !! j + N k( ) = !!N i

0

Example:  Gimbal  

! = !! k + N sin! j + N cos! k

!rotor = !! i + N sin! j + N cos! +"spin( ) k

Equa0ons  of  Mo0on  

•  Dynamics  are  divided  to  transla0onal  and  rota0onal  dynamics  

Translational:

Ftrans =m !!RG

Equa0ons  of  Mo0on  

•  Dynamics  are  divided  to  transla0onal  and  rota0onal  dynamics  

Rotational: MPnet

= r! !!R dmm"

MPnet= r! dFnet"

MPnet= !HP + v p !mvG

If then where v p = vG MGnet= !HG HG = ! ! " !!( ) dm"

Angular  Momentum  

HG = ! ! " !!( ) dm"

?

! ! " !!( ) =" ! "!( )# ! " "!( )

! ! " !!( ) =

y2 + z2( )"x # xy"y # xz"z

#yx"x + x2 + z2( )"y # yz"z

#zx"x # zy"y + x2 + y2( )"z

$

%

&&&&&

'

(

)))))

Angular  Momentum  

Since: HG =

Hx

Hy

Hz

!

"

####

$

%

&&&&

= ?[ ]!x

!y

!z

!

"

####

$

%

&&&&

HG = I!

I =

Ixx Ixy IxzIyx Iyy IyzIzx Izy Izz

!

"

####

$

%

&&&&

=

y2 + z2( )' dm ( xy' dm ( xz' dm

( yx' dm x2 + z2( )' dm ( yz' dm

( zx' dm ( zy' dm x2 + y2( )' dm

!

"

#####

$

%

&&&&&

Note: Iyx = Ixy, Izx = Ixz, and Iyz = Izy

Angular  Momentum  

If has 2 planes of symmetry then I

I =Ixx 0 00 Iyy 0

0 0 Izz

!

"

####

$

%

&&&&

=A 0 00 B 00 0 C

!

"

###

$

%

&&&

therefore Hx = A !x, Hy = A !y, Hz = A !z

Moments  of  Iner0a  

Euler’s  Equa0ons  

•  Rela0ng  M  and              for  pure  rota0on.  Assuming  body  fixed  coordinate  is  along  principal  axis  of  iner0a  

•  Therefore    

!

Mnet = !H = !Hrelative +!"H

H = Hx Hy Hz( )T

= A!x B!y C!z( )T

Mnet = A !!x B !!y C !!z( )T

+

i j k!x !y !z

A!x B!y C!z

Euler’s  Equa0ons  

•  Assuming  that  moving  frame  is  the  body  frame,  then      this  leads  to  Euler’s  Equa4ons:    

Mxnet= A !!x + C !B( )!y!z

Mynet= B !!y + A!C( )!z!x

Mznet=C !!z + B! A( )!x!y

! =!

Kine0c  Energy  

T = 12

v2m! dm =

12v "v

m! dm =

12mvG

2 +12! "HG = Ttrans +Trot

Trot =12!xHx +!yHy +!zHz( ) = 12!

TI!

Spinning  Top  •  Simple  axisymmetric  top  spinning  at  point  0  

Introduces the topic of 1.  Precession 2.  Nutation 3.  Spin

Assumes:

Ixx = Iyy = A and Izz =C

! p = !" !n = !#

Notes: If A < C (oblate) If C < A (prolate)

Spinning  Top  

! p = !" !n = !#

From the diagram we note 3 rotations: where therefore:

! =!ni +! pK +!sk

K = sin! j + cos! k

! =

!x

!y

!z

!

"

####

$

%

&&&&

=

!n

! p sin"

!s +! p cos"

!

"

####

$

%

&&&&

Spinning  Top  

! p = !" !n = !#

From the diagram we note the coordinate frame rotation therefore:

! =!ni +! pK

! =

!x

!y

!z

"

#

$$$$

%

&

''''

=

!n

! p sin"

! p cos"

"

#

$$$$

%

&

''''

! M0net =

A !!x

A !!y

C !!z

"

#

$$$$

%

&

''''

+

i j k(x (y (z

A!x A!y C!z

= d k ) *mg( ) K =mgd sin! i

Spinning  Top  •  Some  results  for  a  spinning  top  

–  Precession  and  spin  rate  are  constant  –  For  precession  two  values  exist  (in  general)  for    

–  If  spin  rate  is  zero  then  

•  If  A  >  C,  then  top’s  axis  sweeps  a  cone  below  the  horizontal  plane  •  If  A  <  C,  then  top’s  axis  sweeps  a  cone  above  the  horizontal  plane  

!! p = !!s = 0

! p !s=0= ±

mgdC ! A( )cos!

if C ! A( )cos! > 0

! p =C

2 A!C( )cos"!s ± !s

2 !4mgd A!C( )cos"

C2

"

#$$

%

&''

! ! 90°

Spinning  Top  •  Some  results  for  a  spinning  top  

–  If            then  

•  If      ,  then  precession  occurs  regardless  of  0tle  angle  •  If      ,  then  precession  occurs  0tle  angle  90  deg  

–  If            then  a  minimum  spin  rate  is  required  for  steady  precession  at  a  constant  0lt  

–  If            then  

A!C( )cos! = 0

! p =mgdC!s

if A!C( )cos" = 0

A =CA !C

A!C( )cos! > 0

!s_MIN =2C

mgd A!C( )cos" if A!C( )cos" > 0

A!C( )cos! < 0 !s ! 0, and ! p !! p !s=0

Axisymmetric  Rotor  on  Rota0ng  Pla|orm  

! = 90° ! =! p j +!sk

! =! p j

MGnet =! !H =

i j k0 ! p 0

0 A! p C!s

=! p j !C!sk = ! p"# $%!Hs

Thus, if one applies a torque or moment (x-axis) it will precess, rotating spin axis toward moment axis

Euler’s  Angles  (revisited)  •  Rota0on  between  body  fixed  x,y,z  to  rota0on  angles  using  Euler’s  angles  (313  rota0on)  

Qiner _ to_body =R3 !( )R1 !( )R3 !( )

!body =

!x

!y

!z

!

"

####

$

%

&&&&

=

! p sin" sin# +!n cos#

! p sin" cos# '!n sin#

!s +! p cos"

!

"

####

$

%

&&&&

!body =Qiner _ to_body!inertal

! p

!n

!s

!

"

####

$

%

&&&&

=

!"!#!$

!

"

####

$

%

&&&&

=

1sin#

!x sin$ +!y cos$( )!x cos$ '!y sin$

'1tan#

!x sin$ +!y cos$( )+!z

!

"

######

$

%

&&&&&&

Euler’s  Angles  (revisited)  

!body =

!x

!y

!z

!

"

####

$

%

&&&&

=

! p sin" sin# +!n cos#

! p sin" cos# '!n sin#

!s +! p cos"

!

"

####

$

%

&&&&

!inertal =QTiner _ to_body !!body

Mxnet= A !!x + C !B( )!y!z

Mynet= B !!y + A!C( )!z!x

Mznet=C !!z + B! A( )!x!y

Satellite  Aytude  Dynamics  

•  Torque  Free  Mo0on   MG _net = !HG = 0 = !HG _ rel +! !HG

cos! = HG

HG

! k

!! ="n = !A!B( )"x"y

HG sin!

Euler’s  Equa0on  for  Torque  Free  Mo0on  

0 = A !!x + C ! A( )!y!z

0 = B !!y + A!C( )!z!x

0 =C !!z + B! A( )!x!y

A = B A !!x + C ! A( )!y!z = 0

A !!y + A!C( )!z!x = 0C !!z = 0

!z =!0 = constant!n = 0

!!x !"!y = 0!!y +"!x = 0

! =A!CA

"0

!!!x +"!x = 0

Euler’s  Equa0on  for  Torque  Free  Mo0on  

! =!! +!0 =!! +!0kFor Then:

!s = !" =A!CA

!0

!xy =CA!0 tan"

! p = !" =C

A!C!s

cos#

If A > C (prolate), ωp > 0 If A < C (oblate), ωp < 0

Euler’s  Equa0on  for  Torque  Free  Mo0on  

Euler’s  Equa0on  for  Torque  Free  Mo0on  

HG =

Hx

Hy

Hz

!

"

####

$

%

&&&&

=

A!x

A!y

C!z

!

"

####

$

%

&&&&

=

A!x

A!y

C!0

!

"

####

$

%

&&&&

tan! = ACtan"

If A > C (prolate), γ < θ If A < C (oblate), γ > θ

HG = A! p

Euler’s  Equa0on  for  Torque  Free  Mo0on  

Stability  of  Torque-­‐Free  S/C  Assumes: ! =!0k

! !!"x,y + k!"x,y = 0

0 = A !!x + C ! A( )!y!z

0 = B !!y + A!C( )!z!x

0 =C !!z + B! A( )!x!y

k =A!C( ) B!C( )

AB!02

Stability  of  Torque-­‐Free  S/C  ! !!"x,y + k!"x,y = 0

•  If k > 0, then solution is bounded •  A > C and B > C or A < C and B < C •  Therefore, spin is the major axis (oblate) or minor

axis (prolate)

•  If k < 0, then solution is unstable •  A > C > B or A < C < B •  Therefore, spin is the intermediate axis

!"x,y = c1ei kt + c2e

!i kt

!"x,y = c1ekt + c2e

! kt

Stability  of  Torque-­‐Free  S/C  •  With  energy  dissipa0on  (        )  

Trot =12!TI! =

12A!!

2 +12C!z

2

!!z =1

C!z

!Trot !12A d!"

2

dt#

$%

&

'(

d!!2

dt= 2C

A

!TrotC " A#

$%

&

'(

!Trot < 0

d!!2

dt< 0 if C > A (oblate)" asymtotically stable

d!!2

dt> 0 if C < A (prolate)" unstable

Stability  of  Torque-­‐Free  S/C  •  Kine0c  Energy  rela0ons  

Trot =12A!!

2 +12C!z

2 =12HG

2

A+12A"CA

#

$%

&

'(C!z

2

Trot =12HG

2

A1+ A!C

Acos2!

"

#$

%

&'

Trot =

12HG

2

C for major axis spinner

12HG

2

A for minor axis spinner

!

"

##

$

##

Conning  Maneuvers  •  Maneuver  of  a  purely  spinning  S/C  with  fixed  angular  momentum  magnitude  

! =!0k

HG,0 =C!0k

!HG = !HG1 +!HG2

!HG = MG dt0

t f

"

Conning  Maneuvers  Before the Maneuver

During the Maneuver

!s =!0 HG =C!0

!s =A!CA

"

#$

%

&'!0

!P =CA

!0

cos " / 2( )

!

"##

$

%&&

HG = A! p =C!0

cos " / 2( )

Another maneuver is required ΔHG2 after precession 180 deg

Conning  Maneuvers  Another maneuver is required ΔHG2 after precession 180 deg.

At the 2nd maneuver we want to stop the precession (normal to the spin axis):

!s =! p

!HG1 = !HG2

! = 2cos!1 CA!C"

#$

%

&'

Required deflection angle to precess 180 deg for a single coning mnvr

t = !" p

=!AC!0

cos " / 2( )

!HG = !HG1 + !HG2

= 2 HG0 tan ! / 2( )( )" HG0 !

Gyroscopic  Aytude  Control  

•  Momentum  exchange  gyros  or  reac0on  wheels  can  be  used  to  control  S/C  aytude  without  thrusters.  

•  The  wheels  can  be  fixed  axis  (reac0on  wheels)  or  gimbal  2-­‐axis  (cmg)  

Gyroscopic  Aytude  Control  

HG = IGbus + IG

i!( )! + IGi!rel

i!= IG

s/c! + IGi!rel

i!MG,net,ext =

dHG

dt+! !HG

Example: HG = I p + Iw( )! + Iw!rel

If external torque free then therfore

HG t = 0( ) = HG t = !t( )

!!rel = " 1+ I p / Iw( )!!

Gyroscopic  Aytude  Control  

HG = IB + I1 + I2 + I3( )! + I1!1 + I2!2 + I3!3

Example II: S/C with three identical wheels with their axis along the principal axis of the S/C bus, where the wheels spin axis moment of inertial is I and other axis are J. Also, the bus moment of inertia are diagonal elements (A, B, C).