A new strategy for adapting time-step in the Local Time Stepping … · 2017-05-10 · Quang Huy...

Post on 11-Aug-2020

0 views 0 download

Transcript of A new strategy for adapting time-step in the Local Time Stepping … · 2017-05-10 · Quang Huy...

© IF

P Extended reserves | Clean refining | Fuel-efficient vehicles | Diversified fuels | Controlled CO2

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

A new strategy for adapting time-step in the Local Time Stepping Method applied to

hyperbolic PDEs

Équipe de Recherche Technologique: Frédéric Coquel, Marie Postel (LJLL) Quang Huy Tran (IFP)

Quang Long Nguyen

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Outline

  Context   Mathematical model and numerical scheme   Multiresolution (MR)   Local Time Stepping (LTS)   Conclusion

© IF

P

3

Outline

  Context   Mathematical model and numerical scheme   Multiresolution (MR)   Local Time Stepping (LTS)   Conclusion

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Context

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Context

  Transportation of hydrocarbons: oil and gas numerical simulation of two-phase flows in pipelines over a long

time-range   Characteristics

  Closure laws: costly to evaluate   Time varying boundary conditions: inflow and outflow   Pipeline's geometry: horizontal, slugging, severe slugging (gravity)   fronts separating the oil and gas propagate along the pipeline

  Goals   Model the problem   Improve the simulations   Speed up the computation thanks to the Multiresolution and Local Time Stepping methods

© IF

P

6

Outline

  Context   Mathematical model and numerical scheme   Multiresolution (MR)   Local Time Stepping (LTS)   Conclusion

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Mathematical model

  Drift-Flux Model

  Closure laws   Thermodynamics and Hydrodynamics :

nonlinear and costly

with

with

© IF

P

8

Numerical scheme

  Finite volume method with Riemann solver   Explicit Lagrange-Projection scheme under the form

  Under the CFL condition

avec

The positivity of the scheme is preserved

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

9

Outline

  Context   Mathematical model and numerical scheme   Multiresolution (MR)   Local Time Stepping (LTS)   Conclusion

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Multiresolution (MR)

  Idea   The mesh size depends on the local

smoothness of the solution adaptive grid   The adaptive grid adapts dynamically

as the solution evolves in time grid prediction by detecting the

displacement and the formation of the singularities

  Advantages   Well adapted to our problem   Reduce the number of calls to the

expensive closure laws gain in CPU time

Uniform

Adaptive

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Adaptive Multiresolution (MR)

  Multiscale representation   Mean value interpolation of the solution A. Cohen, S.M. Kaber, S. Müller and M. Postel, Math. Comp., 72

(2003), pp. 183–225

1. Encoding

2. Decoding h

h/2 level k-2

level k-1 level k

level k+1

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Multiresolution (MR)   Thresholding algorithm

  Details

  Level dependent threshold parameter

  Prediction (Harten's heuristic)   Mark the neighborhoods of if

  Mark the higher levels if

  The adaptive grid is   updated at each time step   graded to ensure optimal complexity of the encoding/decoding

algorithm

© IF

P

Numerical results (MR) Problem of shock tube flow

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

ρ

Yv

R

=

4000.4−10

ρ

Yv

L

=

5400.2−10

© IF

P

14

Uniform solution versus MR solution Adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

15

Convergence of the Multiresolution method

ε

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

16

Outline

  Context   Mathematical model and numerical scheme   Multiresolution (MR)   Local Time Stepping (LTS)   Conclusion

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Local Time Stepping (LTS)

  Remark on MR   Same time-step for all cells

  Principle of the LTS   Time-step adapted to mesh size

  Advantage   Further reduction of calls to closure

laws increase gain in CPU time

Adaptive Mesh Refinement

Local time stepping

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Local Time Stepping (LTS) Computation of the time-step

  Definitions   Macro time-step: corresponds to the biggest cells   Micro time-step: corresponds to the smallest cells

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Local Time Stepping (LTS) Computation of the time-step

  The micro time-steps decrease during each macro time-step   They are updated along with the solution while ensuring the

stability condition

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Local Time Stepping (LTS) Computation of the time-step

  The micro time-steps decrease during each macro time-step   They are updated along with the solution while ensuring the

stability condition   The first micro time-step

  The others

where is the updated solution at time

  The macro time-step

© IF

P

21

Local Time Stepping (LTS) Synchronization in transition zones

?

? ?

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

22

Local Time Stepping (LTS) Synchronization in transition zones

?

? ?

?

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

23

Local Time Stepping (LTS) Synchronization in transition zones

S. Müller and Y. Stiriba, J. Sci. Comput., 30 (2007), pp. 493–531

?

? ?

?

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

24

Local Time Stepping (LTS) Synchronization in transition zones

S. Müller and Y. Stiriba, J. Sci. Comput., 30 (2007), pp. 493–531

?

? ?

?

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

25

Local Time Stepping (LTS)

  LP conservative scheme   Outside of transition zones

  In transition zones

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Local Time Stepping (LTS)

  Example of a mesh with 3 levels (K = 3)   The solution is updated at each micro time step

0 1 2

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Local Time Stepping (LTS)

  Example of a mesh with 3 levels (K = 3)   The solution is updated at each micro time step

0 0 1 2

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Local Time Stepping (LTS)

  Example of a mesh with 3 levels (K = 3)   The solution is updated at each micro time step

0 1 2

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Local Time Stepping (LTS)

  Example of a mesh with 3 levels (K = 3)   The solution is updated at each micro time step

0 1 2

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Local Time Stepping (LTS)

  Example of a mesh with 3 levels (K = 3)   Synchronisation of the at the macro time step

0 1 2

© IF

P

31

Numerical results (LTS) Problem of shock tube flow

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

32

Numerical results - Convergence

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

ε

© IF

P

Numerical results - Pipeline

  Pipeline with slope of 30 degrees

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Sensors along the pipeline

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Time-steps’ evolution

© IF

P

Performance

  Comparison between two types of hydrodynamics laws

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

ratio UNI/MR ratio MR/LTS

N(K) Simple law Realistic law Simple law Realistic law

rCPU rNbLaw rCPU rNbLaw rCPU rNbLaw rCPU rNbLaw

256(5) 2,98 2,90 3,17 3,07 6,61 11,67 10,41 10,82

512(6) 4,19 4,64 5,02 4,85 7,77 18,79 16,13 17,06

1024(7) 5,47 6,99 7,48 7,13 8,39 29,20 24,58 25,88

© IF

P

37

Outline

  Context   Mathematical model and numerical scheme   Multiresolution (MR)   Local Time Stepping (LTS)   Conclusion

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Conclusion

  Speed up the simulations thanks to the Multiresolution method   Analysis of the local regularity of the solution   Dyadic grid hierarchy   Threshold parameter + prediction

  Increase the performance by using the Local Time Stepping method coupled with MR   Time-step adapted to the mesh size   Faster, less calls to closure laws   A new strategy to compute the time-step

  The more expensive the closure laws are, the better the CPU gain is

© IF

P

References [1] N. Adrianov, F. Coquel, M. Postel, Q-H. Tran A relaxation multi-resolution scheme for accelerating realistic two-phase

flows calculations in pipelines [2] A. Cohen, M.S. Kaber, S. Müller, M. Postel Fully adaptive multiresolution finite volume schemes for conservation laws [3] F. Coquel, Q-L. Nguyen, M. Postel, Q-H. Tran Local time stepping applied to implicit-explicit methods for hyperbolic systems [4] A. Harten Multiresolution algorithms for the numerical solutions of hyperbolic

conservation laws [5] S. Müller, Y. Stiriba Fully adaptive multiscale schemes for conservation laws employing

locally varying time stepping

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

http://www.ann.jussieu.fr/ERTint/

© IF

P

Thank you for your attention

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Numerical method

  Relaxation to treat the nonlinearities   Replacing and by two new variables and   Relaxation system

  Hyperbolic system with linearly degenerate eigenfields

  Subcharacteristic conditions

© IF

P

42

Numerical method

  Lagrange-Projection decomposition   Based on ALE (Arbitrary Lagrange-Euler) formalism

  3-step resolution

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

43

Numerical method

  Lagrange-Projection decomposition   Based on ALE (Arbitrary Lagrange-Euler) formalism

  3-step resolution

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

44

Numerical method

  Lagrange-Projection decomposition   Based on ALE (Arbitrary Lagrange-Euler) formalism

  3-step resolution

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

45

Numerical method

  Lagrange-Projection decomposition   Based on ALE (Arbitrary Lagrange-Euler) formalism

  3-step resolution

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

46

Numerical method

  Lagrange-Projection decomposition   Based on ALE (Arbitrary Lagrange-Euler) formalism

  3-step resolution

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

47

Numerical method

  Lagrange-Projection decomposition   Based on ALE (Arbitrary Lagrange-Euler) formalism

  3-step resolution

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

48

Numerical method

  Lagrange-Projection decomposition   Based on ALE (Arbitrary Lagrange-Euler) formalism

  3-step resolution

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

49

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

50

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

51

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

52

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

53

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

54

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

55

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

56

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

57

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

58

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

59

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

60

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

61

Evolution of the adaptive tree

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Local Time Stepping (LTS) 1st strategy

  Constant micro time-step during the whole simulation by using the smallest time-step issued from a uniform simulation

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

Local Time Stepping (LTS) 2nd strategy

  Constant micro time-step during each macro time-step by satisfying the very first stability conditions at time

© IF

P

Local Time Stepping (LTS) Computation of the time-step

  The first strategy   stable but expensive as the time-step is very small   needs to do simulation with a uniform grid first

  The second strategy   not sure to be stable as the solution evolves in time, i.e

after every micro time-step

  A new strategy ???   ensure the stability

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

LTS-fix

MAMCDP 2009 Workshop - Université Pierre et Marie Curie

© IF

P

MAMCDP 2009 Workshop - Université Pierre et Marie Curie