Aerospace Astronautics

208
ARO309 Astronau0cs and Spacecra6 Design Winter 2013 Try Lam CalPoly Pomona Aerospace Engineering

description

course notes

Transcript of Aerospace Astronautics

Page 1: Aerospace Astronautics

ARO309  -­‐  Astronau0cs  and  Spacecra6  Design    

Winter  2013    

Try  Lam  CalPoly  Pomona  Aerospace  Engineering  

Page 2: Aerospace Astronautics

Earth  Orbiters  

Page 3: Aerospace Astronautics

Pork  Chop  Plot  

Page 4: Aerospace Astronautics

High  Thrust  Interplanetary  Transfer  

Page 5: Aerospace Astronautics

Low-­‐Thrust  Interplanetary  Transfer  

Page 6: Aerospace Astronautics

Low-­‐Thrust  Europa  End  Game  

Page 7: Aerospace Astronautics

Low-­‐Thrust  Europa  End  Game  

Page 8: Aerospace Astronautics

Low-­‐Thrust  Europa  End  Game  

Page 9: Aerospace Astronautics

Stable  for  >  100  days  

Orbit  Stability  

Enceladus  Orbit  

Page 10: Aerospace Astronautics

Juno  

Page 11: Aerospace Astronautics

Other  Missions  

Page 12: Aerospace Astronautics

Other  Missions  

Page 13: Aerospace Astronautics
Page 14: Aerospace Astronautics

Lecture  01  and  02:    Two-­‐Body  Dynamics:  Conics  

Chapter  2  

Page 15: Aerospace Astronautics

Equa0ons  of  Mo0on  

!

where r = R 2 " R 1

Page 16: Aerospace Astronautics

Equa0ons  of  Mo0on  

•  Fundamental  Equa0ons  of  Mo0on  for  2-­‐Body  Mo0on  

!

˙ r = " µr3 r

!

˙ r = "µr3 r =

˙ x ˙ y ˙ z

#

$

% % %

&

'

( ( (

= "µr3

xyz

#

$

% % %

&

'

( ( (

!

where µ = G M + m( ) and ˙ r = ˙ R 2 " ˙ R 1

Page 17: Aerospace Astronautics

Conic  Equa0on  

!

˙ r = " µr3 r

!

r =h2 /µ

1+ ecos"=

p1+ ecos"

!

h = r " v

!

˙ r " h = # µr3 r " h

From 2-body equation to conic equation

Page 18: Aerospace Astronautics

Angular  Momentum  

!

v" =hr

=µh1+ ecos#( )

Other Useful Equations

!

h = r " v and h = rv cos#

!

vr =µhesin"

!

rp =h2 /µ1+ e

!

tan" =vrv#

=esin$

1+ ecos$

Page 19: Aerospace Astronautics

Energy  

!

" = K + P =v 2

2#

µr

= constant

" = " p =vp2

2#

µrp

= #µ2 /h2

21# e2( )

NOTE: ε = 0 (parabolic), ε > 0 (escape), ε < 0 (capture: elliptical and circular)

Page 20: Aerospace Astronautics

Conics  

!

r =p

1+ ecos"=a 1# e2( )1+ ecos"

Page 21: Aerospace Astronautics

Circular  Orbits  

!

e = 0 and " < 0

!

vcircular =µr

!

r =p

1+ 0" cos#= p =

h2

µ

!

h = rv

!

Tcircular =2"r

µr

= 2" r3

µ

!

" = #µ2 /h2

2= #

µ2r

Page 22: Aerospace Astronautics

Ellip0cal  Orbits  

!

0 < e <1 and " < 0

Page 23: Aerospace Astronautics

Ellip0cal  Orbits  

!

r =p

1+ ecos"# ra =

p1$ e

and rp =p

1+ e

!

since 2a = rp + ra " a =p

1# e2

!

" ra = a 1+ e( ) and rp = a 1# e( )

!

NOTE : b = a 1" e2

!

" = #µ2 /h2

21# e2( ) = #

µ2a

!

Telliptical =2"abh

=2"ab

µa 1# e2( )= 2" a3

µ

Page 24: Aerospace Astronautics

Ellip0cal  Orbits  

!

e =ra " rpra + rp

!

h = µa 1" e2( )va = h /ra and vp = h /rp

!

tan" =vrv#

=esin$

1+ ecos$

Page 25: Aerospace Astronautics

Parabolic  Orbits  

•  Parabolic  orbits  are  borderline  case  between  an  open  hyperbolic  and  a  closed  ellip0cal  orbit    

!

e =1 and " = 0

!

" = 0 =v 2

2#

µr$ vparabolic =

2µr

= vescape

NOTE: as v à 180°, then r à ∞

!

" parabolic = # /2

!

tan" =vrv#

=esin$

1+ ecos$=1 % sin$1+1 % cos$

Page 26: Aerospace Astronautics

Hyperbolic  Orbits  

!

e >1 and " > 0

!

sin"# =e2 $1e

!

" = cos#11e$

% & '

( )

!

r = "a 1" e2( )1+ ecos#

!

" = a e2 #1

Page 27: Aerospace Astronautics

Hyperbolic  Orbits  

!

" =µ2a

!

" =v 2

2#

µr

=µ2a

!

v" =µa

=µhesin#" =

µh

e2 $1Hyperbolic excess speed

!

" =v 2

2#

µr

=v$2

2#

µr$

=v$2

2

!

v 2 = v"2 +2µr

= v"2 + vescape

2

!

C3 = v"2

Page 28: Aerospace Astronautics

Proper0es  of  Conics  

0 < e < 1

Page 29: Aerospace Astronautics

Conic  Proper0es  

Page 30: Aerospace Astronautics

Vis-­‐Viva  Equa0on  

!

" =v 2

2#

µr

= #µ2a

!

v 2 = µ2r"1a

#

$ %

&

' ( Vis-viva equation

Mean  Mo0on  

!

n =2"T

=µa3

Page 31: Aerospace Astronautics

Perifocal  Frame    “natural  frame”  for  an  orbit  centered  at  the  focus  with  x-­‐axis  to  periapsis  and  z-­‐axis  toward  the  angular  momentum  vector  

!

r = x ˆ p + y ˆ q and ˆ w = h /h

r = rcos" ˆ p + rsin" ˆ q

v = ˙ r = ˙ x ˆ p + ˙ y ˆ q

v = ˙ r cos" # r ˙ " sin"( ) ˆ p

+ ˙ r sin" + r ˙ " cos"( ) ˆ q

Page 32: Aerospace Astronautics

Perifocal  Frame  

FROM

!

˙ r = vr =µh

esin" and r ˙ " = v# =µh

1+ ecos"( )

!

˙ x = "µh

sin# and ˙ y =µh

e + cos#( )THEN

!

v = ˙ r = ˙ x ˆ p + ˙ y ˆ q

v =µh

"sin#( ) ˆ p + e + cos#( ) ˆ q [ ]

!

h = r " v =ˆ p ˆ q ˆ w x y 0˙ x ˙ y 0

= x ˙ y # y ˙ x ( ) ˆ w and h = x ˙ y # y ˙ x ( )

Page 33: Aerospace Astronautics

Lagrange  Coefficients  •  Future  es0mated  state  as  a  func0on  of  current  state  

!

r = x ˆ p + y ˆ q

v = ˙ x ˆ p + ˙ y ˆ q

!

r = f r 0 + g v 0v = ˙ f r 0 + ˙ g v 0

Solving unit vector based on initial conditions

!

f =1"µ rh2 1" cos#$( ); ˙ f =

µh

1" cos#$sin#$

%

& '

(

) *

µh2 1" cos#$( ) " 1

r0

"1r

+

, -

.

/ 0

g =r r0

hsin#$; ˙ g =1"

µ r0

h2 1" cos#$( )

!

r =h2 /µ

1+h2

µ r0"1

#

$ % %

&

' ( ( cos)* "

h vr0µ

#

$ %

&

' ( sin)*

!

vr0 =r 0 " v 0

r0and Where

Page 34: Aerospace Astronautics

Lagrange  Coefficients  •  Steps  finding  state  at  a  future  Δθ  using  Lagrange  Coefficients  

1.  Find  r0  and  v0  from  the  given  posi0on  and  velocity  vector  2.  Find  vr0  (last  slide)  3.  Find  the  constant  angular  momentum,  h  

4.  Find  r  (last  slide)  5.  Find  f,  g,  fdot,  gdot  6.  Find  r  and  v      !

h = r0v" 0 = r0 v02 # vr0

2

Page 35: Aerospace Astronautics

Lagrange  Coefficients  •  Example  (from  book)  

Page 36: Aerospace Astronautics

Lagrange  Coefficients  •  Example  (from  book)  

Page 37: Aerospace Astronautics

Lagrange  Coefficients  •  Example  (from  book)  

Page 38: Aerospace Astronautics

•  Example  (from  book)  

Lagrange  Coefficients  

ALSO

Since Vr0 is < 0 we know that S/C is approaching periapsis (so 180°<θ<360°)

Page 39: Aerospace Astronautics

CR3BP  •  Circular  Restricted  Three  Body  Problem  (CR3BP)  

!

" = µ /r123 = GM /r12

3

M = m1 +m2

#1 =m1

m1 +m2

# 2 =m2

m1 +m2

!

m1x1 +m2x2 = 0x1 + r12 = x2

!

x1 = "# 2r12x2 = #1r12

!

"1 =1#"2

Page 40: Aerospace Astronautics

CR3BP  

!

r1 = x +"2r12( )ˆ i + yˆ j + z ˆ k

r2 = x #"1r12( )ˆ i + yˆ j + z ˆ k

r = xˆ i + yˆ j + z ˆ k

!

˙ r = v inertialCM +"# r + v rel

˙ r = ˙ a inertialCM + ˙ " # r +"# " # r ( ) + 2"# v rel + a rel

where v rel = ˙ x i + ˙ y j + ˙ z k

where a rel = ˙ x i + ˙ y j + ˙ z k

Kinematics (LHS):

!

m˙ r = F1 +F2

!

˙ r = ˙ x " 2#˙ y "#2x( )ˆ i + ˙ y + 2#˙ x "#2y( ) ˆ j + ˙ z k

Page 41: Aerospace Astronautics

CR3BP  

!

F1 = "µ1mr13 r 1 and F2 = "

µ2mr23 r 2

Kinematics (RHS):

!

m˙ r = F1 +F2

!

˙ x " 2#˙ y "#2x = "µ1

r13 x +$ 2r12( ) " µ2

r23 x "$1r12( )

˙ y + 2#˙ x "#2y = "µ1

r13 y "

µ2

r23 y

˙ z = "µ1

r13 z "

µ2

r23 z

Page 42: Aerospace Astronautics

CR3BP  

CR3BP Plots are in the rotating frame

Tadpole Orbit Horseshoe Orbit

Lyapunov Orbit

DRO

Page 43: Aerospace Astronautics

CR3BP:  Equilibrium  Points  

!

"#2x = "µ1r13 x +$ 2r12( ) " µ2

r23 x "$1r12( )

"#2y = "µ1r13 y "

µ2r23 y

0 = "µ1r13 z "

µ2r23 z

Equilibrium points or Libration points or Lagrange points

!

˙ x = ˙ y = ˙ z = ˙ x = ˙ y = ˙ z = 0

!

z = 0L1 L2 L3

L4

L5

!

JC =12v 2 "

12#2 x 2 + y 2( ) " µ1

r1"

µ2r2

Jacobi Constant

Page 44: Aerospace Astronautics

Lecture  03  and  04:    Two-­‐Body  Dynamics:    

Orbit  Posi0on  as  a  Func0on  of  Time  

Chapter  3  

Page 45: Aerospace Astronautics

Introduc0ons  

•  Chapter  2  (Lec0on  1  and  2)  relates  posi0on  as  a  func0on  of  θ  (true  anomaly)  but  not  0me  

•  Time  was  only  introduced  when  referring  to  orbit  period  

•  Here  we  acempt  to  find  the  rela0ons  between  posi0on  of  the  S/C  and  0me  à  Kepler’s  Equa4on  

Page 46: Aerospace Astronautics

Time  versus  True  Anomaly  

•  Recall  from  Chapter  2  

!

v" =hr

= r ˙ # therefore h = r2 ˙ #

!

d"dt

=hr2

!

r =h2 /µ

1+ ecos"Since Then

!

µ2

h3dt =

d"1+ ecos"( )2

Integrating from 0 (assuming tp = 0) to t and from 0 to θ

!

µ2

h3t =

d"1+ ecos"( )20

#

$

Page 47: Aerospace Astronautics

Time  versus  True  Anomaly  

!

µ2

h3t =

d"1+ ecos"( )20

#

$

Page 48: Aerospace Astronautics

Time  versus  True  Anomaly  

!

µ2

h3t =

d"1+ ecos"( )20

#

$

Simple Case: Circular Orbits (e=0)

If e = 0, then

!

µ2

h3t = d" = #

0

#

$ therefore

!

t =h3

µ2 "

Since for a circular orbit we have

!

r = h2 /µ then

!

t =r3

µ"

FOR CIRCULAR ORBIT OR

!

t ="2#

Tcir

Page 49: Aerospace Astronautics

Time  versus  True  Anomaly  

!

µ2

h3t =

d"1+ ecos"( )20

#

$

Elliptical Orbits (0<e<1)

Then a = 1 and b = e, therefore we have b < a

!

µ2

h3t =

d"1+ ecos"( )20

#

$ =1

1% e2( )3 / 22tan%1

1% e1+ e

tan#2

&

' (

)

* + %

e 1% e2 sin#1+ ecos#

,

- . .

/

0 1 1

Me = Mean anomaly for the ellipse

Page 50: Aerospace Astronautics

Time  versus  True  Anomaly  

!

µ2

h31" e2( )3 / 2 t = Me = 2tan"1

1" e1+ e

tan#2

$

% &

'

( ) "

e 1" e2 sin#1+ ecos#

*

+ , ,

-

. / /

Therefore we have

From the orbit period of an ellipse we know (or can derive) that

!

Tellipse =2"abh

=2"µ2

h1# e2

$

% &

'

( )

3

= 2" a3

µ

Therefore we can solve for me as function orbit period as

!

Me =2"Tellipse

t OR

!

Me = n t where n = mean motion = 2π/Te

Elliptical Orbits (0<e<1)

Page 51: Aerospace Astronautics

Time  versus  True  Anomaly  

!

Me = n t = 2tan"11" e1+ e

tan#2

$

% &

'

( ) "

e 1" e2 sin#1+ ecos#

*

+ , ,

-

. / /

We need to fine out Me still ?

Let’s introduce another variable E = eccentric anomaly

!

acosE = ae + rcos"

= ae +a 1# e2( )1+ ecos"

cos"

!

cosE =e + cos"1+ ecos"

Elliptical Orbits (0<e<1)

Page 52: Aerospace Astronautics

Time  versus  True  Anomaly  

!

cosE =e + cos"1+ ecos"

This relates E and θ, but it leaves the quadrant of the solution unknown and you get two values of E for the equation. To eliminate this ambiguity we use the following identity

!

sinE =1" e2 sin#1+ ecos#

OR

!

tan2E2

=sin2 E /2( )cos2 E /2( )

=1" cosE( ) /21+ cosE( ) /2

=1" cosE1+ cosE

tan2 E2

=1" e1+ e

1" cos#1+ cos#$

% &

'

( ) =1" e1+ e

tan2 #2

!

tan E2

=1" e1+ e

tan#2Therefore

!

E = 2tan"1 1" e1+ e

tan#2

$

% &

'

( ) or

Elliptical Orbits (0<e<1)

Page 53: Aerospace Astronautics

Time  versus  True  Anomaly  

!

Me = n t = 2tan"11" e1+ e

tan#2

$

% &

'

( ) "

e 1" e2 sin#1+ ecos#

*

+ , ,

-

. / /

We need to fine out Me still

E

!

esinE

!

Me = E " esinE

This is Kepler’s Equation

Elliptical Orbits (0<e<1)

Page 54: Aerospace Astronautics

To  find  t  given  Δθ  

•  Given  orbital  parameters,  find  e  and  h  (assume  θ  =  0  deg)  

•  Find  E:  

•  Find  T  (orbit  period):  

Time  versus  True  Anomaly  

!

h = µ rp 1+ e( )

!

tan E2

=1" e1+ e

tan#2

!

Telliptical = 2" a3

µ=2"µ2

h1# e2

$

% &

'

( )

3

Elliptical Orbits (0<e<1)

Page 55: Aerospace Astronautics

To  find  t  given  Δθ  

•  Fine  Me:  

•  Find  t:  

Time  versus  True  Anomaly  

!

t =Me

2"Telliptical

!

Me = E " esinE

Question: What if you are going from a θ = θa to θ = θb? Answer: Find the time from θ = 0 to θ = θa and the time from θ = 0 to θ = θb. Then subtract the differences.

Elliptical Orbits (0<e<1)

Page 56: Aerospace Astronautics

To  find  θ  given  Δt  

•  Given  orbital  parameters,  find  e  and  h  (assume  θ  =  0  deg  

•  Find  T  (orbit  period):      

•  Find  Me:  

•  Find  E  using  Newton’s  method  (or  a  transcendental  solver)  

Time  versus  True  Anomaly  

!

Telliptical = 2" a3

µ=2"µ2

h1# e2

$

% &

'

( )

3

!

Me = 2" t /Telliptical

!

Me = E " esinE

Elliptical Orbits (0<e<1)

Page 57: Aerospace Astronautics

To  find  θ  given  Δt  

•  Using  Newton’s  Method:  

–  Ini0alize  E  =  Eo:  

–  Find  f(E):  

–  Find  f’(E):  

–  If  abs(  f(E)  /  f’(E)  )  >  TOL,  then  repeat  with    

–  Else  Econverged  =  En  

Time  versus  True  Anomaly  

!

Ei+1 = Ei " f Ei( ) / f / Ei( )!

f E( ) = E " esinE "Me

!

f / E( ) =1" ecosE!

E0 = Me + e /2 or E0 = Me " e /2

Elliptical Orbits (0<e<1)

For Me < 180 deg For Me > 180 deg

Page 58: Aerospace Astronautics

To  find  θ  given  Δt  

•  A6er  finding  the  converged  E,  then  find  θ  

Time  versus  True  Anomaly  

!

tan E2

=1" e1+ e

tan#2

Elliptical Orbits (0<e<1)

Page 59: Aerospace Astronautics

Time  versus  True  Anomaly  

!

µ2

h3t =

d"1+ ecos"( )20

#

$

Parabolic Orbits (e = 1)

Then a = 1 and b = e, therefore we have b = a

!

µ2

h3t =

d"1+ ecos"( )20

#

$ =12tan

#2

+16tan3

#2

= MP

MP = Parabolic Mean Anomaly

Page 60: Aerospace Astronautics

Time  versus  True  Anomaly  Parabolic Orbits (e = 1)

!

16tan"2

#

$ %

&

' ( 3

+12tan"2)MP = 0

Thus given t or Δt we can find MP

!

MP =µ2

h3t

To fine θ we can find the root of the below equation

Which has one real root

!

tan"2

= 3MP + 9MP2 +1( )

1/ 3# 3MP + 9MP

2 +1( )#1/ 3

STEPS:  Find  h  Find  MP  Find  θ  

Page 61: Aerospace Astronautics

Time  versus  True  Anomaly  

!

µ2

h3t =

d"1+ ecos"( )20

#

$

Hyperbolic Orbits (e > 1)

Then a = 1 and b = e, therefore we have b > a

!

µ2

h3t =

1e2 "1

esin#1+ ecos#

"1e2 "1

lne +1 + e "1tan # /2( )e +1 " e "1tan # /2( )

$

% &

'

( )

*

+ , ,

-

. / /

Page 62: Aerospace Astronautics

Time  versus  True  Anomaly  Hyperbolic Orbits (e > 1)

!

Mh =e e2 "1sin#1+ ecos#

" lne +1 + e "1tan # /2( )e +1 " e "1tan # /2( )

$

% &

'

( )

Where the Hyperbolic mean anomaly is

Thus we have

!

Mh =µ2

h3e2 "1( )3 / 2 t

Similar with Ellipse we will intro a new variable, F, the hyperbolic eccentric anomaly to help solve for the Mean Hyperbolic anomaly, Mh.

Page 63: Aerospace Astronautics

Time  versus  True  Anomaly  Hyperbolic Orbits (e > 1)

!

sinhF = y /b and coshF = x /a

Hyperbolic eccentric anomaly for the Hyperbola

Since:

!

sinh x = ex " e"x( ) /2cosh x = ex + e"x( ) /2

y = rsin#

r =a e2 "1( )1+ ecos#

b = a e2 "1

Page 64: Aerospace Astronautics

Time  versus  True  Anomaly  Hyperbolic Orbits (e > 1)

!

sinhF =e2 "1sin#1+ ecos#We now have

Solving for F and since

!

sin" =2tan " /2( )1+ tan2 " /2( )

and cos" =1# tan2 " /2( )1+ tan2 " /2( )

!

sinh"1 x = ln x + x 2 +1( ) we now have

Using the following trig identities for sine and cosine

!

F = lne2 "1sin# + cos# + e

1+ ecos#

$

% & &

'

( ) )

Page 65: Aerospace Astronautics

Time  versus  True  Anomaly  Hyperbolic Orbits (e > 1)

We now have

!

F = ln e +1 + e "1tan # /2( )e +1 " e "1tan # /2( )

$

% &

'

( )

Therefore we now have:

!

Mh = esinhF " F

This is Kepler’s Equation for Hyperbola

Similar to Elliptical orbits we can solve for F as a function of θ, which is found to be. Thus given θ we can find F, and Mh, and finally t.

!

tanh F2

=e "1e +1

tanh#2

Page 66: Aerospace Astronautics

STEPS  TO  FIND  θ  (given  t)  •  Set  ini0al  F0  =  Mh  where    

•  Find  f  and  f’  

•  If  abs(  f  /  f’  )  >  TOL,  repeat  steps  with  updated  F  

•  Else,  Fconverged  =  Fi.    Now  find  θ      

Time  versus  True  Anomaly  Hyperbolic Orbits (e > 1)

If time, t, was given and θ is to be found then we have to solve for Kepler’s equation for hyperbola iteratively using Newton’s method

!

f F( ) = esinhF " F "Mh

!

f / F( ) = ecoshF "1

!

Fi+1 = Fi " f Fi( ) / f / Fi( )

!

Mh =µ2

h3e2 "1( )3 / 2 t

!

tanh"2

=e +1e #1

tanh F2

Page 67: Aerospace Astronautics

Universal  Variables  •  What  happens  if  you  don’t  know  what  type  of  orbit  you  are  

in?    Why  use  3  set  of  equa0ons?  

•  Kepler’s  equa0on  can  be  wricen  in  terms  of  a  universal  variable  or  universal  anomaly,  Χ,  and  Kepler’s  equa0on  becomes  the  universal  Kepler’s  equa4on.  

!

µ "t =r0vr0

µ#2 C $#2( ) + 1%$ r0( )#3 S $#2( ) + r0#

Where

!

" =1/aIf α < 0, then orbit is hyperbolic If α = 0, then orbit is parabolic If α > 0, then orbit is elliptical

Page 68: Aerospace Astronautics

Universal  Variables  

•  Stumpff  func0ons  

 or  for  z  =  αΧ2  

!

S z( ) =

z " sin z( ) z( )3

(z > 0)

sinh "z " "z( ) "z( )3(z < 0)

1/6 (z = 0)

#

$

% %

&

% %

!

C z( ) =

1" cos z( ) z (z > 0)

cosh "z "1( ) "z (z < 0)1/2 (z = 0)

#

$ % %

& % %

,

Page 69: Aerospace Astronautics

Universal  Variables  

•  To  use  Newton’s  method  we  need  to  define  the  following  func0on  and  it’s  deriva0ve  

•  Iterate  with  the  following  algorithm  

!

f / "( ) =r0vr0

µ" 1#$"2 S $"2( )[ ] + 1#$ r0( )"2 C $"2( ) + r0

!

f "( ) =r0vr0

µ"2 C #"2( ) + 1$# r0( )"3 S #"2( ) + r0"$ µ %t

!

"0 = µ # $twith

!

"i+1 = "i #f "( )f / "( )

Page 70: Aerospace Astronautics

Universal  Variables  

•  Rela0on  ship  between  X  and  the  orbits  

!

" =

h tan # /2( ) $ tan #0 /2( )( ) µ parabolaa E $ E0( ) ellipse$a F $ F0( ) hyperbola

%

& '

( '

!

" =

h tan # /2( ) µ parabolaaE ellipse$aF hyperbola

%

& '

( '

For t0 = 0 at periapsis

Page 71: Aerospace Astronautics

Universal  Variables  

•  Example  3.6  (Textbook:  Cur0s’s)  

Find h and e

!

h = µ r0 1+ ecos"0( ) = 63135 1+ 0.866e

v# 0 = h /r0 = 6.314 1+ 0.866e

vr0 =µhesin"0 = 3.16 e

1+ 0.866e

Since , then

!

v02 = v" 0

2 + vr02

!

3.16 e1+ 0.866e

"

# $

%

& ' 2

+ 6.314 1+ 0.866e( )2

=102

!

e =1.47

Page 72: Aerospace Astronautics

Universal  Variables  

•  Example  3.6  (Textbook:  Cur0s’s)  

Therefore

!

vr0 = 3.075 km2 /s

!

" =1a

=1

h2 /µ1# e2

=1

#19,655 km= #5.09E # 05 km#1

!

"0 = µ # $t =115.6

So X0 is the initial X to use for the Newton’s method to find the converged X

Page 73: Aerospace Astronautics

Universal  Variables  

•  Example  3.6  (Textbook:  Cur0s’s)  

Page 74: Aerospace Astronautics

Universal  Variables  

•  Example  3.6  (Textbook:  Cur0s’s)  

Thus we accept the X value of X = 128.5

!

" = #a F # F0( )

!

tanh F02

=e "1e +1

tan#02

= 0.1667

!

F0 = 0.23448 rad

where

!

"F =1.15

!

tanh"2

=e +1e #1

tan F2

=1.193

!

" =100°

Page 75: Aerospace Astronautics

Lagrange  Coefficients  II  •  Recall  Lagrange  Coefficients  in  terms  of  f  and  g  coefficients  

•  From  the  universal  anomaly  X  we  can  find  the  f  and  g  coefficients    

!

r = f r 0 + g v 0v = ˙ f r 0 + ˙ g v 0

!

f =1" #2

r0C $#2( )

g = %t " 1µ#3S $#2( )

!

˙ f =µ

r r0

"#3S "#2( ) $ #[ ]

˙ g =1$ #2

rC "#2( )

Page 76: Aerospace Astronautics

Lagrange  Coefficients  II  

!

vr0 =r 0 " v 0

r0and Where

!

" =1a

=2r0#v02

µ

•  Steps  finding  state  at  a  future  Δθ  using  Lagrange  Coefficients  

1.  Find  r0  and  v0  from  the  given  posi0on  and  velocity  vector  2.  Find  vr0  and  α  3.  Find  X  4.  Find  f  and  g  5.  Find  r,  where  r  =  f  r0  +  g  v0    6.  Find  fdot  and  gdot  7.  Find  v      

Page 77: Aerospace Astronautics

Lecture  05  and  06:    Two-­‐Body  Dynamics:    

Orbits  in  3D  

Chapter  4  

Page 78: Aerospace Astronautics

Introduc0ons  

•  So  far  we  have  focus  on  the  orbital  mechanics  of  a  spacecra6  in  2D.  

•  In  this  Chapter  we  will  now  move  to  3D  and  express  orbits  using  all  6  orbital  elements  

Page 79: Aerospace Astronautics

Geocentric  Equatorial  Frame  

!

r = X 2 +Y 2 + Z 2

" = sin#1 Z /r( )

$ =cos#1 X /r

cos"%

& '

(

) * (Y /r > 0)

2+ # cos#1 X /rcos"%

& '

(

) * (Y /r , 0)

-

. / /

0 / /

Page 80: Aerospace Astronautics

Orbital  Elements  

•  Classical  Orbital  Elements  are:  a  =  semi-­‐major  axis  (or  h  or  ε)  e  =  eccentricity  i  =  inclina0on  Ω  =  longitude  of  ascending  node  ω  =  argument  of  periapsis    θ  =  true  anomaly    

Page 81: Aerospace Astronautics

Orbital  Elements  

!

vr = r" v /r

h = r # v =

ˆ i ˆ j ˆ k X Y ZVx Vy Vz

n = ˆ k # h =

ˆ i ˆ j ˆ k 0 0 1hx hy hz

Page 82: Aerospace Astronautics

Orbital  Elements  

!

i = cos"1hzh

#

$ %

&

' (

!

" =cos#1

nxn

$

% &

'

( ) (ny * 0)

2+ # cos#1nxn

$

% &

'

( ) (ny < 0)

,

- . .

/ . .

!

e =1µ

v 2 "µr

#

$ %

&

' ( r " rvrv

)

* +

,

- . and e = e/ e or e = 1+

h2

µ2 v 2 "2µr

#

$ %

&

' ( !

" =cos#1

n$ ene

%

& '

(

) * (ez + 0)

2, # cos#1n$ ene

%

& '

(

) * (ez < 0)

-

. / /

0 / /

Page 83: Aerospace Astronautics

Orbital  Elements  

!

" =cos#1

e$ rer

%

& '

(

) * (vr + 0)

2, # cos#1e$ rer

%

& '

(

) * (vr < 0)

-

. / /

0 / /

=

cos#1 1eh2

µr#1

%

& '

(

) *

%

& '

(

) * (vr + 0)

2, # cos#1 1eh2

µr#1

%

& '

(

) *

%

& '

(

) * (vr < 0)

-

.

/ /

0

/ /

Page 84: Aerospace Astronautics

Coordinate  Transforma0on  •  Answers  the  ques0on  of  “what  are  the  parameters  in  another  coordinate  frame”  

Q

Transformation (or direction cosine)

matrix

x

y

z

x’

y’

z’

!

Q[ ]T Q[ ] = 1[ ] =

1 0 00 1 00 0 1

"

#

$ $ $

%

&

' ' '

Q is a orthogonal transformation matrix

!

Q[ ] Q[ ]T = 1[ ]

Page 85: Aerospace Astronautics

Coordinate  Transforma0on  

!

x '[ ] = Q[ ] x[ ]

x[ ] = Q[ ]T x'[ ]Where

!

Q[ ] =

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

"

#

$ $ $

%

&

' ' '

=

ˆ i / ( ˆ i ˆ i / ( ˆ j ˆ i / ( ˆ k ˆ j / ( ˆ i ˆ j / ( ˆ j ˆ j / ( ˆ k ˆ k / ( ˆ i ˆ k / ( ˆ j ˆ k / ( ˆ k

"

#

$ $ $

%

&

' ' '

And

Where is made up of rotations about the axis {a, b, or c} by the angle {θd, θe, and θf}

!

Q[ ] = Ra "d( )[ ] Rb " e( )[ ] Rc " f( )[ ]

1st rotation 2nd rotation 3rd rotation

Page 86: Aerospace Astronautics

Coordinate  Transforma0on  

!

Q[ ] = R3 "( )[ ] R1 #( )[ ] R3 $( )[ ]

For example the Euler angle sequence for rotation is the 3-1-3 rotation

!

0 " # < 360°( ) 0 " $ "180°( ) 0 " % < 360°( )

where you rotate by the angle α along the 3rd axis (usually z-axis), then by β along the 1st axis, and then by γ along the 3rd axis.

!

Q[ ]313 =

"sin# cos$sin% + cos# cos% cos# cos$sin% + sin# cos% sin$sin%"sin# cos$cos% " cos# sin% cos# cos$cos% " sin# sin% sin$cos%

sin# sin$ "cos# sin$ cos$

&

'

( ( (

)

*

+ + +

!

tan" =Q31

#Q32

cos$ =Q33 tan% =Q13Q23

Thus, the angles can be found from elements of Q

Page 87: Aerospace Astronautics

Coordinate  Transforma0on  Classic Euler Sequence from xyz to x’y’z’

Page 88: Aerospace Astronautics

Coordinate  Transforma0on  

!

Q[ ] = R1 "( )[ ] R2 #( )[ ] R3 $( )[ ]

For example the Yaw-Pitch-Roll sequence for rotation is the 1-2-3 rotation

!

0 " # < 360°( ) $90 < % < 90°( ) 0 " & < 360°( )

where you rotate by the angle α along the 3rd axis (usually z-axis), then by β along the 2nd axis, and then by γ along the 1st axis.

!

Q[ ]123 =

cos" cos# sin" cos# $sin#cos" sin#sin% $ sin" cos% sin" sin#sin% + cos" cos% cos#sin%cos" sin#cos% + sin" sin% sin" sin#cos% $ cos" sin% cos#cos%

&

'

( ( (

)

*

+ + +

!

tan" =Q12Q11

sin# = $Q13 tan% =Q23

Q33

Thus, the angles can be found from elements of Q

Page 89: Aerospace Astronautics

Coordinate  Transforma0on  Yaw, Pitch, and Roll Sequence from xyz to x’y’z’

Page 90: Aerospace Astronautics

Transforma0on  between  Geocentric  Equatorial  and  Perifocal  Frame  

Transferring between pqw frame and xyz

!

r{ }pqw =h2 /µ

1+ ecos"

cos"sin"0

#

$ %

& %

'

( %

) %

v{ }pqw =µh

*sin"e + cos"0

#

$ %

& %

'

( %

) %

!

Q[ ]xyz" pqw = R3 #( )[ ] R1 $( )[ ] R3 %( )[ ] = R3 &( )[ ] R1 i( )[ ] R3 '( )[ ]

Transformation from geocentric equatorial to perifocal frame

Page 91: Aerospace Astronautics

Transforma0on  between  Geocentric  Equatorial  and  Perifocal  Frame  

Transformation from perifocal to geocentric equatorial frame is then

Therefore

!

Q[ ]pqw" xyz = Q[ ]xyz" pqwT

!

r{ }xyz = Q[ ]xyz" pqwT r{ }pqw

v{ }xyz = Q[ ]xyz" pqwT v{ }pqw

!

r{ }pqw= Q[ ]xyz" pqw r{ }xyz

v{ }pqw= Q[ ]xyz" pqw v{ }xyz

!

Q[ ]xyz" pqw =

cos# sin# 0$sin# cos# 00 0 1

%

&

' ' '

(

)

* * *

1 0 00 cosi sini0 $sini cosi

%

&

' ' '

(

)

* * *

cos+ sin+ 0$sin+ cos+ 00 0 1

%

&

' ' '

(

)

* * *

Page 92: Aerospace Astronautics

Perturba0on  to  Orbits  

•  Planets  are  not  perfect  spheres  Oblateness

!

oblateness =Req " Rpole

Req

Page 93: Aerospace Astronautics

Perturba0on  to  Orbits  Oblateness

!

˙ r = " µr3 r + p

!

p = pr ˆ u r + pt ˆ u t + phˆ h

!

pr = "1.5 µr2J2

Rr

#

$ %

&

' ( 2

1" 3sin2 i( ) sin2 ) +*( )[ ]

pt = "1.5 µr2J2

Rr

#

$ %

&

' ( 2

sin2 i( ) sin2 2 ) +*( )( )

ph = "1.5 µr2J2

Rr

#

$ %

&

' ( 2

sin 2i( ) sin2 ) +*( )

Page 94: Aerospace Astronautics

Perturba0on  to  Orbits  Oblateness

Page 95: Aerospace Astronautics

Perturba0on  to  Orbits  Oblateness

!

˙ " = #1.5µa7

J2R2

1# e2( )2

$

%

& &

'

(

) ) cosi

!

if 0 " i < 90°( ) # ˙ $ < 0

if 90° < i "180°( ) # ˙ $ > 0

Page 96: Aerospace Astronautics

Perturba0on  to  Orbits  Oblateness

!

˙ " = #1.5µa7

J2R2

1# e2( )2

$

%

& &

'

(

) )

52

sin2 i # 2$

% &

'

( )

= ˙ * 5 /2( )sin2 i # 2

cosi$

% &

'

( )

!

if 0 " i < 63.4°( ) or 116.6 < i "180°( ) # ˙ $ > 0

if 63.4° < i "116.6°( ) # ˙ $ < 0

Page 97: Aerospace Astronautics

Sun-­‐Synchronous  Orbits  Orbits where the orbit plane is at a fix angle α from the Sun-planet line

Thus the orbit plane must rotate 360° per year (365.25 days) or 0.9856°/day

!

˙ " SunSync =2#$ rad

365.25$ 86400$ sec˙ " SunSync =1.991E % 07 rad /s

Page 98: Aerospace Astronautics

Finding  State  of  S/C  w/Oblateness  •  Given:  Ini0al  State  Vector  •  Find:  State  a6er  Δt  assuming  oblateness  (J2)  

•  Steps  finding  updated  state  at  a  future  Δt  assuming  perturba0on  

1.  Compute  the  orbital  elements  of  the  state  2.  Find  the  orbit  period,  T,  and  mean  mo0on,  n  3.  Find  the  eccentric  anomaly  4.  Calculate  0me  since  periapsis  passage,  t,  using  Kepler’s  equa0on  

!

Me = nt = E " esinE

Page 99: Aerospace Astronautics

Finding  State  of  S/C  w/Oblateness  5.  Calculate  new  0me  as  tf  =  t  +  Δt  6.  Find  the  number  of  orbit  periods  elapsed  since  original  periapsis  passage  

7.  Find  the  0me  since  periapsis  passage  for  the  final  orbit  

8.  Find  the  new  mean  anomaly  for  orbit  n    

9.  Use  Newton’s  method  and  Kepler’s  equa0on  to  find  the  Eccentric  anomaly  (See  slide  57)  

!

np = t f /T

!

torbit _ n = np " floor np( )[ ] T

!

Me )orbit _ n = n torbit _ n

Page 100: Aerospace Astronautics

Finding  State  of  S/C  w/Oblateness  10.  Find  the  new  true  anomaly  

11.  Find  posi0on  and  velocity  in  the  perifocal  frame  

!

r{ }pqw =h2 /µ

1+ ecos"

cos"sin"0

#

$ %

& %

'

( %

) %

v{ }pqw =µh

*sin"e + cos"0

#

$ %

& %

'

( %

) %

!

tan"orbit _ n2

=1+ e1# e

tanEorbit _ n

2

Page 101: Aerospace Astronautics

Finding  State  of  S/C  w/Oblateness  12.  Compute the rate of the ascending node

13.  Compute the new ascending node for orbit n

14.  Find the argument of periapsis rate

15.  Find the new argument of periapsis

!

"orbit _ n ="0 + ˙ " #t

!

" orbit _ n =" 0 + ˙ " #t

!

˙ " = #1.5µa7

J2R2

1# e2( )2

$

%

& &

'

(

) ) cosi

!

˙ " = ˙ # 5 /2( )sin2 i $ 2

cosi%

& '

(

) *

Page 102: Aerospace Astronautics

Finding  State  of  S/C  w/Oblateness  16.  Compute the transformation matrix [Q] using the inclination, the

UPDATED argument of periapsis, and the UPDATED longitude of ascending node

17.  Find the r and v in the geocentric frame

!

r{ }xyz = Q[ ]pqw" xyz r{ }pqw

v{ }xyz = Q[ ]pqe" xyz v{ }pqw

!

Q[ ]pqw" xyz =

#sin $( )cos i( )sin %( ) + cos $( )cos %( ) #sin $( )cos i( )cos %( ) # cos $( )sin %( ) sin $( )sin i( )cos $( )cos i( )sin %( ) + sin $( )cos %( ) cos $( )cos i( )cos %( ) # sin $( )sin %( ) #cos $( )sin i( )

sin i( )sin %( ) sin i( )cos %( ) sin i( )

&

'

( ( (

)

*

+ + +

Page 103: Aerospace Astronautics

Ground  Tracks  Projection of a satellite’s orbit on the planet’s surface

Page 104: Aerospace Astronautics

Ground  Tracks  Projection of a satellite’s orbit on the planet’s surface

!

"E #15.04 deg/hr

Page 105: Aerospace Astronautics

Ground  Tracks  Projection of a satellite’s orbit on the planet’s surface

Ground Tracks reveal the orbit period

!

T ="LONequator deg15.04 deg/hr

Ground Tracks reveal the orbit inclination

!

i = LATmax ormin

If the argument of perispais, ω, is zero, then the shape below and above the equator are the same.

Page 106: Aerospace Astronautics

Lecture  07:    Preliminary  Orbit  Determina0on  

Chapter  5  

Page 107: Aerospace Astronautics

Introduc0ons  

•  This  chapter  only  covers  the  basic  concept  of  determining  an  orbit  from  some  observa0on  

•  In  prac0ce,  this  is  not  referred  to  as  orbit  determina0on  

•  Space  OD  is  actually  a  sta0s0cal  es0ma0on  or  filtering  method  (example:  Kalman  Filter)  

•  We  will  only  cover  Lambert’s  problem  (Sec0on  5.3)  from  this  Chapter  

Page 108: Aerospace Astronautics

Lambert’s  Problem  

•  Given  2  posi0ons  on  an  orbit  r1  and  r2  and  Δt,  what  are  the  veloci0es  at  those  two  points,  v1  and  v2.  

Page 109: Aerospace Astronautics

Lambert  Fit  •  Steps  to  find  v1  and  v2:  

1.  Find  the  magnitude  of  r1  and  r2  2.  Decide  if  the  orbit  is  prograde  or  retrograde  

3.  Compute  the  following  

4.  Compute  Δθ  

!

r1 " r2( )z= r1 " r2( )# ˆ k

!

"# =

cos$1 r1 % r2r1 r2

&

' ( (

)

* + + if r1 , r2( )Z - 0

2. $ cos$1r1 % r2r1 r2

&

' ( (

)

* + + if r1 , r2( )Z < 0

/

0

1 1

2

1 1

!

"# =

cos$1 r1 % r2r1 r2

&

' ( (

)

* + + if r1 , r2( )Z < 0

2- $ cos$1r1 % r2r1 r2

&

' ( (

)

* + + if r1 , r2( )Z . 0

/

0

1 1

2

1 1

for prograde for retrograde

Page 110: Aerospace Astronautics

Lambert  Fit  5.  Compute  the  func0on  

6.  Find  z  by  itera0ng  using  Newton’s  method  un0l  convergence  

 you  can  start  with  z0  =  0  (or  posi0ve  z0  if  an  ellip0cal  orbit),  where    

!

A = sin"#r1 r2

1$ cos"#

!

zi+1 = zi "F zi( )F ' zi( )

!

F z( ) =y z( )C z( )"

# $

%

& '

3 / 2

S z( ) + A y z( ) ( µ)t

!

F / z( ) =

y z( )C z( )"

# $

%

& '

3 / 2 C z( ) ( 3S z( )2C z( )2z

+3S z( )2

4C z( )

"

#

$ $ $ $

%

&

' ' ' '

+A83 S z( )C z( )

y z( ) + A C z( )y z( )

"

# $ $

%

& ' '

if z ) 0

240

y 0( )3 / 2 +A8

y 0( ) + A 12y 0( )

"

# $

%

& ' if z = 0

*

+

, , ,

-

, , ,

Page 111: Aerospace Astronautics

Lambert  Fit    where  

               7.  Note:  the  sign  of  the  converged  z  tells  you  the  orbit  type:  

z < 0 à Hyperbolic Orbit z = 0 à Parabolic Orbit z > 0 à Elliptical Orbit

!

y z( ) = r1 + r2 + Az S z( ) "1C z( )

#

$ % %

&

' ( (

!

S z( ) =

z " sin zz3 if z > 0

sinh "z " "z"z

3 if z < 0

16

if z = 0

#

$

% % % %

&

% % % %

!

C z( ) =

1" cos zz

if z > 0

cosh "z "1"z

if z < 0

12

if z = 0

#

$

% % % %

&

% % % %

Page 112: Aerospace Astronautics

Lambert  Fit  8.  Compute  the  func0on  y(z)  using  the  converged  z  

9.  Compute  f,  g,  fdot,  gdot  

10.  Compute  

!

y z( ) = r1 + r2 + Az S z( ) "1C z( )

#

$ % %

&

' ( (

!

f =1" y z( )r1

; ˙ f =µ

r1 r2

y z( )C z( )

z S z( ) "1[ ]

g = A y z( )µ

; ˙ g =1" y z( )r2

!

v1 =1gr2 " f r1( ); v2 =

1g

˙ g r2 " r1( )

Page 113: Aerospace Astronautics

Lecture  08  and  10:    Orbital  Maneuvers  

Chapter  6  

Page 114: Aerospace Astronautics

Maneuvers  

•  We  assume  our  maneuvers  are  “instantaneous”    •  ΔV  changes  can  be  applied  by  changing  the  magnitude  “pump”  or  by  changing  the  direc0on  “crank”  

•  Rocket  equa0on:  rela0ng  ΔV  and  change  in  mass  

 where  g0  =  9.806  m/s2      

⎟⎟⎠

⎞⎜⎜⎝

⎛=Δ

final

initialSP m

mIgV ln0

⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ=

SP

initialfinal

IgV

mm

0

expor

Page 115: Aerospace Astronautics

Isp  •  Isp  is  the  specific  impulse  (units  of  seconds)  and  measures  the  performance  of  the  rocket    

Page 116: Aerospace Astronautics

ΔV  •  ΔV  (“delta”-­‐V)  represents  the  instantaneous  change  in  

velocity  (from  current  velocity  to  the  desired  velocity).  

12 VV −=ΔVCircular Orbit Velocity

Elliptical Orbit Velocity

RVC

µ=

⎟⎠

⎞⎜⎝

⎛ −=aR

VE12

µ

Page 117: Aerospace Astronautics

Tangent  Burns  

Your Spacecraft

Your Initial Orbit

R1

•  Ini0ally  you  are  in  a  circular  orbit  with  radius  R1  around  Earth  

11 R

VCµ

=

Page 118: Aerospace Astronautics

Tangent  Burns  

ΔV Your new orbit after the ΔV burn

R1 R2

•  Ini0ally  you  are  in  a  circular  orbit  with  radius  R1  around  Earth  

 •  You  perform  a  burn  now  which  

puts  in  into  the  red-­‐doced  orbit.    So  you  perform  a  ΔV.  

11 R

VCµ

=

11 CE VVV −=Δ

Page 119: Aerospace Astronautics

Tangent  Burns  

R1 R2

•  Ini0ally  you  are  in  a  circular  orbit  with  radius  R1  around  Earth  

 •  You  perform  a  burn  now  which  

puts  in  into  the  red-­‐doced  orbit.    So  you  perform  a  ΔV.  

!V = VE1"VC1

where

VE1= µ

2R1

"1a

#

$%

&

'( and a = 1

2R1 + R2( )

11 R

VCµ

=

Page 120: Aerospace Astronautics

Hohmann  Transfer  

⎟⎟⎠

⎞⎜⎜⎝

+−=Δ

⎟⎟⎠

⎞⎜⎜⎝

⎛−

+=Δ

Δ+Δ=Δ

21

1

22

21

2

11

21

21

12

RRR

RV

RRR

RV

VVV

µ

µ

ΔV1

R1 R2

ΔV2

The most efficient 2-burnmaneuver to transfer between 2 co-planar circular orbit

µπ

3

21 aPTOF ==

Page 121: Aerospace Astronautics

Hohmann  Transfer  (non-­‐circular)  

•  Another  way  to  view  it  is  using  angular  momentum  

h = 2µrarpra + rp

!

"##

$

%&&

!Vtotal _3 = !VA +!VB!Vtotal _3' = !VA ' +!VB '

Page 122: Aerospace Astronautics

Hohmann  Transfer  (non-­‐circular)  

h1 = 2µ rArA 'rA + rA '

!

"#

$

%&

h2 = 2µ rBrB 'rB + rB '

!

"#

$

%&

h3 = 2µ rArBrA + rB

!

"#

$

%&

h3' = 2µ rA 'rB 'rA ' + rB '

!

"#

$

%&

VA 1 = h1 / rAVB 1 = h2 / rBVA ' 1 = h1 / rA 'VB ' 1 = h2 / rB '

VA 3= h3 / rA

VB 3= h3 / rB

VA ' 3' = h3' / rA 'VB ' 3' = h3' / rB '

!VA = abs VA 3"VA 1( )

!VA ' = abs VA ' 3 "VA ' 1( )!VB = abs VB 2

"VB 3( )!VB ' = abs VB ' 2 "VB ' 3'( )

Page 123: Aerospace Astronautics

Bi-­‐Ellip0c  Transfer  

Page 124: Aerospace Astronautics

Bi-­‐Ellip0c  Transfer  If rc/ra < 11.94 then Hohmann is more efficient If rc/ra > 15.58 then Bi-Elliptic is more efficient

Page 125: Aerospace Astronautics

Non-­‐Hohmann  Transfers  w/Common  Line  of  Aspides  

Page 126: Aerospace Astronautics

Non-­‐Hohmann  Transfers  w/Common  Line  of  Aspides  

etransfer = !rA ! rB

rA cos!A ! rB cos!B

htransfer = µrArBcos!A ! cos!B

rA cos!A ! rB cos!B

"

#$

%

&'

!VA = V12 +Vtrans

2 " 2V1Vtrans cos!!A

A

tan! = !vr@A

!v"@A

=vr@A orbit2

# vr@A orbit1

v"@A orbit2# v"@A orbit1

Page 127: Aerospace Astronautics

Non-­‐Hohmann  Transfers  w/Common  Line  of  Aspides  

!1 = tan!1 µ / h1( )e1 sin!1

h1 / rA

"

#$

%

&'

" trans = tan!1 µ / htrans( )etrans sin!1

htrans / rA

"

#$

%

&'

!!A = ! trans "!1( )@A

! i = tan"1 VrV#

$

%&

'

()i @A

!VA = V12 +Vtrans

2 " 2V1Vtrans cos!!A

Page 128: Aerospace Astronautics

Apse  Line  Rota0on  Opportunity to transfer from one orbit to another using a single maneuver

occurs at intersection points of the orbits

! ="1 !"2

Apse Line Rotation Angle

rorbit1@I = rorbit2@I

h12 /µ

1+ e1 cos!1=

h22 /µ

1+ e2 cos!2

NOTE:

Page 129: Aerospace Astronautics

Apse  Line  Rota0on  Opportunity to transfer from one orbit to another using a single maneuver

occurs at intersection points of the orbits

!2 =!1 !"Setting and using the following identity

cos !1 !"( ) = cos!1 cos" + sin!1 sin"

Then has two solution corresponding to point I and J !1

!1 =" ± cos!1 h1

2 ! h22

e1h22 ! e2h1

2 cos#cos"

"

#$

%

&'

" = tan!1 !e2h12 sin#

e1h22 ! e2h1

2 cos#"

#$

%

&'

Page 130: Aerospace Astronautics

Apse  Line  Rota0on  Opportunity to transfer from one orbit to another using a single maneuver

occurs at intersection points of the orbits

Given the orbit information of the two orbits Next, compute r, v!i, vri, ! i using "1 and "2 ="1 "#

r = h12 /µ

1+ e1 cos!1v!1 = h1 / rvr1 = µ / h1( )e1 sin!1"1 = tan

"1 vr1 / v!1( )

v1 = vr12 + v!1

2

v!2 = h2 / rvr2 = µ / h2( )e2 sin!2"2 = tan

"1 vr2 / v!2( )

v2 = vr22 + v!2

2

#v = v12 + v2

2 " 2v1v2 cos !2 "!1( )

Page 131: Aerospace Astronautics

Apse  Line  Rota0on  Opportunity to transfer from one orbit to another using a single maneuver

occurs at intersection points of the orbits

tan! = !vr@I

!v"@I

=vr@I orbit2

# vr@I orbit1

v"@I orbit2# v"@I orbit1

If you want to find the effect of a !v on orbit 1 at !1

tan!2 =v!1 +"v!( ) vr1 +"vr( )

v!1 +"v!( )2 e1 cos!1 + 2v!1 +"v!( )"v!v!12

µ / r( )

If !1 = vr = !v" = 0 then tan! = ! rv"1µe1

#vr (at periapsis)

Page 132: Aerospace Astronautics

Apse  Line  Rota0on  Opportunity to transfer from one orbit to another using a single maneuver

occurs at intersection points of the orbits

Another useful equation:

e2 =h1 + r1!v"( )2 e1 cos!1 + 2h1 + r1!v"( )r1!v"

h12 cos!2

Page 133: Aerospace Astronautics

Plane  Change  Maneuvers  In general a plane change maneuver changes the orbit plane

!

v1

v2

!v = v2 " v1 = vr2 " vr1( ) ur + v#2u#2 " v#1u#1!v = !v " !v

!v = vr2 # vr1( )2 + v$12 + v$12 # 2v$2v$1 cos!

or

!v = v122 + v2

2 " 2v1v2 cos!! " cos!1 cos!2 1" cos"( )#$ %&

where !! = !2 "!1

Page 134: Aerospace Astronautics

Plane  Change  Maneuvers  In general a plane change maneuver changes the orbit plane

!v = v122 + v2

2 " 2v1v2 cos!!

If there is no plane change, then ! = 0

and we get the same equation as from slide 130.

If then vr1 = vr2 = 0 and v!1 = v1 and v!2 = v2

!v = v122 + v2

2 " 2v1v2 cos!

No plane change

Pure plane change (common line of apisdes)

Page 135: Aerospace Astronautics

Plane  Change  !vPC = 2vC sin

!2"

#$%

&'= 2vC sin

!i2

"

#$

%

&'

Pure plane change (circular to circular)

!v(a) = v2 " v1( )2 + 4v1v2 sin2 ! / 2( )

!v(b) = 2v1 sin ! / 2( )+ v2 " v1 !v(c) = v2 " v1 + 2v2 sin ! / 2( )

Page 136: Aerospace Astronautics

Rendezvous  Catching a moving target: Hohmann transfer assume the target will be there

independent of time, but for rendezvousing the target body is always moving.

target

spacecraft

TIME = 0

φ0

motionmean

where

32

2

20

≡=

⋅−=

an

TOFn

µ

πφΔV

Page 137: Aerospace Astronautics

Rendezvous  

target

spacecraft

TIME = TOF

φ0

motionmean

where

3target

target

target0

≡=

⋅−=

an

TOFn

µ

πφΔV

Catching a moving target: Hohmann transfer assume the target will be there independent of time, but for rendezvousing the target body is always moving.

Page 138: Aerospace Astronautics

Wait  Time  (WT)  How long do you wait before you can perform (or initiate) the transfer?

target

spacecraft

TIME = -WT

φ0

scnnW

−=

target

0-T φφ

φ

ΔV

Page 139: Aerospace Astronautics

Co-­‐orbital  Rendezvous  

target

spacecraft

Chasing your tail

φ0

ΔV

Reverse thrust to speed up

Forward thrust to

slow down

Phasing orbit size

3/12

target

initialphasing 2

2⎥⎥

⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

−=

na

πφπ

µ

Page 140: Aerospace Astronautics

Patched-­‐Conic  An approximation breaks the interplanetary trajectory into

regions where conic approximation is applicable

Sphere of Influence 5/2

⎟⎟⎠

⎞⎜⎜⎝

⎛=

Sun

planetplanetSOI m

maR

Page 141: Aerospace Astronautics

Patched-­‐Conic  An approximation breaks the interplanetary trajectory into

regions where conic approximation is applicable

•  Computational Steps –  PATCH 1: Compute the Hohmann transfer ΔVs –  PATCH 2: Compute the Launch portion –  PATCH 3: Compute the Arrival portion

•  PATCH 1 –  The ΔV1 from the interplanetary Hohmann is V∞ at Earth –  The ΔV2 from the interplanetary Hohmann is V∞ at target

body arrival

Page 142: Aerospace Astronautics

Patched-­‐Conic  An approximation breaks the interplanetary trajectory into

regions where conic approximation is applicable

ΔVDEP

VEarth V∞ @Earth

RC@DEP DEP

DEP

DEP

DEP

C

DEPC

C

departureCDEP

RV

VV

VV

µ=

⎥⎥⎥

⎢⎢⎢

⎡−⎟

⎟⎠

⎞⎜⎜⎝

⎛+=Δ ∞

where

12 2

@

Earth Departure (assume circular orbit)

RSOI

Page 143: Aerospace Astronautics

Patched-­‐Conic  An approximation breaks the interplanetary trajectory into

regions where conic approximation is applicable

ΔVCAP

VMars V∞ @Mars

RC@CAP

CAP

CAP

CAP

CAP

C

CAPC

C

arrivalCCAP

RV

VV

VV

µ=

⎥⎥⎥

⎢⎢⎢

⎡−⎟

⎟⎠

⎞⎜⎜⎝

⎛+=Δ ∞

where

12 2

@

Target Body Capture (assume circular orbit)

RSOI

Page 144: Aerospace Astronautics

Patched-­‐Conic  An approximation breaks the interplanetary trajectory into

regions where conic approximation is applicable

CAPDEPMISSION VVV Δ+Δ=Δ

Total Mission ΔV for a simple 2 burn transfer

ΔVCAP

ΔVDEP

Page 145: Aerospace Astronautics

Planetary  Flyby  

•  Gravity-­‐assists  or  flybys  are  used  to  –  Reduce  or  increase  the  heliocentric  (wrt.  Sun)  energy  of  the  spacecra6  

(orbit  pumping),  or  –  Change  the  heliocentric  orbit  plane  of  the  spacecra6  (orbit  cranking),  

or  both  

Getting a boost

Page 146: Aerospace Astronautics

Planetary  Flyby  Getting a boost

Page 147: Aerospace Astronautics

Planetary  Flyby  Getting a boost

Page 148: Aerospace Astronautics

Planetary  Flyby  Getting a boost

Stationary Jupiter Moving Jupiter

Page 149: Aerospace Astronautics

Planetary  Flyby  Getting a boost

Vplanet

Fg Fg

Decrease energy wrt. Sun Increases energy wrt. Sun

Page 150: Aerospace Astronautics

Planetary  Flyby  

•  V∞  leveraging  is  the  use  of  deep  space  maneuvers  to  modify  the  V∞  at  a  body.    A  typical  example  is  an  Earth  launch,  ΔV  maneuver  (usually  near  apoapsis),  followed  by  an  Earth  gravity  assist  (ΔV-­‐EGA).  

Getting a boost

ΔV

If no maneuver

post maneuver

Page 151: Aerospace Astronautics

Lecture  11and  12:    Rela0ve  Mo0on  

Chapter  7  

Page 152: Aerospace Astronautics

Rela0ve  Mo0on  and  Rendezvous  

•  In  this  chapter  we  will  look  at  the  rela0ve  dynamics  between  2  objects  or  2  moving  coordinate  frames,  especially  in  close  proximity  

•  We  will  also  look  at  the  linearized  mo0on,  which  leads  to  the  Clohessy-­‐Wiltshire  (CW)  equa4ons  

Page 153: Aerospace Astronautics

Co-­‐Moving  LVLH  Frame  (7.2)  

Local Vertical Local Horizontal (LVLH) Frame i = rA

rA, j= k! i, k = hA

hA

TARGET

CHASER (or observer)

Page 154: Aerospace Astronautics

•  The  target  frame  is  moving  at  an  angular  rate  of  Ω  

 where          and    

•  Chapter  1:  Rela0ve  mo0on  in  the  INERTIAL  (XYZ)  frame  

Co-­‐Moving  LVLH  Frame  

hA = rA ! vA = rAvA"k = rA2# k = rA

2!

! =rA ! vArA2

!! = hAddt

1rA2

!

"#

$

%&= '2

vA ( rArA2 !

rrel = rB ! rAvrel = vB ! vA !! " rrelarel = aB ! aA ! !! " rrel !! " ! " rrel( )! 2! " vrel

Page 155: Aerospace Astronautics

•  We  need  to  find  the  mo0on  in  the  non-­‐iner4al  rota0ng  frame  

   where  Q  is  the  rota0ng  matrix  from  

Co-­‐Moving  LVLH  Frame  

rrel _ rot =Qiner _ to_ rot rrel _ inervrel _ rot =Qiner _ to_ rot vrel _ inerarel _ rot =Qiner _ to_ rot arel _ iner

Qiner _ to_ rot =

ij

k

!

"

####

$

%

&&&&

=

rA / rAk' ihA / hA

!

"

####

$

%

&&&&

Page 156: Aerospace Astronautics

•  Steps  to  find  the  rela0ve  state  given  the  iner0al  state  of  A  and  B.  

Co-­‐Moving  LVLH  Frame  

1.  Compute the angular momentum of A, hA

2.  Compute the unit vectors

3.  Compute the rotating matrix Q

4.  Compute

5.  Compute the inertial acceleration of A and B

i, j, and k

! and !!

aA = !µ rA / rA3, and aB = !µ rB / rB

3

Page 157: Aerospace Astronautics

•  Steps  to  find  the  rela0ve  state  given  the  iner0al  state  of  A  and  B.  

Co-­‐Moving  LVLH  Frame  

6.  Compute the relative state in inertial space

7.  Compute the relative state in the rotating coordinate system

rrel _ rot =Qiner _ to_ rot rrel _ inervrel _ rot =Qiner _ to_ rot vrel _ inerarel _ rot =Qiner _ to_ rot arel _ iner

Page 158: Aerospace Astronautics

Co-­‐Moving  LVLH  Frame  

Rotating Frame

Page 159: Aerospace Astronautics

Lineariza0on  of  the  EOM  (7.3)  

r =R+!r

!r / R <<1

!!!r = ! !!R!µ R+!rR+!r 3

!!!r = ! µR3

!r! 3R2

R "!r( ) R#

$%&

'(

neglecting higher order terms

Page 160: Aerospace Astronautics

Lineariza0on  of  the  EOM  

!!!r = ! µR3

!2 !x!y!z

"

#

$$$

%

&

'''= !!rB ! !!rA = aB ! aA

Assuming R = R i

Acceleration of B relative to A in the inertial frame

!arel = !!!r! !! "!r!! " ! "!r( )! 2! "!vrel

! =hR2k !! = !

2 V "R( )hR4

k

Page 161: Aerospace Astronautics

Lineariza0on  of  the  EOM  

After further simplification we get the following EOM

!!!x ! 2µR3

+h2

R4"

#$

%

&'!x +

2 V (R( )hR4

!y! 2hR2! !y = 0

!!!y+ µR3

!h2

R4"

#$

%

&'!y!

2 V (R( )hR4

!x + 2hR2! !x = 0

!!!z + µR3!z = 0

Thus, given some initial state R0 and V0 we can integrate the above EOM (makes no assumption on the orbit type)

Page 162: Aerospace Astronautics

Lineariza0on  of  the  EOM  

e = 0.1

e = 0

Page 163: Aerospace Astronautics

Clohessy-­‐Whiltshire  (CW)  Equa0ons  (7.4)  

Assuming circular orbits: Then EOM becomes

!!!x !3n2!x ! 2n ! !y = 0!!!y+ 2n ! !x = 0!!!z + n2!z = 0

where

V !R( ) = 0 and h = µR

n = µR3

=V / R

Page 164: Aerospace Astronautics

Clohessy-­‐Whiltshire  (CW)  Equa0ons  

Where the solution to the CW Equations are:

!x = 4!x0 +2n! !y0 +

1n! !x0 sin nt( )! 3!x0 +

2n! !y0

"

#$

%

&'cos nt( )

!y = !y0 !2n! !x0 !3 2n !x0 +! !y0( ) t + 2 3!x0 + 2n! !y0

"

#$

%

&'sin nt( )+ 2

n! !x0 cos nt( )

!z = 1n! !z0 sin nt( )+!z0 cos nt( )

Page 165: Aerospace Astronautics

Maneuvers  in  the  CW  Frame  (7.5)  The position and velocity can be written as where

!r t( ) =!rr!r0 +!rv!v0!v t( ) =!vr!r0 +!vv!v0

!rr =

4"3cos nt( ) 0 0

6 sin nt( )" nt( ) 1 0

0 0 cos nt( )

#

$

%%%%

&

'

((((

!rv =

1/ n( )sin nt( ) 2 / n( ) 1" cos nt( )( ) 0

2 / n( ) cos nt( )"1( ) 1/ n( ) 4sin nt( )"3nt( ) 0

0 0 1/ n( )sin nt( )

#

$

%%%%%

&

'

(((((

Page 166: Aerospace Astronautics

Maneuvers  in  the  CW  Frame  

!vv =

cos nt( ) 2sin nt( ) 0

"2sin nt( ) 4cos nt( )"3 0

0 0 cos nt( )

#

$

%%%%

&

'

((((

!vr =

3nsin nt( ) 0 0

6n cos nt( )"1( ) 0 0

0 0 "nsin nt( )

#

$

%%%%

&

'

((((

and

Page 167: Aerospace Astronautics

Maneuvers  in  the  CW  Frame  

Two-Impulse Rendezvous: from Point B to Point A

Page 168: Aerospace Astronautics

Maneuvers  in  the  CW  Frame  Two-Impulse Rendezvous: from Point B to Point A where

where is the relative velocity in the Rotating frame, i.e., If the target and s/c are in the same circular orbits then

!v = !v@B t = 0( ) + !v@A t = t f( )

!v@B = " #rv t f( )$% &'"1#rr t f( )$% &'( )!r0 "!v0"

!v@A = "vr t f( )#$ %&' "vv t f( )#$ %& "rv t f( )#$ %&'1"rr t f( )#$ %&( )!r0

!v0!

!v0! =Qinertial _ to_ rotating!v =QXx vs/c ! vtar !! tar!r( )

!v0! = 0

Page 169: Aerospace Astronautics

Maneuvers  in  the  CW  Frame  Two-Impulse Rendezvous example:

Page 170: Aerospace Astronautics

Lecture  13:    Rigid  Body  Dynamics  Aytude  Dynamics  

Chapter  9-­‐10  

Page 171: Aerospace Astronautics

Rigid  Body  Mo0on  RB =RA +RB/A

RB/A = constant

vB = vA +! !RB/A

Note:

dRB/A / dt =! !RB/A

aB = aA +! !RB/A +! ! ! !RB/A( )

Position, Velocity, and Acceleration of points on a rigid body, measure in the same inertial frame of reference.

Page 172: Aerospace Astronautics

Angular  Velocity/Accelera0on  

•  When  the  rigid  body  is  connected  to  and  moving  rela0ve  to  another  rigid  body,  (example:  solar  panels  on  a  rota0ng  s/c)  computa0on  of  its  iner0al  angular  velocity  (ω)  and  the  angular  accelera0on  (α)  must  be  done  with  care.    

•  Let  Ω  be  the  iner0al  angular  velocity  of  the  rigid  body        

! =d"dt

+! !"

Note: if ! =d"dt

! =!

Page 173: Aerospace Astronautics

Example  9.2  

Angular Velocity of Body

! = N k

Angular Velocity of Panel

! = ! !! j + N k

rA/O = !w2sin! i + d j + w

2cos! k

vA/O =! ! rA/O = "w2!! cos! + Nd

#

$%

&

'( i "

w2N sin! j " w

2!! sin! k

Page 174: Aerospace Astronautics

Example  9.2  (con0nues)  

aA/O =! ! rA/O +! ! ! ! rA/O( )

aA/O =w2N 2 + !! 2( )sin! i ! N Nd +w !! cos!( ) j ! w

2!! 2 cos! k

! =d"dt

+! !! =ddt

" !! j + N k( )+ N k( )! " !! j + N k( ) = !!N i

0

Page 175: Aerospace Astronautics

Example:  Gimbal  

! = !! k + N sin! j + N cos! k

!rotor = !! i + N sin! j + N cos! +"spin( ) k

Page 176: Aerospace Astronautics

Equa0ons  of  Mo0on  

•  Dynamics  are  divided  to  transla0onal  and  rota0onal  dynamics  

Translational:

Ftrans =m !!RG

Page 177: Aerospace Astronautics

Equa0ons  of  Mo0on  

•  Dynamics  are  divided  to  transla0onal  and  rota0onal  dynamics  

Rotational: MPnet

= r! !!R dmm"

MPnet= r! dFnet"

MPnet= !HP + v p !mvG

If then where v p = vG MGnet= !HG HG = ! ! " !!( ) dm"

Page 178: Aerospace Astronautics

Angular  Momentum  

HG = ! ! " !!( ) dm"

?

! ! " !!( ) =" ! "!( )# ! " "!( )

! ! " !!( ) =

y2 + z2( )"x # xy"y # xz"z

#yx"x + x2 + z2( )"y # yz"z

#zx"x # zy"y + x2 + y2( )"z

$

%

&&&&&

'

(

)))))

Page 179: Aerospace Astronautics

Angular  Momentum  

Since: HG =

Hx

Hy

Hz

!

"

####

$

%

&&&&

= ?[ ]!x

!y

!z

!

"

####

$

%

&&&&

HG = I!

I =

Ixx Ixy IxzIyx Iyy IyzIzx Izy Izz

!

"

####

$

%

&&&&

=

y2 + z2( )' dm ( xy' dm ( xz' dm

( yx' dm x2 + z2( )' dm ( yz' dm

( zx' dm ( zy' dm x2 + y2( )' dm

!

"

#####

$

%

&&&&&

Note: Iyx = Ixy, Izx = Ixz, and Iyz = Izy

Page 180: Aerospace Astronautics

Angular  Momentum  

If has 2 planes of symmetry then I

I =Ixx 0 00 Iyy 0

0 0 Izz

!

"

####

$

%

&&&&

=A 0 00 B 00 0 C

!

"

###

$

%

&&&

therefore Hx = A !x, Hy = A !y, Hz = A !z

Page 181: Aerospace Astronautics

Moments  of  Iner0a  

Page 182: Aerospace Astronautics

Euler’s  Equa0ons  

•  Rela0ng  M  and              for  pure  rota0on.  Assuming  body  fixed  coordinate  is  along  principal  axis  of  iner0a  

•  Therefore    

!

Mnet = !H = !Hrelative +!"H

H = Hx Hy Hz( )T

= A!x B!y C!z( )T

Mnet = A !!x B !!y C !!z( )T

+

i j k!x !y !z

A!x B!y C!z

Page 183: Aerospace Astronautics

Euler’s  Equa0ons  

•  Assuming  that  moving  frame  is  the  body  frame,  then      this  leads  to  Euler’s  Equa4ons:    

Mxnet= A !!x + C !B( )!y!z

Mynet= B !!y + A!C( )!z!x

Mznet=C !!z + B! A( )!x!y

! =!

Page 184: Aerospace Astronautics

Kine0c  Energy  

T = 12

v2m! dm =

12v "v

m! dm =

12mvG

2 +12! "HG = Ttrans +Trot

Trot =12!xHx +!yHy +!zHz( ) = 12!

TI!

Page 185: Aerospace Astronautics

Spinning  Top  •  Simple  axisymmetric  top  spinning  at  point  0  

Introduces the topic of 1.  Precession 2.  Nutation 3.  Spin

Assumes:

Ixx = Iyy = A and Izz =C

! p = !" !n = !#

Notes: If A < C (oblate) If C < A (prolate)

Page 186: Aerospace Astronautics

Spinning  Top  

! p = !" !n = !#

From the diagram we note 3 rotations: where therefore:

! =!ni +! pK +!sk

K = sin! j + cos! k

! =

!x

!y

!z

!

"

####

$

%

&&&&

=

!n

! p sin"

!s +! p cos"

!

"

####

$

%

&&&&

Page 187: Aerospace Astronautics

Spinning  Top  

! p = !" !n = !#

From the diagram we note the coordinate frame rotation therefore:

! =!ni +! pK

! =

!x

!y

!z

"

#

$$$$

%

&

''''

=

!n

! p sin"

! p cos"

"

#

$$$$

%

&

''''

! M0net =

A !!x

A !!y

C !!z

"

#

$$$$

%

&

''''

+

i j k(x (y (z

A!x A!y C!z

= d k ) *mg( ) K =mgd sin! i

Page 188: Aerospace Astronautics

Spinning  Top  •  Some  results  for  a  spinning  top  

–  Precession  and  spin  rate  are  constant  –  For  precession  two  values  exist  (in  general)  for    

–  If  spin  rate  is  zero  then  

•  If  A  >  C,  then  top’s  axis  sweeps  a  cone  below  the  horizontal  plane  •  If  A  <  C,  then  top’s  axis  sweeps  a  cone  above  the  horizontal  plane  

!! p = !!s = 0

! p !s=0= ±

mgdC ! A( )cos!

if C ! A( )cos! > 0

! p =C

2 A!C( )cos"!s ± !s

2 !4mgd A!C( )cos"

C2

"

#$$

%

&''

! ! 90°

Page 189: Aerospace Astronautics

Spinning  Top  •  Some  results  for  a  spinning  top  

–  If            then  

•  If      ,  then  precession  occurs  regardless  of  0tle  angle  •  If      ,  then  precession  occurs  0tle  angle  90  deg  

–  If            then  a  minimum  spin  rate  is  required  for  steady  precession  at  a  constant  0lt  

–  If            then  

A!C( )cos! = 0

! p =mgdC!s

if A!C( )cos" = 0

A =CA !C

A!C( )cos! > 0

!s_MIN =2C

mgd A!C( )cos" if A!C( )cos" > 0

A!C( )cos! < 0 !s ! 0, and ! p !! p !s=0

Page 190: Aerospace Astronautics

Axisymmetric  Rotor  on  Rota0ng  Pla|orm  

! = 90° ! =! p j +!sk

! =! p j

MGnet =! !H =

i j k0 ! p 0

0 A! p C!s

=! p j !C!sk = ! p"# $%!Hs

Thus, if one applies a torque or moment (x-axis) it will precess, rotating spin axis toward moment axis

Page 191: Aerospace Astronautics

Euler’s  Angles  (revisited)  •  Rota0on  between  body  fixed  x,y,z  to  rota0on  angles  using  Euler’s  angles  (313  rota0on)  

Qiner _ to_body =R3 !( )R1 !( )R3 !( )

!body =

!x

!y

!z

!

"

####

$

%

&&&&

=

! p sin" sin# +!n cos#

! p sin" cos# '!n sin#

!s +! p cos"

!

"

####

$

%

&&&&

!body =Qiner _ to_body!inertal

! p

!n

!s

!

"

####

$

%

&&&&

=

!"!#!$

!

"

####

$

%

&&&&

=

1sin#

!x sin$ +!y cos$( )!x cos$ '!y sin$

'1tan#

!x sin$ +!y cos$( )+!z

!

"

######

$

%

&&&&&&

Page 192: Aerospace Astronautics

Euler’s  Angles  (revisited)  

!body =

!x

!y

!z

!

"

####

$

%

&&&&

=

! p sin" sin# +!n cos#

! p sin" cos# '!n sin#

!s +! p cos"

!

"

####

$

%

&&&&

!inertal =QTiner _ to_body !!body

Mxnet= A !!x + C !B( )!y!z

Mynet= B !!y + A!C( )!z!x

Mznet=C !!z + B! A( )!x!y

Page 193: Aerospace Astronautics

Satellite  Aytude  Dynamics  

•  Torque  Free  Mo0on   MG _net = !HG = 0 = !HG _ rel +! !HG

cos! = HG

HG

! k

!! ="n = !A!B( )"x"y

HG sin!

Page 194: Aerospace Astronautics

Euler’s  Equa0on  for  Torque  Free  Mo0on  

0 = A !!x + C ! A( )!y!z

0 = B !!y + A!C( )!z!x

0 =C !!z + B! A( )!x!y

A = B A !!x + C ! A( )!y!z = 0

A !!y + A!C( )!z!x = 0C !!z = 0

!z =!0 = constant!n = 0

!!x !"!y = 0!!y +"!x = 0

! =A!CA

"0

!!!x +"!x = 0

Page 195: Aerospace Astronautics

Euler’s  Equa0on  for  Torque  Free  Mo0on  

! =!! +!0 =!! +!0kFor Then:

!s = !" =A!CA

!0

!xy =CA!0 tan"

! p = !" =C

A!C!s

cos#

If A > C (prolate), ωp > 0 If A < C (oblate), ωp < 0

Page 196: Aerospace Astronautics

Euler’s  Equa0on  for  Torque  Free  Mo0on  

Page 197: Aerospace Astronautics

Euler’s  Equa0on  for  Torque  Free  Mo0on  

HG =

Hx

Hy

Hz

!

"

####

$

%

&&&&

=

A!x

A!y

C!z

!

"

####

$

%

&&&&

=

A!x

A!y

C!0

!

"

####

$

%

&&&&

tan! = ACtan"

If A > C (prolate), γ < θ If A < C (oblate), γ > θ

HG = A! p

Page 198: Aerospace Astronautics

Euler’s  Equa0on  for  Torque  Free  Mo0on  

Page 199: Aerospace Astronautics

Stability  of  Torque-­‐Free  S/C  Assumes: ! =!0k

! !!"x,y + k!"x,y = 0

0 = A !!x + C ! A( )!y!z

0 = B !!y + A!C( )!z!x

0 =C !!z + B! A( )!x!y

k =A!C( ) B!C( )

AB!02

Page 200: Aerospace Astronautics

Stability  of  Torque-­‐Free  S/C  ! !!"x,y + k!"x,y = 0

•  If k > 0, then solution is bounded •  A > C and B > C or A < C and B < C •  Therefore, spin is the major axis (oblate) or minor

axis (prolate)

•  If k < 0, then solution is unstable •  A > C > B or A < C < B •  Therefore, spin is the intermediate axis

!"x,y = c1ei kt + c2e

!i kt

!"x,y = c1ekt + c2e

! kt

Page 201: Aerospace Astronautics

Stability  of  Torque-­‐Free  S/C  •  With  energy  dissipa0on  (        )  

Trot =12!TI! =

12A!!

2 +12C!z

2

!!z =1

C!z

!Trot !12A d!"

2

dt#

$%

&

'(

d!!2

dt= 2C

A

!TrotC " A#

$%

&

'(

!Trot < 0

d!!2

dt< 0 if C > A (oblate)" asymtotically stable

d!!2

dt> 0 if C < A (prolate)" unstable

Page 202: Aerospace Astronautics

Stability  of  Torque-­‐Free  S/C  •  Kine0c  Energy  rela0ons  

Trot =12A!!

2 +12C!z

2 =12HG

2

A+12A"CA

#

$%

&

'(C!z

2

Trot =12HG

2

A1+ A!C

Acos2!

"

#$

%

&'

Trot =

12HG

2

C for major axis spinner

12HG

2

A for minor axis spinner

!

"

##

$

##

Page 203: Aerospace Astronautics

Conning  Maneuvers  •  Maneuver  of  a  purely  spinning  S/C  with  fixed  angular  momentum  magnitude  

! =!0k

HG,0 =C!0k

!HG = !HG1 +!HG2

!HG = MG dt0

t f

"

Page 204: Aerospace Astronautics

Conning  Maneuvers  Before the Maneuver

During the Maneuver

!s =!0 HG =C!0

!s =A!CA

"

#$

%

&'!0

!P =CA

!0

cos " / 2( )

!

"##

$

%&&

HG = A! p =C!0

cos " / 2( )

Another maneuver is required ΔHG2 after precession 180 deg

Page 205: Aerospace Astronautics

Conning  Maneuvers  Another maneuver is required ΔHG2 after precession 180 deg.

At the 2nd maneuver we want to stop the precession (normal to the spin axis):

!s =! p

!HG1 = !HG2

! = 2cos!1 CA!C"

#$

%

&'

Required deflection angle to precess 180 deg for a single coning mnvr

t = !" p

=!AC!0

cos " / 2( )

!HG = !HG1 + !HG2

= 2 HG0 tan ! / 2( )( )" HG0 !

Page 206: Aerospace Astronautics

Gyroscopic  Aytude  Control  

•  Momentum  exchange  gyros  or  reac0on  wheels  can  be  used  to  control  S/C  aytude  without  thrusters.  

•  The  wheels  can  be  fixed  axis  (reac0on  wheels)  or  gimbal  2-­‐axis  (cmg)  

Page 207: Aerospace Astronautics

Gyroscopic  Aytude  Control  

HG = IGbus + IG

i!( )! + IGi!rel

i!= IG

s/c! + IGi!rel

i!MG,net,ext =

dHG

dt+! !HG

Example: HG = I p + Iw( )! + Iw!rel

If external torque free then therfore

HG t = 0( ) = HG t = !t( )

!!rel = " 1+ I p / Iw( )!!

Page 208: Aerospace Astronautics

Gyroscopic  Aytude  Control  

HG = IB + I1 + I2 + I3( )! + I1!1 + I2!2 + I3!3

Example II: S/C with three identical wheels with their axis along the principal axis of the S/C bus, where the wheels spin axis moment of inertial is I and other axis are J. Also, the bus moment of inertia are diagonal elements (A, B, C).