Download - The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

Transcript
Page 1: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

The Combinatorial Basis of Entropy (“MaxProb”)

22nd Canberra International Physics Summer School ANU, Canberra

11 December 2008

by Robert K. Niven

Marie Curie Incoming International Fellow, 2007-2008 Niels Bohr Institute, University of Copenhagen, Denmark

School of Aerospace, Civil and Mechanical Engineering

The University of New South Wales at ADFA Canberra, ACT, Australia

Page 2: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 2

Lectures

1. The Combinatorial Basis of Entropy (“MaxProb”)

2. Jaynes’ MaxEnt, Riemannian Metrics and the Principle of Least Action

Page 3: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 3

Contents • Historical overview

- combinatorics - probability theory

• Combinatorial basis of entropy / MaxProb principle

generalised combinatorial definitions of entropy and cross-entropy

explanation of MaxEnt / MinXEnt

• Applications 1. Multinomial systems (asymptotic vs non-asymptotic) 2. (In)distinguishable particles or categories 3. “Neither independent nor identically distributed” sampling

• Future applications …

Page 4: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 4

(Advertisement)

Courses at UNSW@ADFA, Canberra:

• Short course in “Maximum Entropy Analysis”, 14-15 May 2009

(fee paying $1270).

• Masters course: ZACM8327 Maximum Entropy Analysis, semester 2,

2009 (fee paying or UNSW@ADFA enrolled student)

- 3 hours of lectures + tutorials per week

- based on similar course at Niels Bohr Institute

Page 5: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 5

Historical Overview

Page 6: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 6

Combinatorics Knowledge is very old! (Edwards, 2002)

(a) Number-patterns

Pythagoras (500BC)

Egypt (300BC)

Theon of Smyrna, Nicomachus (100AD)

Higher dimensions: Tartaglia (1523, publ. 1556)

figurate numbers fk

Page 7: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 7

(b) Binomial coefficients

= coefficients of (a + b)N

Al-Karaji (1007); Al-Samawal (1180); Al-Kashi (1429)

Chia Hsien (1100); Yang Hui (1261); Chu Shih-chieh (1303)

Cardano (1570), etc

- applied to solution of equations; finding roots; etc

Chu Shih-chieh (1303)

Page 8: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 8

binomial coefficients

N

k= f

k , where =dimension

Page 9: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 9

(c) Combinations + Permutations

Ancient; e.g.

- Susruta (600BC), Jains (300BC): combinations of 6 tastes

- Pingala (200BC): combinations of syllables

No. of permutations of N things = N !

- Hebrew Book of Creation (700); Bhaskara (1150)

No. of groups of N things, taken k at a time: - Mahavira (850); Bhaskara (1150); ben Gerson (1321)

Without replacement With replacement

Combinations

CkN

=N

k=

N!

k !(N k)!

wC

kN

=N + k 1

k=

(N + k 1)!

k !(N 1)!

Permutations PkN

= N(k) =N!

(N k)!

wPkN

= Nk

with

N

kk=0

N= 2

N

Page 10: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 10

Pascal (1654) - equivalence of figurate numbers AND binomial coefficients AND

numbers of combinations without replacement

Multinomial weight - Bhaskara (1150); Mersenne (1636)

= no. of permutations of N objects, containing ni of each category

i = 1,...,s , is:

W =N !

n1!n

2! ... n

s!= N !

1

ni!

i=1

s

Page 11: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 11

Probability Theory (a) Classical period (e.g. Cardano (1560s), Pascal, Fermat, Huygens, the Bernoullis,

Montmort, de Moivre, Laplace)

Probability =

No. of outcomes of interest

Total no. of outcomes

(b) “Frequentist” school (e.g. Venn, Pearson, Neyman, Fisher, von Mises, Feller)

- probability = measurable frequency, for an infinite number of repetitions of a “random experiment”

- attempt to define probabilities as certainties

- narrow applicability

Page 12: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 12

(c) “Bayesian” or “Plausibility” school (Bayes, Laplace, Jeffreys, Polya, Cox, Jaynes, 1957; 2003)

- probability = “plausibility” = assignment based on what you know

- need not be a measurable frequency - manipulate using sum + product rules (Jaynes, 2003)

- “subjective” = “information-dependent”

- different observers, with different information, can assign different probabilities to the same event

- more useful; encompasses all frequentist situations

Page 13: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 13

Probability Distributions “Measures of Central Tendency”

Continuous parameter x Discrete parameter x p(x) = probability density function (pdf) p(x) = pi = probability mass function

Page 14: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 14

Combinatorial (or Probabilistic) Definition of Entropy

Page 15: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 15

Definitions Entity = a discrete particle, object or agent, or an item in a sequence, which is

separate but not necessarily independent of other entities

Category = possible assignment of an entity

Probabilistic System = a set of entities K assigned to a

set of categories C by a discrete random variable : K C

e.g. physics: particles energy levels

gambling: die throws die sides

communications: signal bits letters of alphabet

Page 16: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 16

Configuration = distinguishable permutation of entities amongst categories e.g.: physics: microstate; information theory: sequence

Realization = aggregated arrangement of entities amongst categories = set of configurations e.g.: physics: macrostate; information theory: type

Commonly define realizations by the no. of entities in each category {n

i}

Page 17: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 17

MaxProb Principle MaxProb Principle (Boltzmann, 1877; Planck, 1901; Vincze, 1974; Grendar & Grendar, 2001)

- “A system can be represented by its most probable realization”

principle for probabilistic inference

- does not depend on asymptotic limits

- does not give certainty

BB GB BG GG

Superset of 2nd Law “A system tends towards its most probable realization”

- not just thermodynamics!

Page 18: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 18

MaxProb Principle MaxProb Principle (Boltzmann, 1877; Planck, 1901; Vincze, 1974; Grendar & Grendar, 2001)

- “A system can be represented by its most probable realization”

principle for probabilistic inference

- does not depend on asymptotic limits

- does not give certainty

BB GB BG GG

Superset of 2nd Law “A system tends towards its most probable realization”

- not just thermodynamics!

Ergodicity

Inference

Page 19: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 19

Multinomial Systems (Boltzmann, 1877)

N distinguishable balls (entities)

s distinguishable boxes (categories)

qi = source (“prior”) probability of ball falling in ith box

= normalised degeneracy gi / gii=1

s

Probability of a given realization {n

i} is given by the multinomial

distribution:

Pmult = N ! qi

ni

ni !i=1

s

qi =1/s

Pmult

=W

mult

sN

; Wmult

= N !1

ni!

i=1

s

If categories equiprobable, can use multinomial weight

Page 20: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 20

MaxProb: want to maximise:

Easier to maximise:

lnPmult = lnN !+ ni lnqii=1

s

lnni !

i=1

s

Asymptotic limit for N (rigorously by Sanov (1957) theorem; crudely by Stirling’s approx. lnm! m lnm m ):

DKL = limN

lnPmult

N= pi ln

pi

qii=1

s

where pi =

ni

N.

If qi = 1/s = constant:

hSh= lim

N

lnWmult

N= pi lnpi

i=1

s

Shannon entropy

Kullback - Leibler cross - entropy

= directed divergence

= negative of relative entropy

Pmult = N ! qi

ni

ni !i=1

s

Page 21: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 21

Summary

• Kullback-Leibler and Shannon functions are asymptotic forms of the

multinomial distribution P

mult

• If minimise D

KL (MinXEnt) or maximise

hSh (MaxEnt) of a multinomial

system, subject to constraints

obtain asymptotic MaxProb realization

Boltzmann principle:

Define entropy and cross-entropy by: h=

lnW

N,

D =

lnP

N

(compare S

total= SN = k lnW )

hence always consistent with MaxProb

Page 22: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 22

Jaynes’ MaxEnt • Jaynes (1957)

- minimise D or maximise h , subject to constraints

“most uncertain” distribution = distribution which contains the least

information

• BUT how do we define uncertainty?

- Jaynes only considers D

KL or

hSh axiomatic basis of Shannon

(1948)

• However, a system: - need not be multinomial ! - need not be asymptotic !

Kullback-Leibler or Shannon functions will not give the MaxProb distribution

If know P P

mult or N , must include this information !

Page 23: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 23

Application to Multinomial Systems (Asymptotic + Non-Asymptotic)

Page 24: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 24

Why the Multinomial? (Niven, AIP Conf. Proc. 954 (2007) 133; Blower, pers. comm.)

Pmult = N ! qi

ni

ni !i=1

s

with pi =

ni

N

1. Frequentist approach

P

mult, {qi } = measurable frequencies

2. Bayesian approach

P

mult, {qi } = Bayesian probabilities

If ignorant about choice of model P , then all models equiprobable

must choose multinomial (“central model theorem”)

Page 25: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 25

Asymptotic Analysis Jaynes’ (1957) Algorithm

Minimise

DKL = pi lnpi

qii=1

s

subject to

pii=1

s= 1 and

pii=1

sfri = fr , r = 1,...,R

Form Lagrangian, differentiate w.r.t. pi

pi*= qi e 0

'

r frir=1

R

=1

Zqi e r frir=1

R

Z = e 0

'

= qi e r frir=1

R

i=1

s

Boltzmann

distribution

with 0

'=

0+1

Jaynes’ (1957, 1963, 2003) analysis many more (generic) relations

Page 26: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 26

Isolated Thermodynamic System:

Isolated from rest of universe

e.g. microcanonical ensemble

Natural:

pii=1

s= 1

Mean energy:

pii=1

si = U

pi

*= qi e 0

'

1 i =1

Zqi e 1 i

D *

h*=

0

'+

1U

compare S* = k lnZ +U

T

or F = kT lnZ = TS * + U

Hence 0

'= lnZ = and

1=

1

kT

Page 27: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 27

Non-Asymptotic Analysis (Niven, Phys. Lett. A, 342(4) (2005) 286; Physica A, 365(1) (2006) 142)

Use raw multinomial:

Minimise

D(N)

=lnP

N=

1

NlnN !+ ni lnqi

i=1

s

lnni !

i=1

s

subject to

nii=1

s= N and

n

ii=1

sfri= F

r, r = 1,...,R

Form Lagrangian, differentiate w.r.t. n

i

pi#=

ni#

N=

1

N

1 lnN !

N+ lnqi 0

(N)r(N)fri

r =1

R

1

where ( )= digamma function

Non - asymptotic

distribution

Page 28: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 28

Example 1:

Multinomial

n1,n2,n3

s=3

q =

1

2,3

8, 1

8

subject to

n

i= N

i=1

s

only

Page 29: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 29

Example 2: Multinomial

n1,n2,n3

s=3

q =

1

14, 4

14, 9

14

subject to

n

i= N

i=1

s

n

i i= E

i=1

s

T

with

= 1,2,4[ ]

U =

ET

N=

5

3

Page 30: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 30

Example 2 (cont’d):

For constant

U =

ET

N=

5

3,

obtain

0(N)

=(N)

1(N)

=1

kT(N)

Page 31: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 31

Thermodynamic Double System:

System 1: N

1 particles; energy levels

i

System 2: N

2 particles; energy levels

j

Probs. of realizations {ni }, {nj } are:

Maximise P1P

2 subject to

n

i= N

1i=1

s,

njj=1

m= N

2 and

most probable distrib.:

pi#=

1

N1

1

lnN1!

N1

+ lnqi 0a

(N1)1 i 1

pj#=

1

N2

1 lnN2 !

N2

+ lnqj 0b

(N2)1 j 1

“Zeroth law” upheld

( 1 in common)

P1 = N1! qi

ni

ni !i=1

s

, P2 = N2 ! qj

nj

nj !j=1

m

ET = ni ii=1

s+ nj jj=1

m

Page 32: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 32

Summary

- combinatorial approach straightforward analysis using system (not

ensemble) parameters

steps towards non-asymptotic thermodynamics

(without thermodynamic limit !)

Application to Information Theory

(Niven, Phys. Lett. A, 342(4) (2005) 286; Physica A, 365(1) (2006) 142)

Adopt Boltzmann principle as definition of information:

I =h

ln2=

log2 W

N or

I =

D

ln2=

log2 P

N (in bits)

non-asymptotic coding ?

non-asymptotic network theory ?

Page 33: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 33

Application: (In)distinguishability

Page 34: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 34

Statistics Consider role of distinguishability:

Disting. balls Indisting. balls

Disting.

boxes

Maxwell-Boltzmann

(Lynden-Bell)*

Bose-Einstein

(Fermi-Dirac)*

Indisting. boxes

? ?

* maximum of 1 ball per box

Page 35: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 35

Statistics Consider role of distinguishability:

Disting. balls Indisting. balls

Disting.

boxes

Maxwell-Boltzmann

(Lynden-Bell)*

Bose-Einstein

(Fermi-Dirac)*

Indisting. boxes

D:I statistic I:I statistic

* maximum of 1 ball per box

Page 36: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 36

(In)distinguishability Allocate students to PhD supervisors:

1. Disting. students disting. supervisors - consider personal interactions

2. Indisting. students disting. supervisors

- e.g. Dean

3. Disting. students indisting. supervisors

- e.g. student club

4. Indisting. students indisting. supervisors

- e.g. Government department Choice of statistic - and hence entropy - depends on purpose

Tseng & Caticha (2002): “Entropy is not a property of a system … [it] is a property of our description of a system.”

Page 37: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 37

(a) Maxwell-Boltzmann

WMB = N ! gi

ni

ni !i=1

s

(b) Bose-Einstein

WBE =(gi + ni 1)!

ni !(gi 1)!i=1

s

(c) Fermi-Dirac

WFD =gi !

ni !(gi ni )!i=1

s

Page 38: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 38

Entropy functions: Name Asymptotic Entropy Non-asymptotic Entropy

(Niven, 2005, 2006) MB

hMB= pi ln

pi

gii=1

s

hMB(N)

=1

Nln[(piN)!]

i=1

s

+1

Npi ln[N!]+ pi lngi

BE

hBE = ( i + pi )ln( i + pi )

i=1

s

i ln i pi lnpi

hBE(N)

=1

Nln ( iN + piN 1)!{

i=1

s

ln ( iN 1)! ln (piN)! }

FD

hFD = ( i pi )ln( i pi )

i=1

s

+ i ln i pi lnpi

hFD(N)

=1

Ni=1

s

ln ( iN piN)!{

+ ln ( iN)! ln (piN)! }

where i = gi / N = relative degeneracy

Page 39: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 39

MaxProb: maximise h subject to

pii=1

s

= 1,

pi frii=1

s

= fr , r = 1,...,R

Name Asymptotic distribution Non-asymptotic distribution (Niven, 2005, 2006)

MB

pMB,i*

= gi e 0' r frir=1

R

pMB,i#

=1

N

1 ln[N!]

N+ lngi 0 ' r fri

r=1

R

1

BE

pBE,i*

=i

e 0+ r frir=1

R

1

pBE,i#

=

1

N

1( iN + pBE,i

# N) 0 r frir=1

R

1

FD

pFD,i*

=i

e 0+ r frir=1

R

+1

pFD,i#

=

1

N

1( iN pFD,i

# N +1) 0 r frir=1

R

1

where = digamma f’n; -1 =inverse digamma f’n

Page 40: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 40

(d) D:I Statistic

(Niven, CTNEXT07)

- disting. entities

- indisting. categories, each with g indisting. subcategories

Can show

WD:I =N

n1,n2,...,nk ,0,...,0(g)

=N !

ni !

i=1

k

rj !

j=1

N

ni

g=1

min(g,ni )

i=1

k

where rj = no. of occurrences of j in

{n

i}

ni

g = Stirling no. of 2nd kind

Curious behaviour!

Page 41: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 41

(e) I:I Statistic

(Niven, NEXT 07)

- indisting. entities

- indisting. categories, each with g indisting. subcategories

Can show

WI:I(g) =N

n1,n2,...,nk ,0,...,0(g)

= P ( j)

=1

min(g, j)rj

j=1

n1

where rj = no. of occurrences of j in

{n

i}

P ( j) = partition number

a + b + ...( )m

= Wronski aleph = “combinatorial polynomial”

Page 42: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 42

Normal Polynomials Wronski (1811) alephs

(a + b)2 = a2+ 2ab + b

2

(a + b)3 = a3+ 3a

2b + 3ab

2+ b

3

(a + b)m =m

ta

tb

m t

t=0

m

(a + b)2 = a2+ ab + b

2

(a + b)3 = a3+ a

2b + ab

2+ b

3

(a + b)m = atb

m t

t=0

m

Hence

a

=1

m

= a1

t1

t1,t

2,...,t

a2

t2 ...a

t with

t = m

=1

Page 43: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 43

Example: Non-Degenerate MB and BE statistics

Page 44: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 44

Example: Non-Degenerate D:I statistic

Page 45: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 45

Page 46: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 46

Example: Non-Degenerate I:I statistic

Page 47: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 47

Summary (non-degenerate, no moment constraints)

Disting. balls Indisting. balls

Disting. boxes

MB statistic

MaxProb; MeanProb

Highly symmetric

Strongly asymptotic

uniform distrib.

BE statistic

MeanProb only

Highly symmetric

Strongly asymptotic uniform

distrib.

Indisting. boxes

D:I statistic

MaxProb; MeanProb

Highly asymmetric

Slowly asymptotic, s N

Non-asymptotic, s N ?

I:I statistic

MeanProb only

Highly asymmetric

Non-asymptotic, s N

Monotonic asymptote for s N

Page 48: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 48

Application:

Pólya Distribution

Page 49: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 49

Pólya Distribution (Grendar & Niven, cond-mat/0612697)

- urn: M disting. balls, with mi of each

category,

mi= M

i=1

s

- sample: N balls, with ni of each category

- scheme: draw of ball of category i, return to urn + add c balls of same category to urn

“neither independent nor identically distributed” (ninid) sampling

Prob. of each realization {ni} is:

PPólya =M c + N 1

N

1 mi c + ni 1

nii=1

s

Multivariate

Polya

distribution

Page 50: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 50

Pólya cross-entropy: put qi = mi/M, and =N/M: Name Asymptotic cross-entropy Non-asymptotic cross-entropy

(without Stirling approx.) Pólya (c>0)

DPólyax

=1

Npi ln

(N +1) ( Nc)

( Nc+ N)i=1

s

+ ln(qiN

c+ piN)

(piN +1) (qiN

c)

Pólya (c<0)

DPólyaSt pi

c( c +1)ln( c +1)

i=1

s

+1c

(qi + pi c)ln(qi + pi c)

1c

qi lnqi pi lnpi

DPólyax

=1

Npi ln

(N +1) ( Nc

N +1)

( N

FD

+1)i=1

s

+ ln(

qiN

c+1)

(piN +1) (qiN

cpiN +1)

Page 51: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 51

Pólya MaxProb

Name Asymptotic distribution Non-asymptotic distribution Pólya (c>0)

pPólya,i#

=1

N

1F(N, c) + (

qiN

c+ pPólya,i

# N) 0 r frir=1

R

1

Pólya (c<0)

pPólya,i*

=qi

e 0+ r frir=1R

c

pPólya,i#

=1

N

1K(N, c) (

qiN

cpPólya,i

# N +1) 0 r frir=1

R

1

Compare Acharya-Swamy (1994) ansatz for “anyons”

pi* 1

e 0+

1xi

, with [ 1,1]

Page 52: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 52

Future Applications: Graphs and Networks

Page 53: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 53

Graph Entropy (Körner & Longo, 1973; Körner & Orlitsky, 1998)

- vertices = categories (alphabet)

- lines (edges) connect disting. categories

H(G,P) = limsupN

1

Nlog2 (G

P

N ) +1( )

where P = prob. distrib on vertex set

(GP

N ) = chromatic no. of graph G

P

N , for N-sequence

consider “heterogeneous” distinguishability of categories

BUT is asymptotic (does not consider entities)

Strong connection to networks + coding theory

Page 54: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 54

Conclusions

Page 55: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 55

Conclusions • MaxProb principle: choose realization of highest probability

principle of probabilistic inference

explanation for MaxEnt, MinXEnt

generalised definitions of D and h

• Non-asymptotic theory

- finite N thermodynamics (microcanonical) - other applications!

• Other statistics:

- MB, BE, FD - indisting. categories - Polya sampling (“ninid”)

• Strong connections to graphs, networks + coding

Page 56: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 56

Acknowledgments:

Thanks to:

• The University of New South Wales, Australia

• The European Commission, for Marie Curie Incoming

International Fellowship at University of Copenhagen

• Dr Bjarne Andresen + Dr Flemming Topsøe

• COSNET, ANU and (Prof. R. Dewar)2 for opportunity to present

Page 57: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 57

References Acharya, R., Narayana Swamy, P. (1994) J. Phys. A: Math. Gen., 27: 7247-7263. Boltzmann, L. (1872) Sitzungsberichte Akad. Wiss., Vienna, II, 66: 275-370; English transl.: Brush,

S.G. (1966) Kinetic Theory: Vol. 2 Irreversible Processes, Permagon Press, Oxford, 88-175. Boltzmann, L. (1877), Wien. Ber., 76: 373-435, English transl., Le Roux, J. (2002), 1-63,

http://www.essi.fr/~leroux/. Clausius, R. (1865) Poggendorfs Annalen 125: 335; English transl.: R.B. Lindsay, in J. Kestin (ed.)

(1976) The Second Law of Thermodynamics, Dowden, Hutchinson & Ross, PA, (1976) 162. Clausius, R. (1876) Die Mechanische Wärmetheorie (The Mechanical Theory of Heat), F. Vieweg,

Braunschwieg; English transl.: W.R. Browne (1879), Macmillan & Co., London. Edwards, A.W.F. (2002) Pascal’s Arithmetical Triangle: The Story of a Mathematical Idea, 2nd ed.,

John Hopkins U.P., Baltimore. Grendar, M., Grendar, M. (2001) What is the question that MaxEnt answers? A probabilistic

interpretation, in A. Mohammad-Djafari (ed.) Bayesian Inference and Maximum Entropy Methods in Science and Engineering, AIP (Melville), 83.

Grendar, M., Niven, R.K. (in submission), http://arxiv.org/abs/cond-mat/0612697. Jaynes, E.T. (1957), Physical Review, 106: 620-630. Jaynes, E.T. (Bretthorst, G.L., ed.) (2003) Probability Theory: The Logic of Science, Cambridge

U.P., Cambridge. Körner, J., Longo, G. (1973) IEEE Trans. Information Theory IT-19(6): 778. Körner, J., Orlitsky, A., (1998) IEEE Trans. Information Theory 44(6) 2207. Kullback, S., Leibler, R.A. (1951), Annals Math. Stat., 22: 79-86.

Page 58: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 58

Lilly, S. (2002), A Practical Guide to Runes, Caxton Editions, London. Niven, R.K. (2005), Physics Letters A, 342(4): 286-293. Niven, R.K. (2006), Physica A, 365(1): 142-149. Niven, R.K. (in submission) CTNEXT07, 1-5 July 2007, Catania, Sicily, Italy, http://arxiv.org/

abs/0709.3124. Niven, R.K. (2005-07) Combinatorial information theory: I. Philosophical basis of cross-entropy

and entropy, cond-mat/0512017. Niven, R.K., Suyari, H. (in submission) Combinatorial basis and finite forms of the Tsallis entropy

function. Pascal, B. (1654), Traité du Triangle Arithmétique, Paris. Paxson, D.L. (2005) Taking Up the Runes, Red Wheel/Weiser, York Beach, ME, USA. Pennick, N. (2003) The Complete Illustrated Guide to Runes, HarperCollins, London. Planck, M. (1901) Annalen der Physik 4: 553. Sanov, I.N. (1957) Mat. Sb. 42, 11-44; English transl. Selected Transl. Math. Stat. Prob. 1 (1961),

213-224. Shannon, C.E. (1948), Bell System Technical Journal, 27: 379-423; 623-659. Suyari, H. (2006), Physica A 368(1): 63. Vincze, I, (1974) Progress in Statistics, 2: 869-895. Historical references prior to 1800AD are given in Edwards (2002).

Page 59: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 59

Appendix 1: Runic alphabet: (Refs: Lilly, 2002; Pennick, 2003; Paxson, 2005; Wikipedia)

fuTarkgw hnijIpzs tbemlNod ...

f.u.th.a.r.k.g.w h.n.i.j.eo.p.z.s t.b.e.m.l.ng.o.d

- used across Germanic + central Europe, Britain + Scandinavia, 5th-10th cent.; in Sweden to 17th cent.

- derived from Etruscan alphabet (not Greek or Roman) - each rune has symbolic meaning Anglo-Saxon h (“Haegl”) = old German h (“Hagalaz”) = hail, hailstones - symbolic of destructive force of Nature, but melts and gives

new life - evokes need to accept what is inevitable; to “go with the flow”;

i.e. rune of transformation

Page 60: The Combinatorial Basis of Entropy (“MaxProb”)people.physics.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/RNiven/… · The Combinatorial Basis of Entropy ... • Combinatorial basis

R.K. Niven, UNSW 22nd Canberra International Physics Summer School 60