14_Madkour_335-345

Post on 12-Oct-2014

15 views 0 download

description

The polymetal (Zn, Pb, Fe, Ca, Mg, Cd, Ba, Ni, Ti, and SiO2) complex Umm-Gheig carbonate ore is subjected to sintering treatment at 573, 773, 973 and 1273 K respectively for four hours. Chemical, spectral, X-ray and differential thermal analyses are applied for the native ore as well as for the samples preheated and sintered. The I-V characteristics, bulk density (Db), percent shrinkage (%S), activation energy (Ea) and energy gap (Eg) are established for the sintered ore. The electrical conductivity (*), thermal conductivity (K) and thermoelectric power coefficient (*) have been investigated as a function of applied temperature for the sintered ore materials. The electrical and thermal measurements show that the sintered ore has semiconductivity behaviour with temperature. The electrical conduction is mainly achieved by electrons or n-type. As the sintering temperature (Ts) increases the conduction of the ore is also increased owning to the recombination process takes place between the electrons and holes. Electrons hopping between Fe2+ and Fe3+ are the main charge carriers. The formation of Fe3O4 at high sintering temperature acts as an active mineralizer, thus inducing an increased degree of crystallinity and the more ordered crystal structure is produced.

Transcript of 14_Madkour_335-345

Loutfy H. Madkour

335

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010, 335-346

SEMICONDUCTIVITY BEHAVIOUR OF EGYPTIAN NATURAL SINTERED OREFOR THERMOTECHNOLOGICAL APPLICATIONS

Loutfy H. Madkour

Chemistry Department, Faculty of Sciences and Arts,

Al-Kamil, King Abdul-Aziz University,

P.O. Box 80207 Jeddah 21589,

Kingdom of Saudi Arabia

E-mail: loutfy.madkour@yahoo.com

lmadkour@kau.edu.sa

ABSTRACT

!"##$$%&

$##'()(()*()+(),#$-.#.%#%#$/$#0!#..#

#$$#.#-#$1$.#$$#$#/2!3##$$

%4$5#$#46-#7#7#$$.#$##/

#%-$#%-,##1#..α--$$.%.#%#.#$###$/##$%#$$1

$##$$%--%#1#%#/#%$-!

#$#!/8$$##%#$#$$%.#$$#$1

##$$41#$$/7#$19)9#

####$/.#.):$##%#$$-#;#%$%

#$#.#$####$$#%%#$#%/

,1#$<#$##$%--%#/

Received 05 May 2009

Accepted 22 July 2010

INTRODUCTION

!"

#$% &

& ' &(

''!'%)

%*+,&*%--+.&/% /+0

1%/2+34%

(

' '

) #4$ &)

) %

5!' % #2$ )

&()

' &

))'%6

'

%6 )'

' ,3

#-$%

((

& () #4$& #$

%6 & (!

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010

336

)

'

' 7/*&**&-*4*8&

)& ( ')

)'&

) %

EXPERIMENTAL

5/ !"( '

+' % %

''

'%9 % %/!

( '/ !4

' ' % (

/*& **& -* 4*8& )&

'' ' '% (

' (

' %

: #;$ ( '

<')5:'%

: ) (

' 535)(=:43

%( (

>?@' >? ) 7

9:&@ &<A4 9<&@/"%9

9:" )

( '' 'B9

%

B((

' ?'8α!%:.

B.*4- '

4θC42 %

8D "(

.!;

.!12 %

6E ' (

('86FGH

:& ) %

( ' ''(

'I %>?% '

(0%%

' ' '

#/$ (0%4%6

%

(

'' '(!(%

& '(

'

%J' (

' '

'' %

Fig. 1. Essential electric circuit.

Fig. 2. Cross-section of the apparatus used for thermalmeasurements.

Loutfy H. Madkour

337

K'

( '

( %:K!

((''&

' )'' '

%)''( F&

!')( %

')8( '

' 4; >?"% ( )

'

'( '

'( '%

RESULTS AND DISCUSSION

) E<)

( '/-%*1+,?3&1% 4+.?3

&

;%21+.3;&/% /+0&;%2;+?3&1%/2+3

4

4%/2+53 )%' &'

%6 '

03043

)%

0'&

4*8;"

03

;

03043

%

0%

9:"& ) <" ))

)9<") %

#1&*$'

( 7#,/?3

"43F"

1$A

,"A ,?3"' .?3

"%

>?

42%44+%6 )

(! 42 >?* >?&

)% '

(%0''

( ')

'; // >?!/ >?

% ' )

#1$& ( 7

%? )E<'%

!" ## $

% !"& & ' &

() !" * &

&& #

& (+ # )

,-. +

.,)/)01

Fig. 3. Thermal analysis of: (a) the native ore sample, (b)sintered ore samples for 4 h at 573 K (B), 773 K (C), 973 K(D) and 1273 K (E).

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010

338

043

400oC 0

3

;"

03450oC

043

"

043

500oC0

3

;"

6 )

043

"0

3

;"

& ' L'

'!03)043

03

; '%D

)&' '

#2$(

/*&**&-*4*8&

)%!)

'1 */ >?!1- >?

'

%

9

' /*&**&-*

4*8& )&' (0%%

9: )

' '

) %

B ' '

)E<'

/* 4*8&

)& ( 0% ;%B

( 0%;"

! ,?34θC%* &

4/% & /%4/& *%2 & ;1%; & ;%1 1%; "%

! .?374θC4/%2 &

1%; & ;%2 & 4-% & ;-%4 & 1%; ;*% "%

! .3;74θC4-%/ &

41%2 & ;;%/ & 4*%; 44% "%

! #,/?3

"43F"

1$ 7 4θC 1%; &

%* & 4-% & 4/% & %* 1%2 "%B (

( )

' %: /*&**&-*

4*8'' )&B

0%;"

!

( 7,34θC1% &%* %2 "%.34θC4-% &%1 &4%/&;2%* ;/%1 "%.3

44θC42%/&;-%//44%2 %.

43

C4-%/ & 4-%1 4*%; "%.3

; 4θC 41%4 & %1

4%/"%034θC;%-/&1%4 1% "%043

4θC%/ &/%1 /;%4 "%03

;4θC/%1 &14%;

4-%1 "%

B '

' 0%;"

' 043

;"(&C,

.% !

,043

;.0

43

;7 4θC/% &4-%1 &14% /&

/1%1 "4θC4%; &;1% &/1%2 &*;%; 1*%; "& )%0'&

!

' (

)

/*4*8% '

&

%

6 L' )E<

" "

( )0%/%

1**14 ν?C3 ' %

5 -2;#-$%

) 12-/

Fig. 4. X-ray diffraction pattern for the native ore sample(A) and sintered ore samples for 4 hrs. at 573 K (B), 773 K(C), 973 K (D), and 1273 K (E).

Loutfy H. Madkour

339

%:( L'

4420%/" '

) 53" &(5

C,&.0% (' (

'

22-;441 *

'3F" &F3F

F43!#4 $%

'

' &

!+"

L' (

'0%1"%'! 9

'

'

' 0%1% ' (

&'! ( !

'( '

'/*4*8% )'

' )' #4$

' '&

' %: '

& ''

'% )

Fig. 5. Infrared spectra of the native ore sample (A) andsintered ore samples for 4 hrs. at 573 K (B), 773 K (C), 973 K(D) and 1273 K (E).

Fig. 6. Effect of sintering temperature Ts on the bulk density

Db and shrinkage (% S) of the ore samples.

Fig. 7. D.C. current voltage characteristic of sintered oresamples.

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010

340

)' 9+"( '

'

''')

' #44$%

6J ) '

'

' /*4*8& )&

(0%*%6 6) %E

(&

' % ) 6) %E&

0%2%6 )

) αC" (

**8%)'

'%D'

**8& &6≡Eα& %

α (

' L' %/4%-/

(' & )%

α M"6E') & '

'?G?"% ) (

6E ) '

' %

(') !

(%('

&)! &')σ

)ε '

' <D")! 4&'

)σ4)ε

4%6 '

σMMσ

4%6 E

E

4)

<D& )&ECEN

E4 )%)

(! '%%E≅

)

+

2

345

1

#

&

"671&671

#

4% )" '

'%

Fig. 8. Logarithmic current voltage characteristic of sintered ore samples.

Loutfy H. Madkour

341

E4"%6'Ω

"'

''<D Ω4" (

"&'6CΩ

NΩ4N

%'

Ω4OO

≅ 6%' &6E

)

≅ E4

α%

' '

)'

%:) &

%%**8

"' 'αC"%6 ''

OOΩ4

≅ &

%:

#4$&6E') 7

• ('&

4*8αC %-"A• '&

**8α6C%/4&α

EC%-/"&(

αα

'"& )' =('

& )A

• '

/*8αC"%! 6E

**8 (

)E( ! /) %

)

' ) 4%

)

' %

')) ' '

σ @" )

( ' 0%-%0

σ ) %@ & (0%-&

'))'(

'; // 8D

'#4;$7

σ = σ

@!"

σ&( )

@C

L'&!D D

''%F()&

()

' J&(

)()L' 7

σ Cσ @!%

( )

' '

% '

0%-"%

)' ) '

'% (0% %

' 0 %-

') L'

) (

'%

')0%-"@)0% "

(

)' ' ))' )

4%: & ' (

(!#4/$

'' '%

Fig. 9. Temperature dependence of electrical conductivitys for sintered ore samples.

Fig. 10. Effect of sintering temperature on the activationenergy Ea for electrical conductivity of the ore samples.

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010

342

' &)

) ') %<&

'' )

&%%'

)%D'( '

" )

& )( '

) &%%

' %&'

'')

)('

'& ' %

'&'

'' '%

' &'#41$ '

%

' 'P

( & ' %

'

) '' )%)

'

%:

))

) '

)%

' '('

) )

%

)L'

% )

'%

' '&

'&'%

)

' '&'

"

'P ( %6 &'

'6 66

' &%%6C6N6

%

'&

"

"L'%F()&6

M6

'

%

)))

'%&

µC)

C)

@%

6(&

) CJ@%

? &

' (

#41$%

6C

)

C

µ

6C

)

C

µ

(

%

'' ' 7

6C6N6

C

)

N

)

C

µ

N

µ

'&

L' '&%%

C

C

6Cµ

"

6 ' " ' '

' +%

) 'E<

' )

'P )

%

%' & '

)

%0 &

'('%

04N 0N %

#4$

&( '

704N 0NN

(

L' )

JD"'?D" L'(#4*$

)&%%C4

%

)

+

2

14

)5

7

)5)

)7

#

% ' "

)' %

Loutfy H. Madkour

343

)'

)

' ')

%

')

( ' '7

QC6J@RC8:@B

(Q L' '

' ! B&RR'P

&6&E&@B&:' &

) ) &'

@" 4"& )%

' )

" '

' % ')

' (

#42$&) "&

"%

8C8N8

6( '

' 04N0N'

&'('

& ' ' '

( %:' (

9'&

'

')%6

( '&

8( %D'

' 9'&

'

''

) ) (

'%

' ')

L'' %6

8 ) '

8≡"%

'8)

(0%%:

')( '

)' '%

(

' L' )

% ))

'

((' ' 8%

' &')8

('' )

'

'9'%:)

'9 '

(

' '

((' ' 8%:

(0%)' ')8

'

%:

'

%

& '

) '8%

')' ')

/*&**-*8(

( 72 &4 - 8@" &

)& ( 0% % '

')8 '

( )'

')σ ' %(α(

')

Fig. 11. Temperature dependence of thermal conductivityK for sintered ore samples.

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010

344

''%α '

( ))' & (

(04N0N

(

' "%9 0

( )

'

%6'

'(

'%6

'''

) '

%0&''

) '

'' &'

' '%

) L' (

#4-$%I %J%%

4/ %?

)

# &$ ' &(

)

%'

') (

'D '#4;$%' &

)'

' (

'''

'

'

'

(L' 7

"'

#4$

043

&.3

4&,3"3

4 ' %

4"' (#$%

"? ' )

#4*&;$%: !(!&

(

#/$% ' )

%'

#LJ@4!"$#1&*$%

;"6 '

' )'

&%% '

'' '%

' ( ' (

' ) '(%

)' ' %

0' ( K'

'%6(

%%) ' (

' &K'( '

)%6 K'

' %

/"

) '(

' '

'"( %

1".' ''

('''

'% '

! ' (& ' )

& ')

) %

CONCLUSIONS

'

) )@

)'

):5% (( )

%

0 ) 6E &

σ ) %@8) %)' ) ' &( '

(' %

'))'( '%

• '

'%

• D)'

J (

'/*

4*8%? L'')σ '

' %

• )

')

8)'

' %

Loutfy H. Madkour

345

• ' &

'))') &

& '

' %

REFERENCES

%:%F% &J%D% )&J%.%D )&J%:%

D !&9%%8' )&F%:%F!&:

<'):

?J6%-2 &-*1%

4%:%5%&5%5%:6&5'

,.3 3E<9

& 9 <')5

9&&-1&44%

%.%J%J (&D%J%%H)&%%) &.%.%

D& '9)

0' 5 &)%66&?&-12%

;%F%F%8&:?)('L'

& %5':%6%5%%&-1;&

4 144%

/%<%% R&R%%F(R&D9)

'. ?'

3 %5':%6%5%%&

-14&44;24*%

1%0%&%%:&G%F%5!'&R%6 '

5'' &%6%5%%"&-24&!"%

*%:%.%!&J%5%H'!&G'

F'?'.,

6.' &' R'0

' 5 &##$ -1/&**%

2%G%F%5!'&' '

,( ?

3&R%?%%D%&%&&-2/&-*%

-%5%%&R%:%. %&&#&-2*&/14%

%%3 &<%G%R%9'&R%:%. %&&&&-2-&

111%

%,%0&?,'&R%:%. %&'($4&--1& %

4%J%.))&6%6)&G%6!)&

() &

R%E)%?%%5%"&!#&;&4 1&;1

;11%

%D%D)& ?'

' D3?3

,340

43

D33,3

40

43

& R%E)%

?%%5%"&!#&&4 1&11;%

;%%5!&?: 5

&5!&9 -*&%

/%:%:%:(<&&5%:%:&.%5

. %%&-*1&#)&-%

1%9%%&: 5 &:'

. & -*1%

*%G%F%5!'&0(

G,

.3%R%?%%D%&%*+&

-2/& 2;%

2%G%F%5!'&5%5%:'!!&3%5%F&

. ' 635

.'?? &R%!,$

/&--1& -%

-% G%R% D& 6 ?

5' &&-*/&?F

G%&G%

4 %8%!& 6 6

??' &&(H!&-* %

4%.%R%R &.&

%<%<%8' !&F&%:%&<&?%0%

<SD%(H!&-1*&!(%

44%F% & &J

?D &: 76?&

(H!G&-*;%

4%D%8%8'&<%D%R%) )&R%:%. %&"*$

& --;& 1/%

4;%R%3% &:)%. %3%?%&#&&-*2&/-%

4/%9%%!&%<%R%? &R%:%?

%&!'$ 1&-1/&421%

41%%!'&0' 5 &

5.' &5 (&-22%

4*%8%D!&%: J&F%R%' &:%

. %&")&4&--4&/*4%

42%R%%D!&. &4&

5.' &-22&%2&1-%

4-%%5&%:&)*&-2 &**%

%5%<&F' .

&D&0%G7??. &-2-%

%.%J%8&78 ? 5

' &5%<&8%8 '& %"

59!!&(H!&--&*/%

4%.%.%&?%<%R%0 &R%?%%?%

?'%&-2&/4 %

%5%<&75:

&%%&R%3P5%D! &D%%?(& %"&

.'. &(H!&-2%

;%.%D&%: J&R%%?%&

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010

346

--;& *-& ;/%

/%%F%!&%F% &5'

? &4%&?&3&-22%

1%%!&%%&. %)%&'"&-/4&2/%

*%:%%<)&.

' 9) &&(H!&-1*%