1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic...

Post on 23-Dec-2015

214 views 0 download

Tags:

Transcript of 1 Challenge the future Feasibility study for AFM probe calibration using the probe’s electrostatic...

1Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instabilityLaurens Pluimers

Supervisors:

Dr.ir. W.M. van Spengen

Prof.dr.ir. A. van Keulen

2Challenge the future

103

100

10-3

10-6

10-9

Micrometer(µm)

Nanometer(nm)

Picometer(pm)

Millimeter(mm)

Meter(m)

Kilometer(km)

Scaling

10-12

3Challenge the future

Microscopes

Hair:40-80 µm

DNA:10-30 nm

Atoms:30-300 pm

Optical microscope

Resolution: 200nm

Resolution: 100pm

Source: andrew.cmu.edu

Atomic force microscope (AFM)

4Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

5Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

6Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

7Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Outline

Introduction Atomic Force Microscope (AFM)

8Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Outline

Introduction Atomic Force Microscope (AFM) Probe calibration

9Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Outline

Introduction Atomic Force Microscope (AFM) Probe calibration Electrostatic pull-in instability

10Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Outline

Introduction Atomic Force Microscope (AFM) Probe calibration Electrostatic pull-in instability Results of feasibility study

11Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instability

Outline

Introduction Atomic Force Microscope (AFM) Probe calibration Electrostatic pull-in instability Results of feasibility study Conclusions & Recommendations

12Challenge the future

Atomic Force MicroscopeWorking principle

Quadrant detectorLaser

Cantilever beam(probe)

Sample

Source: www.bruker.com

13Challenge the future

Atomic Force MicroscopeWorking principle

Source: http://www.youtube.com/watch?v=fivhcWYEtkQ

14Challenge the future

Atomic Force MicroscopeSetup: Optical beam deflection system

15Challenge the future

Atomic Force MicroscopeAFM probe

20μmSource: www.absoluteastronomy.com

16Challenge the future

Atomic Force MicroscopeImages

Topography image of metallic nanoparticles deposited on graphite

Source: www.oist.jp

17Challenge the future

Recap

What is an Atomic Force Microscope (AFM)?

“Feeling” the sample surface with probe Optical beam deflection system Resolution ~100pm

18Challenge the future

Atomic Force MicroscopeModes of operation

Imaging Topography scan

Force measurements Material properties

19Challenge the future

Atomic Force MicroscopeMode of operation: Force measurementsMeasurement tip / sample interaction forces:

Atomic bonding Van der Waals forces Magnetic forces Chemical bonding

Probe

Sample

h

Source: www.bruker.com

20Challenge the future

Atomic Force MicroscopeInteraction forces

Material A

Material B

Quadrant detector

Laser

Probe

Fint

21Challenge the future

Atomic Force MicroscopeInteraction forces

x

y

“Force” imageMaterial A

Material B

22Challenge the future

Atomic Force MicroscopeProbe calibration

k

Fint

x

Hooke’s lawFint=k·x

Probe

LaserQuadrant detector

k=spring constant

23Challenge the future

Probe calibrationAdded mass

M

x

Hooke’s law

k

Mgxk

24Challenge the future

Probe calibrationEuler-Bernoulli beam theory

t

Lb

Cantilever base

3

34EbtL

k Young's modulusE

25Challenge the future

Probe calibrationOther calibration methods

Method Accuracy

Disadvantages

Added mass 15-25% Destructive, slow

Euler-Bernoulli beam theory

20-40% Inaccurate, slow

Nano-Force Balance 0.4% External equipment, expensive

Thermal tune 20% Only compliant beams

26Challenge the future

Recap

Why do you need to calibrate the probe?

To determine the exact interaction forces between tip and sample

Bonding forces Material properties

Disadvantages other methods

Need for new method

27Challenge the future

Probe calibrationNew calibration method

Based on probe’s Electrostatic Pull-in Instability (EPI)

Inventor: Prof.dr.ir. F. van Keulen

Improvements: Wide range of cantilever beams (k= 0.1 – 50 N/m) Non-destructive Integrated system in AFM Fast and easy to use

28Challenge the future

Probe calibrationNew calibration method

Based on probe’s Electrostatic Pull-in Instability (EPI)

EPI Probe calibration using EPI Experimental setup

29Challenge the future

Electrostatic Pull-in Instability

V

u=d0 u

Probe

Counter electrode

DC voltage source

Pull-in point

30Challenge the future

Electrostatic Pull-in Instability

Top view cantilever beam

31Challenge the future

Non-linear behaviour of the cantilever beam

Elastic restoring forces are linear Electrostatic forces are quadratic Main advantage: well defined instability

point(pull-in) measurement

Electrostatic Pull-in Instability

32Challenge the future

Probe calibration Electrostatic pull-in instability

20

30

0.562 r piLbVk

d

Lb

d0

0 Permittivity of free space

Dielectric constantr

33Challenge the future

20

30

0.562 r piLbVk

d

32/3 2/3

0 2 1

30.562

r p pLb V Vk

d

Probe calibration EPI: differential gap method

Vp1

V V

Vp2

Δd

34Challenge the future

EPI probe calibration Experimental setup

Variables: Differential gap

(Δd) Pull-in voltage

(Vpi) Length (L) Width (b)

32/3 2/30 2 1

30.562

r p pLb V Vk

d

Accuracy: 5 -15 %

Model

Source: www.bruker.com

AFM system

35Challenge the future

EPI probe calibration Experimental setup

XYZ stage

Variables: Differential gap (Δd)

XYZ stage

Source: www.bruker.com

36Challenge the future

EPI probe calibration Experimental setup

Variables: Differential gap (Δd) Pull-in voltage (Vpi)

Source: www.bruker.com

XYZ stage

Counter electrode

XYZ stage

37Challenge the future

EPI probe calibration Experimental setup

Variables: Differential gap (Δd) Pull-in voltage (Vpi)

Source: www.bruker.com

Counter electrode

XYZ stageXYZ stage

38Challenge the future

EPI probe calibration Experimental setup

Variables: Differential gap (Δd) Pull-in voltage (Vpi) Length (L) Width (b)

Source: www.bruker.com

Counter electrode

XYZ stage

Aspheric lens

39Challenge the future

EPI probe calibration Calibration mode

Source: www.bruker.com

Variable: Pull-in voltage (Vpi)

Source: www.bruker.com

40Challenge the future

EPI probe calibration Width scan

x

Source: www.bruker.com

Variable: Width (b)

Source: www.bruker.com

41Challenge the future

EPI probe calibration Length scan

y

Source: www.bruker.com

Variable: Length (L)

Source: www.bruker.com

42Challenge the future

EPI probe calibration Experimental setup

Source: www.bruker.com

Source: www.bruker.com

43Challenge the future

Probe calibration Experimental setup

Optical path

Laser

Aspheric lens

Quadrant detector

44Challenge the future

Probe calibration Experimental setup

45Challenge the future

Probe calibration Experimental setup

46Challenge the future

Probe calibration Experimental setup

47Challenge the future

Probe calibration Experimental setup

48Challenge the future

Probe calibration Experimental setup

49Challenge the future

Results

Performance check: Differential gap (Δd) Pull-in voltage (Vpi) Length (L) Width (w)

Calibration test probe

50Challenge the future

ResultsWidth scan

Width

Position stage [µm]

QD

ou

tpu

t [V

]

Width scan EPI

51Challenge the future

ResultsLength scan

Length

Position stage [µm]

QD

ou

tpu

t [V

]

Length scan EPI

52Challenge the future

ResultsLength/Width scan

Width [µm] Length[µm]

EPI 50.59 ±0.15 467.34 ±0.40

Bruker WL 50.71 ±0.3 466.02 ±0.3

Error [µm] 0.12 ±0.33 1.32 ±0.5

Error [%] 0.23 0.28

53Challenge the future

ResultsCalibration test probe

Probe Spring constant k [N/m] Δk [%]

NanoWorld EPI

1 (compliant)

0.17

2 (stiff) 46

0.143 16.2

15.38 66.6

Requirement: Accuracy 5 -15 %

54Challenge the future

Conclusions

Performance check: EPI method can be implemented as integrated

system

Calibration test probe: EPI calibration method is able to determine the

spring constant of AFM probes Accuracy system not within requirements

55Challenge the future

Recomendations

Increase accuracy by improving model Include fringing field effects Tapered end

beam beam

My model Reality

56Challenge the future

Recommendations

Increase accuracy by improving model Include fringing field effects Tapered end

57Challenge the future

Recommendations

Increase accuracy by improving model Include fringing field effects Tapered end

Cantilever beam

58Challenge the future

Recommendations

Increase accuracy by improving model Include fringing field effects Tapered end

New model in progress

59Challenge the future

Feasibility study for AFM probe calibration using the probe’s electrostatic pull-in instabilityQuestions?

60Challenge the future

Extra sheetWidth scan

Width

Position stage [µm]

QD

ou

tpu

t [V

]

Width scan EPI

61Challenge the future

Extra sheetWidth scan

62Challenge the future

Laser + Lens

Quadrant detector

Laser beam

Width cantilever beam

Extra sheetWidth scan

63Challenge the future

Extra sheetExtended model