Advanced Monitoring and Data Analytics in Power ... in Power Distribution Systems Hamed...

Post on 15-Mar-2018

217 views 0 download

Transcript of Advanced Monitoring and Data Analytics in Power ... in Power Distribution Systems Hamed...

Advanced Monitoring and Data Analytics in Power Distribution Systems

Hamed Mohsenian-Rad

Associate Professor, Electrical Engineering, University of California, RiversideAssociate Director, Winston Chung Global Energy Center

Director, UC-National Lab Center for Power Distribution Cyber SecurityDirector, Smart Grid Research Lab

Talk at UCR Solar Conference, 3/1/2018

Acknowledgements: A. Shahsavari, M. Farajollahi, Z. Taylor, E. Stewart, E. Cortez, A. Van-Meier, L. Alvarez, C. Roberts, F. Megala, S. Ula, H. Akhavan-Hejazi, A. Martinez-Morales, M. Barth

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 1 / 26

Power Grid

WesternInterconnection

Grand Coulee Dam

CAISO Control Room Palo Verde Nuclear Power Plant

230 kV Substation

City of Riverside (Population: 300,000)

Substation

……

Grid Edge

69 kV / 12 kV

≥ 230 kV

Transmission

Distribution

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 2 / 26

Power Distribution and Distributed Energy Resources

HunterSubstation

Circuit #1224 (12 kV)

1 MWh / 200 kW

460 kW

460 kW

UCR CE-CERT/ WCGEC

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 3 / 26

Power Distribution and Distributed Energy Resources

HunterSubstation

Circuit #1224 (12 kV)

1 MWh / 200 kW

460 kW

460 kW

UCR CE-CERT/ WCGECData Stream (1 min)

SCADA

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 4 / 26

Load Profile of Distribution Feeders

SCADA: Circuit #1224 (12 kV)

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 5 / 26

DER Signatures

Coordinated Measurements: Circuit #1224 (12 kV)

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 6 / 26

DER Optimization

Stochastic Online Optimization: Feeder Peak Load Shaving

97 kW

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 7 / 26

Power Grid

WesternInterconnection

Grand Coulee Dam

CAISO Control Room Palo Verde Nuclear Power Plant

230 kV Substation

City of Riverside (Population: 300,000)

Substation

……

Grid Edge

69 kV / 12 kV

≥ 230 kV

Transmission

Distribution

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 7 / 26

Power Grid

WesternInterconnection

Grand Coulee Dam

CAISO Control Room

Transmission Lines

Substations

Palo Verde Nuclear Power Plant

𝑣 𝑡 = 𝑉 cos(𝜔𝑡 + ∠𝑉)

𝑉 ∠𝑉

Phasor Representation

≥ 230 kV

Transmission

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 8 / 26

Measuring Phasors

PMU Sensor

FFT ↦ Fundamental Component

𝑣 𝑡 = 𝑉 cos(𝜔𝑡 + ∠𝑉)

𝑉 ∠𝑉

Phasor Representation

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 8 / 26

Measuring Phasors

PMU Sensor

FFT ↦ Fundamental Component

𝑣 𝑡 = 𝑉 cos(𝜔𝑡 + ∠𝑉)

𝑉 ∠𝑉

Phasor Representation

TimeReference

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 8 / 26

Measuring Phasors

PMU Sensor

FFT ↦ Fundamental Component

𝑣 𝑡 = 𝑉 cos(𝜔𝑡 + ∠𝑉)

𝑉 ∠𝑉

Phasor Representation

TimeReference

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 8 / 26

Measuring Phasors

PMU Sensor

FFT ↦ Fundamental Component

𝑣 𝑡 = 𝑉 cos(𝜔𝑡 + ∠𝑉)

𝑉 ∠𝑉

Phasor Representation

TimeReference

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 8 / 26

Measuring Phasors

PMU Sensor

FFT ↦ Fundamental Component

𝑣 𝑡 = 𝑉 cos(𝜔𝑡 + ∠𝑉)

𝑉 ∠𝑉

Phasor Representation

TimeReference

GPS Satellites

Synchro

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 9 / 26

Application of Synchrophasors

30 fps

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 9 / 26

Application of Synchrophasors

𝑃12 ∝ Ð𝑉1 −Ð𝑉2

30 fps

RPAD

200 Miles

Bus 1

Ð𝑉1

𝑉1 Ð𝑉1

Bus 212P

𝑉2 Ð𝑉2Ð𝑉2

0.59 Hz0.64 HzInter-area Oscillations

Stability Analysis

Model Validation

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 10 / 26

Application of Synchrophasors

𝑑𝑓

𝑑𝑡∝ 𝑃Supply−𝑃Demand

GPS-SynchronizedFrequency Measurements

Power Plant Location

Sensor Location

Loss of Power PlantWesternInterconnection

GPS-SynchronizedFrequency Measurements

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 11 / 26

Power Grid

WesternInterconnection

Grand Coulee Dam

CAISO Control Room Palo Verde Nuclear Power Plant

230 kV Substation

City of Riverside (Population: 300,000)

Substation

……

Grid Edge

69 kV / 12 kV

≥ 230 kV

Transmission

Distribution

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 11 / 26

Power Grid

WesternInterconnection

Grand Coulee Dam

CAISO Control Room Palo Verde Nuclear Power Plant

230 kV Substation

City of Riverside (Population: 300,000)

Substation

……

Grid Edge

69 kV / 12 kV

≥ 230 kV

Transmission

Distribution

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 11 / 26

Power Grid

WesternInterconnection

Grand Coulee Dam

CAISO Control Room Palo Verde Nuclear Power Plant

230 kV Substation

City of Riverside (Population: 300,000)

Substation

……

Grid Edge

69 kV / 12 kV

≥ 230 kV

Transmission

Distribution

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 12 / 26

Distribution Synchrophasors

• New Technology

• Augmented PMUs or Power Quality Sensors

• Features

• Reporting Rate: 120 fps

• Three-Phase

• Both Voltage and Current

• Deployment

• Few pilot projects, including in Riverside, CA

• Advantages and Applications

• Yet to be Explored

D-PMUs /

Micro-PMUs (PSL)

100,000 More Data Points than Smart Meter

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 13 / 26

Distribution Synchrophasors

Medium Voltage Low Voltage

Circuit 6

...

...

Substation: 69 kV / 12 kV

OLTC Fuse

Cap Bank

CircuitBreaker

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 13 / 26

Distribution Synchrophasors

Circuit 6

...

...

Substation: 69 kV / 12 kV

OLTC Fuse

Cap Bank

CircuitBreaker

Medium Voltage Low Voltage

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 13 / 26

Distribution Synchrophasors

Circuit 6

...

...

Substation: 69 kV / 12 kV

OLTC Fuse

Cap Bank

CircuitBreaker

Medium Voltage Low Voltage

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 13 / 26

Distribution Synchrophasors

Circuit 6

...

...

Substation: 69 kV / 12 kV

OLTC Fuse

Cap Bank

CircuitBreaker

Medium Voltage Low Voltage

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 14 / 26

Event/Signature Analysis

Sensor

Phase A

120 fps

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 14 / 26

Event/Signature Analysis

Sensor

Phase A

120 fps

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 14 / 26

Event/Signature Analysis

Sensor

120 fps

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 14 / 26

Event/Signature Analysis

Sensor

120 fps

Question: Is this event worth studying?

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 15 / 26

Problem Statement

Distribution Substation

OtherFeeders

1 2

3-5

8-1

2

6 7 13

14-19

20 28 29 30

21

-27

𝐼𝑢 ∠𝐼𝑢𝑉𝑢 ∠𝑉𝑢,

Questions:

1. What is the source location of this event?

2. What can we learn from this event?

𝐼𝑑 ∠𝐼𝑑𝑉𝑑 ∠𝑉𝑑 ,

Upstream Downstream

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 16 / 26

Background: Compensation Theory

_+ V

_+

Vpre

Ipre Z

pre

_+ V

post

Ipost Z

post

Vposts V

postr

Ipostsr

Vpre

s Vpre

rI

presr

Vs Vr Isr

I

Pre-Event

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 16 / 26

Background: Compensation Theory

_+ V

_+

Vpre

Ipre Z

pre

_+ V

post

Ipost Z

post

Vposts V

postr

Ipostsr

Vpre

s Vpre

rI

presr

Vs Vr Isr

I

Pre-Event

Event

Post-Event

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 16 / 26

Background: Compensation Theory

_+ V

_+

Vpre

Ipre Z

pre

_+ V

post

Ipost Z

post

Vposts V

postr

Ipostsr

Vpre

s Vpre

rI

presr

Vs Vr Isr

I

Pre-Event

Event

Post-Event

V_

+

Vr Isr

I

Equivalent Circuit

∆𝑉 = 𝑉𝑝𝑜𝑠𝑡 − 𝑉𝑝𝑟𝑒

∆𝐼 = 𝐼𝑝𝑜𝑠𝑡 − 𝐼𝑝𝑟𝑒

Sou

rces

Rem

ove

d

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 17 / 26

Step 1: Extract Differential Synchrophasors

Upstream Sensor Downstream Sensor

𝐼𝑢∠𝐼𝑢

𝑉𝑢

∠𝑉𝑢

𝐼𝑑∠𝐼𝑑

𝑉𝑑

∠𝑉𝑑

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 17 / 26

Step 1: Extract Differential Synchrophasors

Upstream Sensor Downstream Sensor

𝐼𝑢∠𝐼𝑢

𝑉𝑢

∠𝑉𝑢

𝐼𝑑∠𝐼𝑑

𝑉𝑑

∠𝑉𝑑

∆𝐼𝑢 ∠∆𝐼𝑢

Pre

-Eve

nt

Post

-Eve

nt

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 17 / 26

Step 1: Extract Differential Synchrophasors

Upstream Sensor Downstream Sensor

𝐼𝑢∠𝐼𝑢

𝑉𝑢

∠𝑉𝑢

𝐼𝑑∠𝐼𝑑

𝑉𝑑

∠𝑉𝑑

∆𝐼𝑢 ∠∆𝐼𝑢

Pre

-Eve

nt

Post

-Eve

nt

∆𝑉𝑢 ∠∆𝑉𝑢

Pre

-Eve

nt

Post

-Eve

nt

∆𝐼𝑑 ∠∆𝐼𝑑P

re-E

ven

t

Post

-Eve

nt

∆𝑉𝑑 ∠∆𝑉𝑑

Pre

-Eve

nt

Post

-Eve

nt

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 18 / 26

Step 2: Forward Nodal Voltage Calculation

∆𝑉1𝑓= ∆𝑉𝑢

∆𝑉2𝑓= ∆𝑉1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓𝑍1

∆𝑉𝑘𝑓= ∆𝑉𝑘−1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓𝑍𝑘−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

𝑘: Event Bus (Unknown)Forward

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 18 / 26

Step 2: Forward Nodal Voltage Calculation

∆𝑉1𝑓= ∆𝑉𝑢

∆𝑉2𝑓= ∆𝑉1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓𝑍1

∆𝑉𝑘𝑓= ∆𝑉𝑘−1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓𝑍𝑘−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

Forward 𝑘: Event Bus (Unknown)

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 18 / 26

Step 2: Forward Nodal Voltage Calculation

∆𝑉1𝑓= ∆𝑉𝑢

∆𝑉2𝑓= ∆𝑉1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓𝑍1

∆𝑉𝑘𝑓= ∆𝑉𝑘−1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓𝑍𝑘−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

Forward 𝑘: Event Bus (Unknown)

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 18 / 26

Step 2: Forward Nodal Voltage Calculation

∆𝑉1𝑓= ∆𝑉𝑢

∆𝑉2𝑓= ∆𝑉1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓𝑍1

∆𝑉𝑘𝑓= ∆𝑉𝑘−1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓𝑍𝑘−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

Pseudo-Measurements

Forward 𝑘: Event Bus (Unknown)

(Feeder Data, Transformer Ratings)

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 18 / 26

Step 2: Forward Nodal Voltage Calculation

∆𝑉1𝑓= ∆𝑉𝑢

∆𝑉2𝑓= ∆𝑉1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓𝑍1

∆𝑉𝑘𝑓= ∆𝑉𝑘−1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓𝑍𝑘−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

Forward 𝑘: Event Bus (Unknown)

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 18 / 26

Step 2: Forward Nodal Voltage Calculation

∆𝑉1𝑓= ∆𝑉𝑢

∆𝑉2𝑓= ∆𝑉1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓𝑍1

∆𝑉𝑘𝑓= ∆𝑉𝑘−1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓𝑍𝑘−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

Forward

∆𝑉𝑘+1𝑓

= ∆𝑉𝑘𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓+ ∆𝐼𝑘 𝑍𝑘

Event Current (Unknown)

𝑘: Event Bus (Unknown)

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 18 / 26

Step 2: Forward Nodal Voltage Calculation

∆𝑉1𝑓= ∆𝑉𝑢

∆𝑉2𝑓= ∆𝑉1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓𝑍1

∆𝑉𝑘𝑓= ∆𝑉𝑘−1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓𝑍𝑘−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

Forward

∆𝑉𝑘+1𝑓

≠ ∆𝑉𝑘𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓+ 𝑌𝑘∆𝑉𝑘

𝑓𝑍𝑘

Incorrect

𝑘: Event Bus (Unknown)

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 18 / 26

Step 2: Forward Nodal Voltage Calculation

∆𝑉1𝑓= ∆𝑉𝑢

∆𝑉2𝑓= ∆𝑉1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓𝑍1

∆𝑉𝑘𝑓= ∆𝑉𝑘−1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓𝑍𝑘−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

Forward

∆𝑉𝑘+1𝑓

≠ ∆𝑉𝑘𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓+ 𝑌𝑘∆𝑉𝑘

𝑓𝑍𝑘

𝑘: Event Bus (Unknown)

∆𝑉𝑛𝑓≠ ∆𝑉𝑛−1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑛−1∆𝑉𝑛−1

𝑓𝑍𝑛−1

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 18 / 26

Step 2: Forward Nodal Voltage Calculation

∆𝑉1𝑓= ∆𝑉𝑢

∆𝑉2𝑓= ∆𝑉1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓𝑍1

∆𝑉𝑘𝑓= ∆𝑉𝑘−1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓𝑍𝑘−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

Forward

∆𝑉𝑘+1𝑓

≠ ∆𝑉𝑘𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑘−1∆𝑉𝑘−1

𝑓+ 𝑌𝑘∆𝑉𝑘

𝑓𝑍𝑘

𝑘: Event Bus (Unknown)

I

∆𝑉𝑛𝑓≠ ∆𝑉𝑛−1

𝑓+ ∆𝐼𝑢 + 𝑌1∆𝑉1

𝑓+⋯+ 𝑌𝑛−1∆𝑉𝑛−1

𝑓𝑍𝑛−1

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 19 / 26

Step 3: Backward Nodal Voltage Calculation

∆𝑉𝑛−1𝑏 = ∆𝑉𝑛

𝑏 + ∆𝐼𝑑 + 𝑌𝑛∆𝑉𝑛𝑏 𝑍𝑛−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

𝑘: Event Bus (Unknown) Backward

∆𝑉𝑛𝑏 = ∆𝑉𝑑

∆𝑉𝑘𝑏 = ∆𝑉𝑘+1

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌𝑘+1∆𝑉𝑘+1

𝑏 𝑍𝑘

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 19 / 26

Step 3: Backward Nodal Voltage Calculation

∆𝑉𝑛−1𝑏 = ∆𝑉𝑛

𝑏 + ∆𝐼𝑑 + 𝑌𝑛∆𝑉𝑛𝑏 𝑍𝑛−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

𝑘: Event Bus (Unknown) Backward

∆𝑉𝑛𝑏 = ∆𝑉𝑑

∆𝑉𝑘𝑏 = ∆𝑉𝑘+1

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌𝑘+1∆𝑉𝑘+1

𝑏 𝑍𝑘

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 19 / 26

Step 3: Backward Nodal Voltage Calculation

∆𝑉𝑛−1𝑏 = ∆𝑉𝑛

𝑏 + ∆𝐼𝑑 + 𝑌𝑛∆𝑉𝑛𝑏 𝑍𝑛−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

𝑘: Event Bus (Unknown) Backward

∆𝑉𝑛𝑏 = ∆𝑉𝑑

∆𝑉𝑘𝑏 = ∆𝑉𝑘+1

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌𝑘+1∆𝑉𝑘+1

𝑏 𝑍𝑘

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 19 / 26

Step 3: Backward Nodal Voltage Calculation

∆𝑉𝑛−1𝑏 = ∆𝑉𝑛

𝑏 + ∆𝐼𝑑 + 𝑌𝑛∆𝑉𝑛𝑏 𝑍𝑛−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

𝑘: Event Bus (Unknown) Backward

∆𝑉𝑛𝑏 = ∆𝑉𝑑

∆𝑉𝑘𝑏 = ∆𝑉𝑘+1

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌𝑘+1∆𝑉𝑘+1

𝑏 𝑍𝑘

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 19 / 26

Step 3: Backward Nodal Voltage Calculation

∆𝑉𝑛−1𝑏 = ∆𝑉𝑛

𝑏 + ∆𝐼𝑑 + 𝑌𝑛∆𝑉𝑛𝑏 𝑍𝑛−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

𝑘: Event Bus (Unknown) Backward

∆𝑉𝑛𝑏 = ∆𝑉𝑑

∆𝑉𝑘𝑏 = ∆𝑉𝑘+1

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌𝑘+1∆𝑉𝑘+1

𝑏 𝑍𝑘

∆𝑉𝑘−1𝑏 = ∆𝑉𝑘

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌𝑘+1∆𝑉𝑘+1

𝑏 + ∆𝐼𝑘 𝑍𝑘−1

Event Current (Unknown)

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 19 / 26

Step 3: Backward Nodal Voltage Calculation

∆𝑉𝑛−1𝑏 = ∆𝑉𝑛

𝑏 + ∆𝐼𝑑 + 𝑌𝑛∆𝑉𝑛𝑏 𝑍𝑛−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

𝑘: Event Bus (Unknown) Backward

∆𝑉𝑛𝑏 = ∆𝑉𝑑

∆𝑉𝑘𝑏 = ∆𝑉𝑘+1

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌𝑘+1∆𝑉𝑘+1

𝑏 𝑍𝑘

∆𝑉𝑘−1𝑏 ≠ ∆𝑉𝑘

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌𝑘+1∆𝑉𝑘+1

𝑏 + 𝑌𝑘∆𝑉𝑘𝑏 𝑍𝑘−1

Incorrect

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 19 / 26

Step 3: Backward Nodal Voltage Calculation

∆𝑉𝑛−1𝑏 = ∆𝑉𝑛

𝑏 + ∆𝐼𝑑 + 𝑌𝑛∆𝑉𝑛𝑏 𝑍𝑛−1

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

𝑘: Event Bus (Unknown) Backward

∆𝑉𝑛𝑏 = ∆𝑉𝑑

∆𝑉𝑘𝑏 = ∆𝑉𝑘+1

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌𝑘+1∆𝑉𝑘+1

𝑏 𝑍𝑘

∆𝑉𝑘−1𝑏 ≠ ∆𝑉𝑘

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌𝑘+1∆𝑉𝑘+1

𝑏 + 𝑌𝑘∆𝑉𝑘𝑏 𝑍𝑘−1

∆𝑉1𝑏 ≠ ∆𝑉2

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌2∆𝑉2

𝑏 𝑍1

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 19 / 26

Step 3: Backward Nodal Voltage Calculation

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

𝑘: Event Bus (Unknown) Backward

II

∆𝑉𝑛−1𝑏 = ∆𝑉𝑛

𝑏 + ∆𝐼𝑑 + 𝑌𝑛∆𝑉𝑛𝑏 𝑍𝑛−1

∆𝑉𝑛𝑏 = ∆𝑉𝑑

∆𝑉𝑘𝑏 = ∆𝑉𝑘+1

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌𝑘+1∆𝑉𝑘+1

𝑏 𝑍𝑘

∆𝑉𝑘−1𝑏 ≠ ∆𝑉𝑘

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌𝑘+1∆𝑉𝑘+1

𝑏 + 𝑌𝑘∆𝑉𝑘𝑏 𝑍𝑘−1

∆𝑉1𝑏 ≠ ∆𝑉2

𝑏 + ∆𝐼𝑢 + 𝑌𝑛∆𝑉𝑛𝑏 +⋯+ 𝑌2∆𝑉2

𝑏 𝑍1

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 20 / 26

Step 4: Event Location Identification

Y1

Z1 Zn-1

Ik

Vn Vk

|Vd| V

d

|Id| I

dZ

u Zd

V2 Vn-1 V1

I1

Y2

I2

Yk

Ik

Yn-1

In-1

Yn

In

Downstream

|Vu| V

u

|Iu| I

u

Upstream

Zk-1 Vk-1

Ik-1

Zk Vk+1

Ik+1

𝑘: Event Bus (Unknown) BackwardForward

∆𝑉1𝑓, ⋯ , ∆𝑉𝑘−1

𝑓, ∆𝑉𝑘

𝑓, ∆𝑉𝑘+1

𝑓, ⋯ , ∆𝑉𝑛

𝑓

∆𝑉1𝑏, ⋯ , ∆𝑉𝑘−1

𝑏 , ∆𝑉𝑘𝑏, ∆𝑉𝑘+1

𝑏 , ⋯ , ∆𝑉𝑛𝑏

Correct

Correct

Incorrect

Incorrect

Forward:

Backward:

𝑘 = argmin ∆𝑉𝑖𝑓− ∆𝑉𝑖

𝑏

𝑖

Φ𝑖

Discrepancy

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 21 / 26

Case Study: Computer Simulation

(a) Event at Bus 24; (b) Event at Bus 36; (c) Event at Bus 9

31 2 4 5

22 3031

32

33

34

3536

37 38 39

41

40

42

4344

6 7 8 9

1011

12 13

14

15

1617181920

21

23

24

25

26

27 28 29

Mic

ro-P

MU

1

Micro-PMU 2

Mic

ro-P

MU

4

Micro-PMU 3

Event Location

Event Location

Event Location

Discrepancy

IEEE

12

3-B

us

Test

Sys

tem

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 21 / 26

Case Study: Computer Simulation

(a) Event at Bus 24; (b) Event at Bus 36; (c) Event at Bus 9

31 2 4 5

22 3031

32

33

34

3536

37 38 39

41

40

42

4344

6 7 8 9

1011

12 13

14

15

1617181920

21

23

24

25

26

27 28 29

Mic

ro-P

MU

1

Micro-PMU 2

Mic

ro-P

MU

4

Micro-PMU 3

Event Location

Event Location

Event Location

Discrepancy

IEEE

12

3-B

us

Test

Sys

tem

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 21 / 26

Case Study: Computer Simulation

(a) Event at Bus 24; (b) Event at Bus 36; (c) Event at Bus 9

31 2 4 5

22 3031

32

33

34

3536

37 38 39

41

40

42

4344

6 7 8 9

1011

12 13

14

15

1617181920

21

23

24

25

26

27 28 29

Mic

ro-P

MU

1

Micro-PMU 2

Mic

ro-P

MU

4

Micro-PMU 3

Event Location

Event Location

Event Location

Discrepancy

IEEE

12

3-B

us

Test

Sys

tem

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 21 / 26

Case Study: Computer Simulation

(a) Event at Bus 24; (b) Event at Bus 36; (c) Event at Bus 9

31 2 4 5

22 3031

32

33

34

3536

37 38 39

41

40

42

4344

6 7 8 9

1011

12 13

14

15

1617181920

21

23

24

25

26

27 28 29

Mic

ro-P

MU

1

Micro-PMU 2

Mic

ro-P

MU

4

Micro-PMU 3

Event Location

Event Location

Event Location

Discrepancy

IEEE

12

3-B

us

Test

Sys

tem

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 21 / 26

Case Study: Computer Simulation

(a) Event at Bus 24; (b) Event at Bus 36; (c) Event at Bus 9

31 2 4 5

22 3031

32

33

34

3536

37 38 39

41

40

42

4344

6 7 8 9

1011

12 13

14

15

1617181920

21

23

24

25

26

27 28 29

Mic

ro-P

MU

1

Micro-PMU 2

Mic

ro-P

MU

4

Micro-PMU 3

Event Location

Event Location

Event Location

Discrepancy

IEEE

12

3-B

us

Test

Sys

tem

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 22 / 26

Case Study: Asset Monitoring

Three-Phase Switched Capacitor Bank

Rating: 3 x 300 kVAR = 900 kVAR

Volt/VAR Control

Onsite Switch On / Switch Off Controller

No Monitoring

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 23 / 26

Case Study: Asset Monitoring

Typical Issues:

Unbalanced Operation (Fuses) Switching Operation (Controllers)1 2

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 23 / 26

Case Study: Asset Monitoring

Typical Issues:

Unbalanced Operation (Fuses) Switching Operation (Controllers)1 2

Remote Monitoring?

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 24 / 26

Case Study: Asset Monitoring

Switch Off Event

(Micro-PMU 1)

Location Identification

(Micro-PMU 2)

Event Bus: 25 (Correct)

DiscrepancyData Analytics

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 24 / 26

Case Study: Asset Monitoring

Switch Off Event

(Micro-PMU 1)

Reactive Power Support

Slightly Unbalanced Operation

Phase B is always higher

Likely fuse blowing on C and A

Data Analytics

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 24 / 26

Case Study: Asset Monitoring

Switch Off Event

(Micro-PMU 1)

Switching Transient

Two-Step 3-Phase Switch

Step 1: Phase C (Zero Crossing)

Step 2: Phase A/B (Possible Malfunction)

C

B

A

Data Analytics

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 25 / 26

Big Data Analytics

Raw Data Stream

(Terabytes Per Day)

Big Data Analytics

++++++

Asset Monitoring

State Estimation

Statistical Modeling

Dynamic Modeling

Cyber Security

DER Operation

Market Operation

Useful Information

Hamed Mohsenian-Rad Monitoring and Data Analytics in Power Distribution UC Riverside 26 / 26

Acknowledgement: Agencies and Institutions

Announcement: UC – National Lab Center on Power Distribution Cybersecurity