Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory...

48
Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex systems (21-23 june 2010) [email protected]

Transcript of Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory...

Page 1: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Modelling global epidemics: theory andsimulations

Marc BarthélemyCEA, IPhT, France

Manchester meeting Modelling complex systems (21-23 june 2010)

[email protected]

Page 2: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Outline

Introduction

Metapopulation model: applications

SARS Testing strategies

Metapopulation model: theory

Pandemic threshold

Discussion and perspectives

Page 3: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Epidemiology: an interdisciplinary field

TransportationTransportation systemssystems

Biology,Biology,virologyvirology

UrbanismUrbanism

SocialSocialnetworksnetworks

Page 4: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Epidemiology and statistical physics

Microscopic level (bacteria, viruses): compartments

Understanding and killing off new viruses

Quest for new vaccines and medicines

Macroscopic level (communities, species)

Integrating biology, movements and interactions

Vaccination campaigns and immunization strategies

statistical physics

Page 5: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Pandemic spread modeling: past and current

Human movements and disease spread

Black death (14th)Spatial diffusionModel:

Page 6: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Pandemic spread modeling: past and current Complex movement patterns: different means, different scales (SARS):

Importance of transportation networks (air travel)

Nov. 2002

Mar. 2003

Page 7: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Modeling in Epidemiology: parameters,realism, simplicity, …

Pandemic modelling(metapopopulation)Social network Intra urban

spread

Page 8: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Metapopulation model

Baroyan et al, 1969:≈40 russian cities

Rvachev & Longini, 1985: 50 airports worldwide

Grais et al, 1988: 150 airports in the US

Hufnagel et al, 2004: 500 top airports worldwide

Colizza et al, 2006: >99% of the total traffic

l j pop j

pop l

Page 9: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Stochastic model:

• SIS model:

• SIR model:

• SI model:

λ: proba. per unit time of transmitting the infection µ: proba. per unit time of recovering

One population: Simple models of epidemics

Page 10: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Stochastic model:

• SIS or SIR model (mean-field):

λ: proba. per unit time of transmitting the infection µ: proba. per unit time of recovering

One population: Simple models of epidemics

Page 11: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Modeling: SIR with spatial diffusion i(x,t):

where: λ = transmission coefficient (fleas->rats->humans) µ=1/average infectious period S0=population density, D=diffusion coefficient

One population: diffusion effect

Page 12: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Metapopulation model(mean-field)

Rvachev Longini (1985)

Flahault & Valleron (1985); Hufnagel et al, PNAS 2004, Colizza, Barrat, Barthelemy, VespignaniPNAS 2006, BMB, 2006. Theory: Colizza & Vespignani, Gautreau & al, …

Inner city term(one population homogeneous mixing)

Travel term(network)

Transport operator (mean-field):

Reaction-diffusion modelsFKPP equation

Page 13: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Stochastic model

compartmental model + air transportation data

Susceptible

Infected

Recovered

Page 14: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Metapopulation model

!

pPAR,FCO ="PAR,FCONPAR

#t

Travel probabilityfrom PAR to FCO:

ξPAR,FCO

ξPAR,FCO

# passengersfrom PAR to FCO(input data)

Page 15: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Metapopulation model(mean-field)

Reaction-diffusion models Reaction at each node Diffusion

FKPP equation (continuous limit, d=1)

Page 16: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Metapopulation model: Applications

Testing against historical examples

SARS (2003)

Testing strategies

Antivirals: cooperative versus egoistic strategies

Travel restrictions

Page 17: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Application: SARS

pop j

pop i

refined compartmentalization

parameter estimation: clinical data + local fit

geotemporal initial conditions: available empirical data

modeling intervention measures: standard effective modeling

Page 18: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

SARS: predictions

Page 19: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

SARS: predictions (2)

Colizza, Barrat, Barthelemy & Vespignani, bmc med (2007)

Page 20: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

More from SARS - Epidemic pathways

For every infected country:

where is the epidemic coming from ?

- Redo the simulation for many disorder realizations(same initial conditions)

- Monitor the occurrence of the paths(source-infected country)

Page 21: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex
Page 22: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Existence of pathways:

confirms the possibility of epidemic forecasting !

Useful information for control strategies

SARS- what did we learn ?

Metapopulation model, no tunable parameter:

good agreement with WHO data !

Page 23: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Application of the metapopulation model: effect ofantivirals

Threat:Flu

Question: use of antivirals

Best strategy for the countries ?

Model:

Etiology of the disease (compartments)

Metapopulation+Transportation mode (air travel)

Page 24: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Predictions: pandemic flu

Page 25: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Effect of antivirals

Comparison of strategies

“Uncooperative”: each country stockpiles AV

“Cooperative”: each country gives 10% (20%) of its own stock

Baseline: reference point (no antivirals)

Travel restrictions

Page 26: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Travel limitations….

Colizza, Barrat, Barthélemy, Valleron, Vespignani. PLoS Medicine (2007)

Page 27: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Effect of antivirals: Strategy comparison

Best strategy: Cooperative !

Colizza, Barrat, Barthelemy, Valleron, Vespignani, PLoS Med (2007)

Page 28: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Metapopulation model: theory

Theoretical questions

Effect of heterogeneity on the predictability

Arrival time ?

Epidemic threshold ? At what conditions can a diseasebecome a pandemic ?

Page 29: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

One outbreak realization:

Another outbreak realization ? Effect of noise ?

? ? ? ? ? ?

Predictability

Page 30: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Overlap measure

Similarity between 2 outbreak realizations:

Overlap function

time t time t

1)( =! t

time t time t

1)( <! t

Page 31: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Predictability

no degree fluctuationsno weight fluctuations

+ degreeheterogeneity

+ weightheterogeneity

Colizza, Barrat, Barthelemy & Vespignani, PNAS (2006)

Page 32: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Effect of heterogeneity:

degree heterogeneity: decreases predictability

Weight heterogeneity: increases predictability !

Good news: Existence of preferred channels !

Epidemic forecast, risk analysis of containment strategies

j

lwjl

Predictability

Page 33: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Once a city is infected:

- what is the condition for non-extinction in the city ? (R0>1)

- will it spread to other cities ?

- will it invade the whole world ?

- can we express a condition of the form R*>1 ?

Pandemic threshold

Page 34: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

One population: SIR (stochastic version)

Page 35: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

• Epidemic threshold =critical point• Prevalence i =orderparameter

Epidemic Threshold λc (SIR, SIS,…)

i

λλ c

Active phaseAbsorbingphase

Finite prevalenceVirus death

Density of infected

One population: main results

Basic reproductive number:

Page 36: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Probability of extinction (stochastic version):

One population: main results

Number of infected individuals at t=0

Page 37: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Assumptions:

- Cities with the same population N

- p: probability per unit time for any individual to jump from one node to one of its neighbor

Many populations connectedthough a network

Page 38: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Assumptions (cont’d): Uncorrelated, complexnetwork:

- Degree distribution P(k), moments

- Percolation threshold:

- Scale-free networks:

Many populations connectedthough a network

Page 39: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Building block: two cities

City 0 City 1

Proba p

Proba q

p=0.01, q=0R0=2

Page 40: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Arrival time probability in city 1 of an infected individual:

Building block: two cities

Cumulative:

Page 41: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Condition for a network

Condition for a pandemic spread:

Explicitely (SIR):

Barthelemy, Godreche, Luck (2010)

Page 42: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Consequences (1)

Scale-free network:

Travel restrictions inefficient !

In agreement with a simple mean-field argument[Colizza & Vespignani, PRL (2007)]

Page 43: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Consequences (2)

d=1: pc=1 finite cluster

Page 44: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Consequences (3)

d=2 and Bethe lattice: pc<1

Fraction ofinfected

cities

Page 45: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Conclusions

Metapopulation model

Works for modeling pandemic spread

Mostly numerical results, many theoretical problems(reaction-diffusion on networks)

Existence of a “pandemic threshold” connected topercolation

Page 46: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Perspectives

Population and travel probabilities (broadly)distributed: effect on the pandemic threshold ?

Challenges of modern epidemiology:

Smaller scales ? (urban area)

Human mobility and city structure: statisticalcharacterization ? Models ?

Page 47: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Numerical studies on the metapopulation model

- A. Barrat (CPT, Marseille)

- V. Colizza (ISI, Turin)

- A.-J. Valleron (Inserm, Paris)

- A. Vespignani (IU, Bloomington)

Theoretical analysis of the metapopulation model

- C. Godrèche (IPhT, CEA)

- J.-M. Luck (IPhT, CEA)

Collaborators (metapopulation model)

Page 48: Modelling global epidemics: theory and simulationsgalla/... · Modelling global epidemics: theory and simulations Marc Barthélemy CEA, IPhT, France Manchester meeting Modelling complex

Thank you.