19 Bubble Breakup

25
7/24/2019 19 Bubble Breakup http://slidepdf.com/reader/full/19-bubble-breakup 1/25 Tutorial: Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor Introduction The purpose of this tutorial is to provide guidelines for solving the flow break-up, and coalescence of gas bubbles in a gas-liquid bubble column reactor using a population balance approach coupled with the Eulerian multiphase model in  FLUENT  6.3. The population balance approach is used to solve for bubble flow and size distribution in an axisymmetric bubble column, for a population of six different bubble sizes. This tutorial demonstrates how to do the following:  Set up a two-phase, unsteady bubble column problem for an air-water bubble column using the Eulerian multiphase model.  Activate and setup a population balance model with six bubble sizes.  Solve the case using appropriate solver settings and solution monitors.  Postprocess the resulting data for bubble size distribution. Prerequisites This tutorial assumes that you are familiar with the  FLUENT interface, basic setup, solution procedures, and the use of the Eulerian multiphase mixture model. This tutorial does not cover the mechanics of using this model, but focuses on setting up the population balance problem for bubble size distribution and solving it. The population balance module is provided as an add-on module with the standard  FLUENT licensed software. A special license is required to use the population balance module. If you have not used the Eulerian multiphase model before, refer to the  FLUENT  User’s Guide and the  FLUENT  Tutorial Guide. Also, refer the Population Balance Model Man- ual [2] for a comprehensive overview of the  FLUENT  population balance model and its application in solving multiphase flows involving a secondary phase with a size distribution. Problem Description Figure shows the schematic representation of the air-water bubble column of diameter of 0.29 m and height of 2 m. Air is injected into the water column through an inlet at the bottom, which has a diameter of 0.23 m, with a constant velocity of 0.02 m/s. The c Fluent Inc. January 10, 2007  1

Transcript of 19 Bubble Breakup

Page 1: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 1/25

Tutorial: Modeling Bubble Breakup and Coalescence in a

Bubble Column Reactor 

Introduction

The purpose of this tutorial is to provide guidelines for solving the flow break-up, andcoalescence of gas bubbles in a gas-liquid bubble column reactor using a population balanceapproach coupled with the Eulerian multiphase model in   FLUENT   6.3. The populationbalance approach is used to solve for bubble flow and size distribution in an axisymmetricbubble column, for a population of six different bubble sizes.

This tutorial demonstrates how to do the following:

•  Set up a two-phase, unsteady bubble column problem for an air-water bubble columnusing the Eulerian multiphase model.

•  Activate and setup a population balance model with six bubble sizes.

•  Solve the case using appropriate solver settings and solution monitors.

•  Postprocess the resulting data for bubble size distribution.

Prerequisites

This tutorial assumes that you are familiar with the  FLUENT interface, basic setup, solutionprocedures, and the use of the Eulerian multiphase mixture model. This tutorial does notcover the mechanics of using this model, but focuses on setting up the population balanceproblem for bubble size distribution and solving it.

The population balance module is provided as an add-on module with the standard  FLUENTlicensed software. A special license is required to use the population balance module.

If you have not used the Eulerian multiphase model before, refer to the  FLUENT  User’sGuide and the  FLUENT   Tutorial Guide. Also, refer the Population Balance Model Man-

ual   [2]   for a comprehensive overview of the   FLUENT   population balance model and itsapplication in solving multiphase flows involving a secondary phase with a size distribution.

Problem Description

Figure   1   shows the schematic representation of the air-water bubble column of diameterof 0.29 m and height of 2 m. Air is injected into the water column through an inlet atthe bottom, which has a diameter of 0.23 m, with a constant velocity of 0.02 m/s. The

c Fluent Inc. January 10, 2007   1

Page 2: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 2/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

initial diameter of the injected air bubbles is 3 mm. You will model this column as a 2D,axisymmetric column.

The injection of air causes the development of a turbulent flow pattern in the liquid column,which transports the bubbles throughout the column. Due to the effects of turbulence and

collisions between individual bubbles, the bubbles breakup and coalesce with each other.As a result, bubbles with a range of sizes are formed in the bubble column. The sizedistribution of the bubbles, plays a critical role in any mass transfer and reactions thatmay occur between the air and the liquid, as in a Fischer-Tropsch synthesis process. Henceresolving the bubble size distribution is an important task in the CFD analysis of bubblecolumn reactors. This can be accomplished using the population balance model in FLUENT.

Figure 1: Problem Schematic

Solution Strategy

1. In this tutorial, you will set up the two phase flow problem using the Eulerian mixturemutiphase model. The population balance model will be activated using TUI com-mands. The specialized panel for this model will be used to define the size distribution

problem. you will select the discrete method with six size bins to represent the thebubble size distribution. The volume ratio will be set to 4 with a minimum size of 0.001911 m or 1.911 mm. The six size bins correspond to the bubble diameters 0.012,0.00756, 0.004762, 0.003, 0.00189, and 0.001191 metres respectively. The size bins willbe chosen such that the inlet bubble size of 3 mm, i.e. 0.003 m, lies in the middle of the bin sizes. You will also activate the aggregation and breakage kernels and choosethe Luo model. The flow and population balance problem will be setup and solvedin transient mode until an equilibrium solution is reached. Finally, you will use thepostprocessing capabilities to analyze the flow and resulting size distribution.

2    c Fluent Inc. January 10, 2007

Page 3: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 3/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

2. The population balance model is used for solving multiphase flow problems wherethe secondary phase has a size distribution such as droplets, bubbles or crystals,which evolves and changes with the flow due to phenomena like nucleation, growth,aggregation or coalescence, and breakage.

The population balance model uses a balance equation, similar to the mass, energyand momentum balance, to track the changes in the size distribution. The size dis-tribution can be determined using one of the three approaches: the discrete method,the standard method of moments and the quadrature method of moments.   [2]

In this tutorial, you will use the discrete method to compute the bubble size distribu-tion. Here, the range of particle sizes in the particle size distribution is divided into afinite number of intervals or discrete “bins”. The bubble sizes chosen for the bins arerequired to be in geometric progression with the ratio of bubbles volumes of adjacentsize bins, or volume ratio, set to an integer power of 2. Thus the bubble diameters arein geometric progression with a size ratio which is the cube root of an integer powerof 2.

A transport equation is solved for each bin with a corresponding scalar, which repre-sents the volume fraction of gas in that bin. Thus, the sum of the scalars for all thediscrete bins is equal to the gas phase volume fraction. Source terms in the transportequation account for the “birth” and “death” of bubbles in each size bin, when theyenter or leave the bin due to breakup and coalescence. These terms are computedusing specific models, or “kernels”, which are published in the scientific literature.In this tutorial, you will use the breakup and coalescence kernels for bubble columnsdeveloped by Luo et.al.   [3]

After the transport equations for the scalars have been solved, the value of the numberdensity function for each size bin is calculated. This is simply the volume fractionof each bin i.e., the scalar value, divided by the volume of a single bubble, yielding

the number of bubbles per unit volume or number density. The values of the numberdensity function for all size bins gives the bubble size distribution. The transportequations from the population balance model and the momentum equations are cou-pled due to user-defined drag based on Sauter mean diameter computed from theobtained size distribution.

Both the number density function and the Sauter diameter are available in  FLUENT forpostprocessing. Specialized postprocessing functions for the population balance modelhave been added to  FLUENT You will report and plot volume and surface averagesof the size distribution. You will also compute the statistical moments of the sizedistribution, which represent aggregate quantities such as the total number of bubblesor the total bubble surface area per unit volume. Please refer to [2],   [3], and [4]  for

details regarding the population balance model and its application to bubble columnreactors.

c Fluent Inc. January 10, 2007   3 

Page 4: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 4/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Preparation

1. Copy the file  bubcol new2.msh.gz   into your working folder.

2. Start the 2D double precision (2ddp) version of  FLUENT.

Setup and Solution

Step 1: Grid

1. Read the mesh file  bubcol new2.msh.

2. Check the grid.

Grid −→Check

3. Display the grid.

Display −→Grid...

4. Rotate the grid display.

Display −→Views...

(a) Select axis  from the  Mirror Planes  selection list to enable the symmetry.

(b) Click  Camera...  to open the  Camera Parameters  panel.

i. Drag the indicator of the dial with the left mouse button in the counter-clockwise direction until the upright view is displayed (Figure  2).

GridFLUENT 6.3 (2d, dp, pbns, lam)

 

Figure 2: Grid Display

ii. Click  Apply and close the  Camera Parameters  panel.

4   c Fluent Inc. January 10, 2007

Page 5: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 5/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

(c) Click  Apply  and close the  Views  panel.

5. Close the Grid Display  panel.

Step 2: Models

1. Define the solver parameters.

Define  −→ Models −→Solver...

(a) Select Axisymmetric  from the  Space   list.

(b) Select Unsteady from the  Time   list.

(c) Click  OK  to close the  Solver  panel.

2. Enable the Eulerian multiphase model.

Define  −→ Models −→Multiphase...

(a) Select Eulerian  from the  Model  list.

(b) Click  OK  to close the  Multiphase Model panel.

3. Enable turbulence model.

Define  −→ Model −→Viscous...

(a) Select standard  k-epsilon (2 eqn)  from the  Model  list.

(b) Select Mixture  from the  k-epsilon Multiphase Model   list.

(c) Click  OK  to close the  Viscous Model  panel.

c Fluent Inc. January 10, 2007   5

Page 6: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 6/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Step 3: Materials

1. Copy a new material from the materials database.

Define  −→Materials...

(a) Click  Fluent Database...  to open the  Fluent Database Materials  panel.

(b) Select   water-liquid (h2o<l>)  from the  Fluent Fluid Material  list.

(c) Click  Copy  and close the  Fluent Database Materials  and  Materials  panel.

Step 4: Phases

1. Define new phases.

Define  −→Phases...

(a) Set  water-liquid as the   primary-phase.(b) Set  air  as the   secondary-phase.

Step 5: Operating Conditions

1. Specify the following operating conditions

Define  −→Operating Conditions...

(a) Enable Gravity and set the  Gravitational Acceleration to a value of  -9.81 m/s2 inthe  X  direction.

(b) Enable  Specified Operating Density   and specify a value of   1.225   for   OperatingDensity (kg/m3).

(c) Click  OK  to close the  Operating Conditions  panel.

Step 6: Setup the Population Balance Model

1. Enable the population balance model.

(a) Type the TUI command  define models addon-module in the console.

(b) Enter  5  for the module number to enable the  Population Balance  model.

The GUI now changes and an item is added to the  Models  menu.

6    c Fluent Inc. January 10, 2007

Page 7: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 7/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

2. Set the parameters for the population balance model.

Define  −→ Models −→Population Balance...

(a) Select Discrete  from the  Method   list.

(b) Select Geometric Ratio  from the  Definition   list.

(c) Select air  from the  Phase  drop-down list.

(d) Enter 6  for  Number of Bins,  4  for  Ratio Exponent  and   0.001911 m for  Min.

(e) Click the Print Bins  button to print the discrete bubble sizes for each bin.

(f) Enable  Aggregation Kernel  and  Breakage Kernel  from the  Phenomena  group box.

(g) Select   luo-model   from the   Aggregation Kernel   and   Breakage Kernel  drop-downlists.

(h) Click  OK  to close the  Population Balance Model  panel.In the  Phases   panel for air, the   Diameter  property changes to  Sauter-mean   i.e. the Population Balance model is automatically set to calculate the  Sauter diameter  for the mean bubble size.

c Fluent Inc. January 10, 2007   7 

Page 8: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 8/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Step 7: Boundary Conditions

Define  −→Boundary Conditions...

1. Set boundary conditions for inlet.

(a) Select vinlet  from the  Zone  selection list, and  air  from the  Phase  drop-down listand click  Set.....

i. Click the  Mometum tab:

A. Select   Magnitude, Normal to Boundary   from the   Velocity SpecificationMethod  drop-down list.

B. Enter 0.02  m/s for the  Velocity Magnitude  drop-down list.

ii. Click the  Multiphase  tab.

A. Enter 1  for  Volume Fraction.

B. Make sure that  Specified Value   is selected from the  Boundary Condition

drop-down lists for the population balance variables (air Bin-0  throughair Bin-5).

C. Enter 1  for  Boundary Value   for  air Bin-3  and retain the default value of 0  for the other variables.

D. Click  OK  to close the  Velocity Inlet  panel.

2. Set turbulence boundary conditions at the inlet.

(a) Select vinlet from the Zone selection list, and  mixture from the  Phase drop-downlist, and click  Set....

i. Click the  Momentum   tab and select   Intensity and Hydraulic Diameter   from

the  Specification Method  drop-down list.

ii. Enter  5 % for  Turbulence Intensity  and  0.145  m for  Hydraulic Diameter.

iii. Click  OK to close the  Velocity Inlet  panel.

3. Set the boundary conditions for the outlet.

(a) Select outlet  from the  Zone selection list, and  air  from the  Phase  drop-down list,and click  Set....

i. Click the  Multiphase  tab.

A. Enter 1  for  Backflow Volume Fraction.

B. Set the value of  air Bin-3  to  1 and retain  0  for the other variables in thePopulation Balance Boundary Value  group box.

8    c Fluent Inc. January 10, 2007

Page 9: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 9/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

4. Set turbulence boundary conditions at the outlet.

(a) Select outlet from the  Zone  selection list, and  mixture  from the  Phase  drop-downlist, and click  Set....

i. Select   Intensity and Hydraulic Diameter   from the   Turbulence Specification

Method  drop-down list.ii. Enter   5  % for  Backflow Turbulence Intensity  and   0.145  m for   Backflow Hy-

draulic Diameter.

iii. Click  OK to close the  Pressure Outlet panel.

5. Close the Boundary Conditions  panel.

Step 8: Set Solver Controls

Solve −→ Controls −→Solution...

1. Set the  Under-Relaxation Factors  as follows:

Under-Relaxation Factors Value

Pressure   0.3

Momentum   0.2

Volume Fraction   0.2

Turbulence Kinetic Energy   0.8

Turbulence Dissipation Rate   0.8

air Bin   0.8

2. Select Phase Coupled SIMPLE  from the  Pressure-Velocity Coupling  drop-down list.

3. Retain the default settings for the  Discretization  parameters.

Step 9: Initialize the Solution and Apply a Patch

1. Mark the region for adaption.

Adapt −→Region...

(a) Select Inside  from the  Options  list and  Quad  from the  Shapes   list.

(b) Enter the values for the coordinates as shown in the table.

Parameter ValueX Min   1.8

X Max   2.0

Y Min   0

Y Max   0.145

(c) Click  Mark to select the region for adaption.

(d) Close the Region Adaption panel.

c Fluent Inc. January 10, 2007   9 

Page 10: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 10/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

2. Initialize the solution using the following settings.

Solve −→ Initialize −→Initialize...

(a) Enter 0.1 (m2/s2) for Turbulence Kinetic Energy and  0.25 (m2/s3) for TurbulenceDissipation Rate   in the   Initial Values  group box.

(b) Click   Init and close the  Solution Initialization  panel.

3. Patch the selected region.

Solve −→ Initialize −→Patch...

(a) Select air  from the  Phase  drop-down list.

(b) Select  Bin 3  from the  Variable  selection list and enter  1 for Value.

(c) Select hexahedron-r0  for  Registers to Patch.

(d) Click  Patch.

(e) Select Volume Fraction  from the  Variable  selection list and set  Value  to  1.

(f) Click  Patch  and close the  Patch  panel.

Step 10: Solution Monitors

1. Set residual monitors.

Solve −→ Monitors −→Residual...

(a) Enable Plot from the  Options   list.

(b) Retain the default Convergence Criteria  for all parameters.

(c) Click  OK  to close the  Residual Monitors  panel.

2. Set surface monitors.

Surface −→Point...

10    c Fluent Inc. January 10, 2007

Page 11: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 11/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

(a) Enter x0 (m)  =  1.5 and  y0 (m) =  0.

(b) Keep  New Surface Name  as  pointF-5 and click  Create.

3. Create surface monitors for three of the bubble sizes.

Solve−→

Monitors−→

Surface...(a) Increase the number of  Surface Monitors  to  3.

(b) Enable Plot, Print, and  Write   for each monitor.

(c) Select Time Step  from the  When  drop-down list for each monitor.

(d) Click  Define...   for  monitor-1  and specify the following parameters.

i. Select  Vertex Average  from the  Report Type  drop-down list.

ii. Set Plot Window  to  1.

iii. Select  Population Balance Variables...   and   Bin-0 fraction   from the  Report of drop-down list.

iv. Select  air  from the  Phase  drop-down list.

v. Select  point-5 from the  Surfaces   selection list.

vi. Click  OK to close the  Define Surface Monitor  panel.

(e) Click  Define...   for  monitor-2  and specify the following parameters.

i. Set Plot Window  to  2.

ii. Select  Bin-3 fraction  from the  Report of  drop-down list.

iii. Click  OK to close the  Define Surface Monitor  panel.

(f) Click  Define...   for  monitor-3  and specify the following parameters.

i. Set Plot Window  to  3.ii. Select  Bin-5 fraction  from the  Report of  drop-down list.

iii. Click  OK to close the  Define Surface Monitor  panel.

(g) Click  OK  to close the  Surface Monitors  panel.

4. Save the initial case file (bubcol new2-initial.cas.gz).

Step 11: Solution

1. Start the calculations using the following settings.

Solve −→Iterate...

(a) Enter   0.01   s for   Time Step Size,   5000   for   Number of Time Steps, and   100   forMax Iterations per Time Step.

(b) Click  Iterate  to start the calculations (Figure 3).

Note:  This will take several hours to converge.

2. Save the case and data files (bubcol new2.cas.gz and  bubcol new2.dat.gz).

c Fluent Inc. January 10, 2007   11

Page 12: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 12/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Scaled Residuals (Time=5.0000e+01)FLUENT 6.3 (axi, dp, pbns, eulerian, ske, unsteady)

Iterations

1050010000950090008500800075007000650060005500

1e-02

1e-03

1e-04

1e-05

1e-06

vf-airbin-5-fractiobin-4-fractiobin-3-fractiobin-2-fractiobin-1-fractiobin-0-fractioepsilonkv-airv-wateru-airu-water

continuityResiduals

Figure 3: Scaled Residuals

Convergence history of Bin-0 fraction on point-5 (in SI units) (Time=5.0000e+01)FLUENT 6.3 (axi, dp, pbns, eulerian, ske, unsteady)

Time Step

fractionBin-0

AverageVertex

5e+034.5e+034e+033.5e+033e+032.5e+032e+031.5e+031e+035000

3.00e-03

2.50e-03

2.00e-03

1.50e-03

1.00e-03

5.00e-04

0.00e+00

Figure 4: Convergence History of  air Bin-0

12    c Fluent Inc. January 10, 2007

Page 13: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 13/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Convergence history of Bin-3 fraction on point-5 (in SI units) (Time=5.0000e+01)FLUENT 6.3 (axi, dp, pbns, eulerian, ske, unsteady)

Time Step

fractionBin-3

AverageVertex

5e+034.5e+034e+033.5e+033e+032.5e+032e+031.5e+031e+035000

6.00e-01

5.00e-01

4.00e-01

3.00e-01

2.00e-01

1.00e-01

0.00e+00

Figure 5: Convergence History of  air Bin-3

Convergence history of Bin-5 fraction on point-5 (in SI units) (Time=5.0000e+01)FLUENT 6.3 (axi, dp, pbns, eulerian, ske, unsteady)

Time Step

fractionBin-5

AverageVertex

5e+034.5e+034e+033.5e+033e+032.5e+032e+031.5e+031e+035000

5.00e-05

4.50e-05

4.00e-05

3.50e-05

3.00e-05

2.50e-05

2.00e-05

1.50e-05

1.00e-05

5.00e-06

0.00e+00

Figure 6: Convergence History of  air Bin-5

c Fluent Inc. January 10, 2007   13 

Page 14: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 14/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Step 12: Postprocessing the Results

1. Display filled contours of air volume fraction (Figure 7).

Display −→Contours..

(a) Select Phases...   and  Volume Fraction  from the  Contours of  drop-down list.

(b) Select   air   from the  Phase  drop-down list, disable  Auto Range   from the  Optionslist and enter  0  for  Min  and  0.1  for Max.

(c) Click  Display.

Figure 7: Contours of Volume Fraction of Air (magnified)

The changes in phase from inlet to outlet, and areas with low volume fraction as well as dead zones can be observed.

2. Create a vector plot for water velocity and observe the recirculation patterns (Fig-ure 8).

Display −→Vectors...

(a) Select Velocity  and  water  from the  Vectors of  and  Phase  drop-down lists respec-

tively.(b) Select  Phases...   and  Volume fraction  from the  Color By  drop-down lists.

(c) Select air  from the  Phase  drop-down list.

(d) Click  Display.

14   c Fluent Inc. January 10, 2007

Page 15: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 15/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Figure 8: Water Velocity Vector Colored by Volume Fraction of Air

3. Create a contour plot of population balance for air phase (Figure 9).

(a) Select   Population Balance Variables...   and  Bin-3 fraction   from the   Contours of drop-down lists.

(b) Select air  from the  Phase  drop-down list.

(c) Enter 0  for  Min  and  1 for Max and click Display.

4. Create a contour plot of number density contours for air phase (Figure 10).(a) Select Population Balance Variables...   and  Number Density of Bin-3 fraction  from

the  Contours of  drop-down lists.

(b) Select air  from the  Phase  drop-down list and click  Display.

c Fluent Inc. January 10, 2007   15

Page 16: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 16/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Figure 9: Contours of UDS (air Bin-3) for Air Phase

Figure 10: Contours of UDS (Number Density of Bin-3) for Air Phase

16    c Fluent Inc. January 10, 2007

Page 17: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 17/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

5. Calculate the moments of the bubble size distribution for the fluid region and theoutlet.

Report −→ Population Balance −→Moments...

(a) Increase Number Of Moments  to  4.

(b) Select fluid  from the  Cell Zones  selection list and click  Print.

The values of the moments are printed in the  FLUENT  window as shown:

>

Population Balance Moments over Surface(s) (default-interior)

Moment Number Moment

------------------------- ------------------------

0 59336.999

1 640.80173

2 9.2473485

3 0.18953551

Population Balance Moments over Volume(s) (fluid)

Moment Number Moment

------------------------- ------------------------

0 59337.55

1 639.95687

2 9.2472871

3 0.19025727

6. Plot the volume averaged discrete number density function distribution for different

bubble sizes for the fluid volume.

Report −→ Population Balance −→Number Density...

(a) Select Volume Average  from the  Report Type   list.

(b) Select Discrete Number Density  from the  Fields   selection list.

(c) Select Histogram from the  Plot Type   list.

Histogram is enabled only after you select  Discrete Number Density from the  Fieldsselection list.

(d) Select fluid  from the  Cell Zones   selection list.

(e) Click  Print to print the values in the  FLUENT  console.

(f) Click  Plot  to plot the histogram of the volume averaged number density distri-bution with bubble diameter (Figure  11).

You can also try plotting the length and volume based number density distribution.

7. Create a surface x=1 with   x-coordinate equal to 1.

Surface −→Iso-Surface...

(a) Select Grid...   and  X-Coordinate  from the  Surface of Constant  drop-down list.

c Fluent Inc. January 10, 2007   17 

Page 18: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 18/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Figure 11: Volume Averaged Number Density Distribution Histogram.

(b) Enter  1  for  Iso-Values.

(c) Enter  x=1  for New Surface Name.

(d) Click  Create.

(e) Close the Iso-Surface  panel.

8. Plot the surface averaged discrete number density function distribution for differentbubble sizes for the surface at   x=1.

Report −→ Population Balance −→Number Density...

(a) Select Surface Average  from the  Report Type   list.

(b) Select  Discrete Number Density  from the  Fields   selection list.

(c) Select Histogram from the  Plot Type   list.

(d) Select  x=1  from the  Surfaces   selection list.

(e) Click  Print to print the values in the  FLUENT  console.

(f) Click  Plot  to plot the histogram of the surface averaged number density distri-bution with bubble diameter (Figure  12).

18    c Fluent Inc. January 10, 2007

Page 19: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 19/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Figure 12: Surface Averaged Number Density Distribution Histogram.

9. Plot the distribution along the central axis of the bubble column for each scalar(Figure 13).

Plot −→XY Plot...

(a) Select Population Balance Variables...   and  Bin-3   from the  Y Axis Function  drop-down lists.

(b) Select air  from the  Phase  drop-down list.

(c) Select axis  from the  Surfaces   selection list.

(d) Click  Axes...  to open the  Axes - Solution XY Plot panel.

i. Disable  Auto Range  from the  Options   list.

ii. Enter  1.8 for  Maximum, and click  Apply.

iii. Close the  Axes-Solution XY Plot  panel.

(e) Click  Plot to see the distribution.

You can see the initial bubble size distribution.

c Fluent Inc. January 10, 2007   19 

Page 20: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 20/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Figure 13: Distribution of Bubble Size Along the Axis for  air Bin-3

The  air Bin-3  (initial bubble size) decreases from inlet to outlet.

(f) Close the  Solution XY Plot  panel.

Note:  Breakup and coalescence are irrelevant in the freeboard region, which does not contain water.

10. Create and plot a custom field function that calculates the fraction of air containedin a bubble size corresponding to  Bin-3.

Define  −→Custom Field Functions...

20    c Fluent Inc. January 10, 2007

Page 21: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 21/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

(a) Select Population Balance Variables...   and  Bin-3 fraction  from the  Field Functionsdrop-down lists.

(b) Select air  from the  Phase  drop-down list.

(c) Click the Select button to include this variable.

(d) Click the multiplication sign x.

(e) Select Phases...   and Volume fraction  from the  Field Functions  drop-down list andclick the  Select  button.

(f) Enter  discrete-size-3-fraction  for  New Function Name.

(g) Click  Define  to create the function.

(h) Close the Custom Field Function Calculator  panel.

11. Plot the contours of the custom field function discrete-size-3-fraction  (Figure 14).

Display −→Contours...

(a) Select  Custom Field Functions...   and  discrete-size-3-fraction  from th   Contours of drop-down list.

(b) Disable  Auto Range  and enter  0 for Min and  0.04 for Max.

(c) Click  Display.

Figure 14: Contours of Custom Field Function  discrete-size-3-fraction  (Magnified)

(d) Close the Contours  panel.

12. Plot contours of the distribution of the Sauter diameter (Figure 15).

Display −→Contours...

(a) Select Properties...from the  Contours of  drop-down list.

c Fluent Inc. January 10, 2007   21

Page 22: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 22/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Figure 15: Contours of Sauter Diameter

(b) Select  air  from the  Phase  drop-down list click  Display.

(c) Select  Diameter   from the  Contours of  drop-down list as the fluid property forplotting.

The  Diameter  option is available only after selecting  air.

13. Similarly, plot the histogram of the Sauter diameter distribution in the fluid volume

(Figure 16).

Plot −→Histogram...

22    c Fluent Inc. January 10, 2007

Page 23: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 23/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

(a) Select Properties...   from the  Histogram of  drop-down list.

(b) Select air  from the  Phase  drop-down list.

(c) Select Diameter  from the  Histogram of  drop-down list as the fluid property.

(d) Click   Plot   to get a histogram of the Sauter diameter distribution in the fluidvolume.

You can also click  Print  to print the distribution in the  FLUENT   console.

You can now see the distribution of the length number density of bubbles with Sauter diameter.

c Fluent Inc. January 10, 2007   23 

Page 24: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 24/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

Figure 16: Histogram of Sauter Diameter Distribution

Suggested Exercises

1. Calculate the gas hold-up in the column using the volume integration tools in FLUENTand knowing the initial dimensions of the water column.

2. Rerun the case for a finer bubble size distribution using a geometric volume ratio of 

2 around the inlet bubble diameter of 3 mm.

Summary

The population balance approach is used to solve for the bubble size and flow distributionin an axisymmetric bubble column. The discrete method is chosen to directly calculate thebubble size distribution for a population of six different bubble sizes. The set up, solutionprocess and postprocessing of gas-liquid multiphase flows with a size distribution using thepopulation balance model in  FLUENT   is illustrated.

References

[1]  FLUENT  Users Guide, Fluent Inc., 2003.

[2]  FLUENT  6: Population Balance Model Manual, Fluent Inc., 2004.

[3] Luo, Hean; Svendsen, Hallvard F., Theoretical model for drop and bubble breakup inturbulent dispersions, AIChE Journal v. 42, no. 5, May 1996, pp. 1225-1233.

[4] Sanyal, J.; Vasquez, S.; Roy, S.; Dudukovic, M.P., Numerical simulation of gas-liquid

24   c Fluent Inc. January 10, 2007

Page 25: 19 Bubble Breakup

7/24/2019 19 Bubble Breakup

http://slidepdf.com/reader/full/19-bubble-breakup 25/25

Modeling Bubble Breakup and Coalescence in a Bubble Column Reactor 

dynamics in cylindrical bubble column reactors, Chemical Engineering Science, v. 54, no.21, 1999, p. 5071-5083.