Download - Topic 4 Industrial Power Quality

Transcript
  • 11/3/2014

    1

    Topic4Topic4INDUSTRIALINDUSTRIALPOWERQUALITYPOWERQUALITYBEF44903BEF44903

    By:Engr.Dr.Kok BoonChing (JEK2013)

    1

    BEF44903 IndustrialPowerSystems Topic4

    OutlinesOutlines4.1MotorStartingStudies

    2

    4.2ApplicationofIndustrialPowerFactorCorrection

    4.3HarmonicsTreatmentinIndustrialPowerSystems

    4 4 V lt S A l i4.4VoltageSagAnalysis

    4.5FlickerAnalysis

  • 11/3/2014

    2

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesDirectonDirectonlinestartinglinestarting Whenitisswitchedon,the

    motor behaves like a

    3

    motorbehaveslikeatransformerwithitssecondary,formedbytheverylowresistancerotorcage,inshortcircuit.

    Thereisahighinducedcurrentintherotorwhichresultsinacurrentpeakinthemainssupplypp y

    Currentonstarting=5to8ratedCurrent

    Torqueonstarting(ST)=0.5to1.5ratedtorque(RT)

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesStarStardeltastartingdeltastarting Theprincipleistostartthe

    motor by connecting the star

    4

    motorbyconnectingthestarwindingsatmainsvoltage,whichdividesthemotorsratedstarvoltageby3.

    Thestartingcurrentpeak(SC)isdividedby3,SC=1.5to2.6RC(RCratedCurrent).

    As the starting torque (ST) isAsthestartingtorque(ST)isproportionaltothesquareofthesupplyvoltage,itisalsodividedby3:ST=0.2to0.5RT(RTRatedTorque)

  • 11/3/2014

    3

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesResistancestatorstartingResistancestatorstarting Themotorstartsatreduced

    voltage because resistors are

    5

    voltagebecauseresistorsareinsertedinserieswiththewindings.

    Whenthespeedstabilises,theresistorsareeliminatedandthemotorisconnecteddirectlytothemains.Thisprocessisusuallycontrolledp ybyatimer.

    Thestartingcurrentandtorquevaluesaregenerally:SC=4.5RCST=0.75RT

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesAutotransformerstartingAutotransformerstarting Inthefirstplace,the

    autotransformerisstar

    6

    connected,thenthemotorisconnectedtothemainsviapartoftheautotransformerwindings.

    Thestarconnectionisopenedbeforegoingontofullvoltage.Thisoperationtakesplacewhenthespeedbalancesoutattheendofthefirststep.

    The piece of autotransformerThepieceofautotransformerwindinginserieswiththemotorisshortcircuitedandtheautotransformerisswitchedoff.

    Thevaluesobtainedare:SC=1.7to4RCST=0.5to0.85RT

  • 11/3/2014

    4

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesSlipringmotorstartingSlipringmotorstarting Aslipringmotorcannotbe

    started direct on line with its

    7

    starteddirectonlinewithitsrotorwindingsshortcircuited,otherwiseitwouldcauseunacceptablecurrentpeaks.

    Resistorsmustthereforebeinsertedintherotorcircuitandthengraduallyshortcircuited.

    The current absorbed is moreThecurrentabsorbedismoreorlessproportionaltothetorquesupplied.Forexample,forastartingtorqueequalto2RT,thecurrentpeakisabout2RC.

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesSoftstarterstartingSoftstarterstarting Thisisaneffectivestarting

    system for starting and

    8

    systemforstartingandstoppingamotorsmoothly.

    Controlbycurrentlimitationsetsamaximumcurrent(3to4xRC)duringthestartingstageandlowerstorqueperformance.Thiscontrolisespeciallysuitable forturbomachines (centrifugalturbomachines (centrifugalpumps,fans).

    Controlbytorqueadjustmentoptimises torqueperformanceinthestartingprocessandlowersmainsinrushcurrent.Thisissuitedtoconstanttorquemachines.

  • 11/3/2014

    5

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesFrequencyconverterstartingFrequencyconverterstarting Thisisaneffectivestarting

    9

    systemtousewheneverspeedmustbecontrolledandadjusted.

    Itspurposesinclude: startingwithhighinertialoads, startingwithhighloadsonsupplieswithlowshortcircuitcapacity,

    optimisation ofelectricityconsumption adapted to the speedconsumptionadaptedtothespeedof"turbomachines".

    Itisasolutionprimarilyusedtoadjustmotorspeed,startingbeingasecondarypurpose.

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudies 10

  • 11/3/2014

    6

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesVoltagedrop/dip

    11

    PQduringMotorStarting

    InrushcurrentVoltageFlicker

    Voltage/CurrentHarmonics

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesEXAMPLE4.1:VoltagedropduringmotorstartingA i d t i l t l t

    12

    1MVA11kV/415V%Z=5%X/R=5

    ZS =(1.55+j1.66)m

    PCC

    SupplySystemAn industrial customer plans toconnect a new induction motorto the power supply system asshown in the diagram.

    Using the permissible level ofvoltage fluctuations as a

    M

    ZL =(25+j60)m75kW415VPFStart =0.3KSOC =7kVA/kW

    PCCvoltage fluctuations as acriterion, decide whether themotor should be installed.For the planned number of 20starts per hour the voltagechange: Kmax = 3%

  • 11/3/2014

    7

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC PowerFactorinSinusoidal Situations

    R

    13

    M MotorLoad(Linear)Vsin (t)

    R

    )sin()()sin()(

    101

    101

    tItitVtv

    rmsrms

    avgavgtrue IV

    PSP

    PF

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Forthepurelysinusoidal case,

    P

    14

    22

    )cos(22

    11

    1111

    22

    IV

    IVQP

    PPFPF avgdisptrue

    wherePFdisp iscommonlyknownasthedisplacementpowerfactor,andwhere(11)isknownasthepower factor angle

    )cos(22

    11 powerfactorangle.

  • 11/3/2014

    8

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC

    7.00EffectofPFonPowerLosses

    15

    2.00

    3.00

    4.00

    5.00

    6.00

    Power

    Losses

    (pu) Displacementpowerfactor

    greatlyaffectslosses

    0.00

    1.00

    2.00

    1.00 0.90 0.80 0.70 0.60 0.50 0.40

    P

    PF

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC PowerFactorinNonsinusoidal Situations When steady state harmonics are presented the

    16

    Whensteadystateharmonicsarepresented,thevoltagesandcurrentscanberepresentedbyFourierseriesoftheform,

    1

    0 )sin()(k

    kk tkVtv

    1

    2

    1

    2

    2 kkrms

    k

    krms V

    VV

    1

    0

    1

    )sin()(k

    kk

    k

    tkIti

    1

    2

    1

    2

    11

    2 kkrms

    k

    krms

    kk

    III

    ...)cos( 3211

    avgavgavgk

    kkkrmskrmsavg PPPIVP

  • 11/3/2014

    9

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Totalharmonicdistortion(ordistortionfactor),

    17

    %100%1001

    2

    2

    1

    2

    2

    V

    V

    V

    VTHD k

    k

    rms

    kkrms

    V

    %100%100 22

    2

    2

    II

    THD kk

    kkrms

    I %00%0011 II rms

    I

    21 )100/(1 Vrmsrms THDVV 21 )100/(1 Irmsrms THDII

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Truepowerfactor,

    1avgP

    18

    2211 )100/(1)100/(1

    1

    IVrmsrms

    avgtrue

    THDTHDIVPF

    EXAMPLE4.2Calculatethetruepowerfactorforthefollowingmeasurements:Frequency (Hz) Voltage (V) Current (A)Frequency(Hz) Voltage(V) Current(A)

    50 4150 5030150 9.525 1570250 5.840 5010350 1.235 5020

  • 11/3/2014

    10

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCEffectofPFtrueonPowerLosses

    19

    3.004.005.006.007.008.00

    wer

    Losses

    (pu)

    NonLinearLoad

    Linear Load

    0.001.002.00

    1.00 0.90 0.80 0.70 0.60 0.50 0.40

    Pow

    PF

    LinearLoad

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC 20

  • 11/3/2014

    11

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Averagepowerfactorvaluesforthemostcommonlyused

    equipmentandappliances

    21

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC

    Why to improve

    22

    Reductionof losses

    Reductionofcablesize

    Reductioninthecostofelectricity

    Whytoimprovethepowerfactor?

    Increaseinavailablepower

    Reductionofvoltagedrop

    oflosses(kW)incables

  • 11/3/2014

    12

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCFixedcapacitors Automaticcapacitorbankscto

    r?23

    Attheterminalsofinductivedevices(motors

    andtransformers)

    Atbusbars supplyingnumeroussmallmotors

    Atthebusbars ofageneralpowerdistribution

    board

    Attheterminalsofaheavilyloadedfeederve

    thep

    ower

    fac

    andinductive

    Incaseswherethelevelofloadisreasonably

    constant

    ycable

    How

    toim

    prov

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC(Design)(Design)

    IndentifySystemRequirements

    24

    CapacitorSizingConsiderharmonicscondition(capacitorvoltage > system voltage) frequency?

    CalculatecompensatedQaccordingtothesystem needs

    Totalsystemloading(P&Q) Frequencyandvoltage(system&capacitors) OverallPFandtargetPF

    AnalysisforPossiblePQResonanceeffect? Switchingtransient?

    voltage>systemvoltage),frequency? systemneeds.

  • 11/3/2014

    13

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC(Design)(Design)

    1121 QQQC 25

    2111 costancostan PFPFP PFDesired

    PFOriginal0.85 0.86 0.87 0.88

    0.50

    0 51

    KFactor

    0.51

    0.52

    0.53

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC(Design)(Design) Differencesinvoltage/frequencylevelbetweenthesupplysystem andthecapacitor usedwillproducedifferent injected reactive power into the system

    26

    differentinjectedreactivepowerintothesystem. Thefactortobeconsideredisasfollows:

    where

    2

    S

    CAPSCAP VVQQ

    S

    CAPSCAP f

    fQQ

    where,QCAP =EffectivereactivepowerprovidedbycapacitorQS =EffectivereactivepowerinjectedintosupplysystemVCAP =CapacitorvoltagelevelVS =Supplysystemvoltagelevel

  • 11/3/2014

    14

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCEXAMPLE4.3

    Incoming

    27

    Incoming3phase,50Hz,400V

    M1 M2C1 C2

    L1

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC 28

    Component DescriptionM1 8unitsof3phaseinductionmotor,eachoneratedat2kVA,

    0.78laggingpowerfactorwith88%efficiency.M2 24unitsofsinglephaseconveyormotor,connectedinbalance

    3phasecoordination,eachoneratedat300W,0.82laggingpowerfactorwith78%efficiency.

    L1 Lumploads,ratedat10kVAr,0.9laggingpowerfactor.C1 6 steps power factor corrector with the switching arrangementC1 6stepspowerfactorcorrectorwiththeswitchingarrangement

    of(1:1:2:2:4:4).Theunitcapacitorusedisratedat525V,2kVAr.

    C2 3stepspowerfactorcorrectorwiththeswitchingarrangementof(1:2:3).Theunitcapacitorusedisratedat440V.

  • 11/3/2014

    15

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Analysetheaveragepowerfactorofthisfactorywhenboth

    powerfactorcorrectors,C1andC2aredisabled.

    29

    RecommendtheproperkVAr ratingfortheunitcapacitorusedinC2ifthepowerfactorforthegroupmotorcircuit,M1istobecorrectedatleastto0.95lagging.AssumeC2isswitchedtostep3.

    AnalyseagaintheaveragepowerfactorforthisfactoryifC1d C2 it h d t t 4 d t 2 ti landC2areswitchedtostep4andstep2,respectively.

    IftheC1andC2inFigureareaccidentallyswitchedtoitsmaximumstepsandL1isdisconnectedduetotheshortcircuitevent,predicttheoverallpowerfactorforthisinstallation.

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCSomeissuesinPFCapplication:

    30

    Avoidnuisancetripscausebycapacitorswitchingtransients

    Currentlimitingfusesat150%to175%ofthecapacitorratedcurrent

    Capacitorshouldbedischargetoaresidualvoltageof50V,1minuteafteritisdisconnected

    Greaterswitchingtransientswillberesulted if not

    Avoidresonanceasitincreasestheheatinganddielectricstresses

    Seriesresonancemightcausezerovoltageatsomefrequenciescurrent

    Donotsettootightortooloose

    Protection

    resultedifnotproperlydischarged

    CapacitorDischarge

    frequencies Parallelresonanceswillamplifyharmonicsatspecificfrequencies

    Harmonics

  • 11/3/2014

    16

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC

    SeriesSeries

    31

    SeriesSeriesResonanceResonance

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC

    ParallelParallel

    32

    ParallelParallelResonanceResonance

  • 11/3/2014

    17

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCResonance

    33

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCWhentohavefiltertoeliminatetheharmonics?

    34

    Powerfactorcorrection(kvar)isgreaterthan25%ofthe transformer kVA

    Harmonicproducingload(e.g.driveload)isgreaterthan40%ofthe transformer kVA

    RISK

    thetransformerkVA thetransformerkVANoproblemisexpectedifbelow15%

    Noproblemisexpectedifbelow25%

    kVArZkVA

    hrtransforme

    rtransforme

  • 11/3/2014

    18

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCCAPACITORSWITCHINGTRANSIENTS Capacitor switching transient is a normal system

    35

    Capacitorswitchingtransientisanormalsystemeventthatcanoccurwheneveracapacitorisenergised.

    Typically,deenergising acapacitordoesnotcauseasystemtransient.

    Thetransientoccursbecauseofthedifferencebetweenthesystemvoltageandthevoltageonthecapacitor.

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Themagnitudeofthetransientwillvarybasedon two variables at the time of the switching.

    36

    ontwovariablesatthetimeoftheswitching.

  • 11/3/2014

    19

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Thesevariablesaretheinitialvoltageonthecapacitor(trappedcharge,usuallyclosetozeroifthe

    37

    capacitorhasbeenallowedtodischarge)andtheinstantaneoussystemvoltageatthetimeoftheswitching.

    Thegreaterthedifferencebetweenthesetwovoltages,thegreaterthemagnitudeofthetransient.h ll h h Theworstcasetransientwilloccurwhenthesystemvoltageisatpeakvoltageandthereisatrappedchargeonthecapacitorofpeaksystemvoltageattheoppositepolarity.

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC 38

    LCVVI CStransient

    Where,VS :Instantaneoussystemvoltage(V)VC :Instantaneouscapacitorvoltage(V)C:CapacitorvalueinFL:InductancevalueinH

  • 11/3/2014

    20

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCBACKTOBACKCAPACITORSWITCHING This situation occurs when a second capacitor is

    39

    Thissituationoccurswhenasecondcapacitorisswitchedoninclose(electrical)proximitytoapreviouslyenergised capacitor.

    Inthiscaseahigherfrequencytransientinitiallyoccursasthepreviouslyenergised capacitorsharesitschargewiththenewlyenergizedcapacitor.

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Figurebelowshowstheenergisation ofa50kVAr, 480 V capacitor step with trapped charge

    40

    kVAr,480Vcapacitorstepwithtrappedchargeandwith150kvar ofothercapacitorstepsinservice.

  • 11/3/2014

    21

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCMINIMISINGCAPACITORTRANSIENTS There are two basic ways to minimize capacitor

    41

    Therearetwobasicwaystominimizecapacitorswitchingtransients. Switchthecapacitoratapointintimewhenthesystemvoltagematchesthevoltageonthecapacitor,evenifthereisatrappedcharge.I i d i i d i Insertsomeimpedance,resistanceorinductance,inthecircuittominimise thetransient(limitthecapacitorinrushcurrent,thusminimising theresultingvoltageoscillation).

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems 42

    Fundamental(50Hz) Fifthharmonic(250Hz)Thirdharmonic(150Hz) Resultingwaveform

  • 11/3/2014

    22

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems 43

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems Thisperiodicphenomenon(harmonics)canberepresented by a Fourier series as follows:

    44

    representedbyaFourierseriesasfollows: nn

    nn tnYYty

    sin2)(

    10

    where:

    Y = the amplitude of the DC component which is generally

    Accordingtostandards,harmonicordersabove40 areneglected.

    Y0 =theamplitudeoftheDCcomponent,whichisgenerallyzeroinelectricalpowerdistribution(atsteadystate),Yn =theRMSvalueofthenth harmoniccomponent,n =phaseangleofthenthharmoniccomponentwhent=0.

  • 11/3/2014

    23

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsHarmonicssourcesinindustrialapplications:

    45

    pp Staticconverters(n=kp 1ofcurrentharmonics)

    Arcfurnaces Lighting(dischargelampsorfluorescentlampsproducing3rd harmonics)

    Variablespeeddrives Weldingmachines

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems Oneofthemostcommonharmonicssourcesinindustrial applications is rectifier loads.

    46

    industrialapplicationsisrectifierloads. TheharmonicloadcurrentdemandsofrectifiersmaybecalculatedfromtherectifierformulastofindI1,thenfindtheoddharmonics(Singlephase)or5,7,11,13th harmonics(sixpulse)

    /using1/hrule

  • 11/3/2014

    24

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsExample4.4A 1000 kVA three phase six pulse rectifier serves

    47

    A1000kVA threephasesixpulserectifierservesa2000VDCloadusingthedelayangletoholdtheDCvoltageconstantoverallloadsintherange100kWto250kW.Thesupplytransformerisratedat1100kVA,13.8kV/6900V,x=20%,50Hz.Estimatethefifthandseventhharmoniccurrentsonthehighvoltagesideofthetransformerinthe100kWand250kWoperatingrange.

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsSolution:Find transformer reactance

    48

    Findtransformerreactance, 28.43

    1100)6900( 22

    kVAV

    SVX LLbase

    656.828.432.0SS XL3)(23 S ILVV

    )2

    cos(

    22)cos()cos(

    )cos(

    disp

    LL

    dcS

    dcS

    LLdc

    PF

    VIL

    IVV

    SixpulseRectifierFormula

  • 11/3/2014

    25

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems At250kW,

    49

    003.71

    2000250656.83cos6900232000

    kW

    22cos)cos(

    LL

    dcS

    VIL

    216.0)2/cos(042.13

    )6900(2)2000/250)(656.8(2)003.71cos()003.71cos(

    dispPF

    kW

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    kVAkWPFPS 1157

    2160250

    50

    AII

    AVSI

    PF

    PLL

    disp

    68.951

    405.483

    216.0

    15

    )(1

    AII 92.671

    17

  • 11/3/2014

    26

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems At100kW,

    51

    990.74

    2000100656.83cos6900232000

    kW

    22cos)cos(

    LL

    dcS

    VIL

    2149.0)2/cos(206.5

    )6900(2)2000/100)(656.8(2)990.74cos()990.74cos(

    dispPF

    kW

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    kVAkWPFPS 33.465

    21490100

    52

    AII

    AVSI

    PF

    PLL

    disp

    89.351

    468.193

    2149.0

    15

    )(1

    AII 78.2715

    17

  • 11/3/2014

    27

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    Summary

    53

    4

    6

    8

    10

    12

    Harm

    onic

    Value(

    A)

    0

    2

    I5(250kW) I7(250kW) I5(100kW) I7(100kW)

    Curren

    t

    HarmonicOrderbyApplicationPower

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    INSTANTANEOUS LONGTERM

    CONSEQUENCESOFHARMONICS54

    INSTANTANEOUSEFFECTS

    Disturbcontrollers

    LONGTERMEFFECTS

    Additionalheatingoninductiveloads/equipment

    Additionalerrorsininductiondiskelectricity

    meters

    Disturbprotectivedevices

    Vibrationsandnoise

    Interferenceoncommunicationandcontrol

    circuits

  • 11/3/2014

    28

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsSomesymptomscausedbyharmonics:

    Voltagenotching

    55

    Erraticelectronicequipmentoperation Computerand/orPLClockups Overheating(motors,cables,transformers,neutrals) Motorvibrations Audiblenoiseintransformersandrotatingmachines Nuisancecircuitbreakeroperation Timingordigitalclockerrors Electricalfires Voltage/generatorregulatormalfunctioning

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsCompatibilitylevelsforvoltagetolerance,voltageunbalanceandpowerfrequencyvariations

    56

  • 11/3/2014

    29

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsHarmonicStandardforIndustrialNetworks IEC6100024:2002Oddharmonicsnonmultipleofthree

    57

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsHarmonicStandardforIndustrialNetworks IEC6100024:2002Oddharmonicsmultipleofthree

    58

  • 11/3/2014

    30

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsHarmonicStandardforIndustrialNetworks IEC6100024:2002Evenharmonics

    59

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsCompatibilitylevelsfortotalharmonicdistortion

    60

  • 11/3/2014

    31

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsHarmonicmitigationmethods:Passive filter (or tuned filter)

    61

    Passivefilter(ortunedfilter)ActivefilterMultipulse transformerHarmonicsmitigationtransformer

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    Passivefilter

    62

  • 11/3/2014

    32

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems TunedFilter

    Xf 1

    63

    LCXX

    ffh

    L

    Cnn

    00

    1

    CC Q

    kVX2

    CLXXX /XR n CLXXX CLn /Q

    R n

    22 /)(

    /)(

    hXhXRhZ

    hXhXjRhZ

    CLF

    CLF

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsEXAMPLE4.5A series filter is tuned to the 11th harmonic

    64

    Aseriesfilteristunedtothe11th harmonic.GivenXC =405Ohm.Calculatethefilterelements.Takethequalityfactor(Q)as50.

  • 11/3/2014

    33

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsEXAMPLE4.6What is the tuning order and the quality factor

    65

    Whatisthetuningorderandthequalityfactorfora36kVseriestunedfilterwithXC =544.5Ohms,XL =4.5OhmsandR=0.825Ohms?

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    Activefilter

    66

  • 11/3/2014

    34

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems 67

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    Multipulse transformer

    68

    Multipulse transformer

  • 11/3/2014

    35

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    Harmonicsmitigationtransformer

    69

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems 70

  • 11/3/2014

    36

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysis 71

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisIEEEStd.11591995/MSIEC61000

    72

  • 11/3/2014

    37

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysis Maincausesofvoltagesagsinindustrialpowersystems:

    73

    systems: Faults inthesystem,includinglightningstrike Transformerenergising Heavyloadswitching,mainlylargemotor (>300HP)

    Typesofvoltagesags: Sudden SinglePhaseSags PhasetoPhaseSags ThreephaseSags

    QEXAMPLEStartinglargemotorsorbyelectricalfaultsinsidethefacility

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisSinglePhaseSags The most common voltage sags over 70% are single

    74

    Themostcommonvoltagesags,over70%,aresinglephaseeventswhicharetypicallyduetoaphasetogroundfaultoccurringsomewhereonthesystem.Thisphasetogroundfaultappearsasasinglephasevoltagesagonotherfeedersfromthesamesubstation Typical causes are lightning strikes treesubstation.Typicalcausesarelightningstrikes,treebranches,animalcontactetc.Itiscommontoseesinglephasevoltagesagsto30%ofnominalvoltageorevenlowerinindustrialplants.

  • 11/3/2014

    38

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisPhasetoPhaseSags 2 Phase phase to phase sags may be caused by

    75

    2Phase,phasetophasesagsmaybecausedbytreebranches,adverseweather,animalsorvehiclecollisionwithutilitypoles.Thetwophasevoltagesagwilltypicallyappearonotherfeedersfromthesamesubstation.

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisThreephaseSags Symmetrical3phasesagsaccountforlessthan20%

    76

    y p gofallsageventsandarecausedeitherbyswitchingortrippingofa3phasecircuitbreaker,switchorrecloser whichwillcreatea3phasevoltagesagonotherlinesfedfromthesamesubstation.3phasesagswillalsobecausedbystartinglargemotors butthis type of event typically causes voltage sags tothistypeofeventtypicallycausesvoltagesagstoapproximately80%ofnominalvoltageandareusuallyconfinedtoanindustrialplantoritsimmediateneighbours.

  • 11/3/2014

    39

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysis

    Metering systems? Motor quality? Speed

    77

    Meteringsystems?Monitoringsystems?Accuracyproblems?

    Motorquality?Speedvariation?Motordrives

    effects?

    EFFECTSOFVOLTAGESAGS

    ControlSystem?PLC?Electronicprocesscontrols?Sensors?Computercontrols?

    VSD?

    Industrialprocesses?Manufacturingstoppage?

    Restartproduction?

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysis Thedipmagnitudeduringafaultisdependenton two impedances, the source impedance, ZS

    78

    ontwoimpedances,thesourceimpedance, ZSandtheimpedancetothefault,ZF

    EZZ

    ZVFS

    FPCC

  • 11/3/2014

    40

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysis Industrialcustomerswhohaveinvestedheavilyin production equipment which is susceptible to

    79

    inproductionequipmentwhichissusceptibletovoltagesagsmusttakeresponsibilityfortheirownsolutionstovoltagesagsorlosesomebenefitfromtheirinvestment.

    ReplacementofcomponentsorVoltagesagsareafactoflifetheycannotreadilybeeliminatedfromregularutilitysystems.

    devices,whichareespeciallysensitive,withlessvoltagesensitivesubstitutesorinstallationofsomeformofprotectionagainstvoltagesags.

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisIdentifytheProblem

    MeasuretheProblem

    ChooseaSolution

    80

    EquipmentIdentification

    Whichequipmentissusceptibletounplannedstoppages?

    IdentifytheVoltageSags

    Determine the

    InstallMetering Installationofanelectronicmeterwithwaveformcapturecapability

    RecordUnplannedProductionStoppages

    Calculatethetypeofvoltagesagcorrectionofexpectedfuturevoltagesagevents

    CorrecttheproblembychangingsomeDeterminethe

    frequency,depthanddurationofthevoltagesags

    pp g MeterCostvs.CostofUnplannedProductionStoppage

    sensitivecomponents

    IdentifythesizeoftheloadtobeprotectedinkVAanditssupplyvoltage

  • 11/3/2014

    41

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysis Somepossiblevoltagesagscorrectionmethods:

    81

    FerroresonantTransformer

    UninterruptiblePowerSupply

    (UPS)

    FlywheelandMotor

    Generator(MG)

    DynamicVoltage

    Restorer(DVR)StaticVar

    Compensator(SVC)

    SagProofingTransformers

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisFerroresonant Transformer Also known as a constant voltage transformer (CVT), is a

    82

    Alsoknownasaconstantvoltagetransformer(CVT),isatransformerthatoperatesinthesaturationregionofthetransformerBHcurve.

    Voltagesagsdownto30%retainedvoltagecanbemitigatedusingthistechnique.

    Ferroresonant transformersareavailableinsizesuptoaround25kVAkVA.

  • 11/3/2014

    42

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisUninterruptiblePowerSupply(UPS) UPS mitigate voltage sags by supplying the load using stored

    83

    UPSmitigatevoltagesagsbysupplyingtheloadusingstoredenergy.

    Upondetectionofavoltagesag,theloadistransferredfromthemainssupplytotheUPS.

    BlockDiagramofanofflineUPS BlockDiagramofanonlineUPS

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisFlywheelandMotorGenerator(MG) Flywheel systems use the energy stored in the inertia of a rotating

    84

    Flywheelsystemsusetheenergystoredintheinertiaofarotatingflywheeltomitigatevoltagesags.

    Theflywheelisacceleratedtoaveryhighspeedandwhenavoltagesagoccurs,therotationalenergyofthedeceleratingflywheelisutilised tosupplytheload.

  • 11/3/2014

    43

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisDynamicVoltageRestorer(DVR) DVRinjectsvoltageintothesystemin

    85

    ordertobringthevoltagebackuptothelevelrequiredbytheloadduringvoltagesag.

    Injectionofvoltageisachievedbyaswitchingsystemcoupledwithatransformerwhichisconnectedinserieswith the loadwiththeload.

    ThedifferencebetweenaDVRwithstorageandaUPSisthattheDVRonlysuppliesthepartofthewaveformthathasbeenreducedduetothevoltagesag,notthewholewaveform.

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisStaticVar Compensator(SVC) A SVC is a shunt connected power electronics based device

    86

    ASVCisashuntconnectedpowerelectronicsbaseddevicewhichworksbyinjectingreactivecurrentintotheload,therebysupportingthevoltageandmitigatingthevoltagesag.

  • 11/3/2014

    44

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisSagProofingTransformers Also known as voltage sag

    87

    Alsoknownasvoltagesagcompensators,arebasicallyamultiwindingtransformerconnectedinserieswiththeload.

    Effectiveforvoltagesagstoapproximately40%retainedvoltage.g

    Onlyavailableforrelativelysmallloadsofuptoapproximately5kVA.

    BEF44903 IndustrialPowerSystems Topic4

    4.5FlickerAnalysis4.5FlickerAnalysis Flickerisdefinedasthevariationintheluminosityproducedinalightsourcebecauseoffluctuationsin

    88

    p gthesupplyvoltage.

    Themainsourcesofflickerarelargeandfastloadvariationsindustrialloads,suchaselectricarcfurnaces,motors,rollingmills,mashwelders electric welders and electric boilerswelders,electricwelders,andelectricboilers.

    Thevoltageflickerischaracterised byvariationofvoltagemagnitudeintherangeof10%ofnominalvoltageandwithfrequencies between0.2to30Hz.

  • 11/3/2014

    45

    BEF44903 IndustrialPowerSystems Topic4

    4.5FlickerAnalysis4.5FlickerAnalysis Rectangularfluctuationatafrequencyof8.8Hzandanamplitude

    V=0.4V(i.e.,V/V=40%),whichmodulatesamainssignalof50 H d li d V 1 V

    89

    50HzandamplitudeV=1V.

    BEF44903 IndustrialPowerSystems Topic4

    4.5FlickerAnalysis4.5FlickerAnalysis 90