Download - On the Results of Researches Concernin Claimg ths e …publication.nhmus.hu/pdf/annHNHM/Annals_HNHM_1957_Vol_49... · 2011-03-25 · On the Results of Researches Concernin Claimg

Transcript
Page 1: On the Results of Researches Concernin Claimg ths e …publication.nhmus.hu/pdf/annHNHM/Annals_HNHM_1957_Vol_49... · 2011-03-25 · On the Results of Researches Concernin Claimg

ANNALES HISTORICO-NATURALES MUSEI N A T I O N ALIS H U N G A R I C I

Tomus V I I I . Series nova 1957

On the Results of Researches Concerning the Temperature Claims of Macroscopic Fungi

By G. BOHUS, Budapest

Numerous authors studied the effects of temperature on the development of fungi. Of the macroscopic fungi, the temperature claims of primarily species causing the decay of wood were examined. We may chiefly refer to the w( rks of H u m p h r e y — S i g g e r s (1933) and C a r t w r i g h t — F i n d l a y (1934). The dépendance on temperature uf the development of the mycelia or the vegetative portion of the terricûlous macroscopic fungi was hardly investigated. The study of this problem may have its interest from mainly two aspects, first, on the kind cf interrelation between the temperature claims of the mycelia and the fruit bodies of the several species, second, on the rate of the development of the terricolous mycelium in the various temperature seasons of the vegetat onal period.

The bulk of the 45 selected fungus species belong to the family Agaricaceae. The n.ycelia of the pure culture of these species grew in test tubes on a 3% malt extract agar, in diffuse light. Generally, the cultures developed, from the time of the inoculation, in room temperature for a week, being brought later to the experimental temperature*.

As the results of the researches, the followings could be established :

1. The development of the mycelia of terricolous fungi begins at 3—5° C (Table 1). Between 5—7°, the mycelia of generally all species show a slow devel­opment. Some species are exceptional in that their mycelia develop relatively well even on this low temperature , e. g. the mycelium of Collybia mucida grows 7 mm during 10 days, that of Coprinus micaceus 12 mm, that of Morchella hybrida 10 mm, that of Naucina furfuracea 7 mm, that of Psathyrella hydrophila 10 mm, finally, that of Stropharia merdaria 8 mm. This agrees also wi th field observations, since i t was established that the fruit bodies of numerous fungus species — among them those mentioned above — grow rather rapidly even in cold weather.

By rising the temperature to 12°, the developmental rate of the mycelia of some species rather increases, yet in the case of the majority of the species, the development of the mycelium reaches an adequate rate only above this temperature. This is shown in Table 2, which displays of how many times the rate of increase of the mycelium observed under 12° rises on optimal tempera­ture. This value, ranging from 2 to 22 in the case of the species studied, may be considered as the index of thennophily ; the higher this value be, the more ,,thermophilous" the mycelium of the species under discussion is.

By a further rise in temperature, the developmental rate of the mycelium increases, reaching its maximum around the temperature optimum of 20° .

* We were careful to see that the cultures of the identical fungus species placed at sites of various temperatures be cf a uniformly good developmental ability. The number of repetitions were three.

Page 2: On the Results of Researches Concernin Claimg ths e …publication.nhmus.hu/pdf/annHNHM/Annals_HNHM_1957_Vol_49... · 2011-03-25 · On the Results of Researches Concernin Claimg

From the point of view of temperature optimum, the species studied may be relegated into 7 groups (Table 3). The temperature optimum of the majority of species (77%) is between 19—22°, that is, between 23—26°. The temperature optimum of some species comes higher than this, between 26—31,5°. In this latter temperature interval, the developmental rate of the mycelia of most species is already on the decrease. Finally, the mycelia of the majority of the species cease to develop between 3 í , 5 ° and 34,5°. However, the mycelia of certain species still continue to develop even on this higher temperature. A t this point, we may establish two facts. The first is that Phallus impudicus reaches its optimal development at this temperature interval and shows by this high temperature claim further indications toward its relation-groups, the members of which are in their majority tropical and Mediterranean species. The second point is that the mycelia of species show a further development (in many cases a good development) on this high temperature which live in grassy (eventually grovy) and sunshiny areas, where the higher warming up of the soil occurs regularly even on our climate.

2. From the point of view of temperature claims, certain types may be distinguished (Fig. 1). On the basis of the known temperature claims of terric­olous mycelia, i t can be established that in the season of vegetational period in Hungary, and at a suitably corresponding soil humidity, the mycelium has its optimal development in June, July and August, when the monthly tempera­ture mean (which is a value near the mean temperature of the soil) approaches the temperature optimum of the mycelia of most fungus species. (For Budapest, the monthly temperature mean of 30 years — 1901 — 1930 — is 19,6° for June, 21,6° for July, and 20,6° for August). The mycelia of the macroscopic fungi develop rather well in May and September, when the monthly temperature mean (for Budapest) is 16,4° in May, and 16,3 in September.

3. On the basis of researches, inferences can be drawn concerning the developmental rate of the mycelia of several species. Of these observations, how­ever, only the most conspicuous can be considered, as the developmental rate observable on malt agar frequently disagrees wi th the developmental rate found on the natural media of the given fungus species. It can be established that the developmental rate of the mycelia of Ascomycetes (Morchella and Verpa species) used for our researches is twice or even three times as much as that of the most quickly growing Basidiomycetes we studied. So, for instance, the my­celium of Morchella esculenta grows 15 cm per 10 days at the temperature op­t imum.

4. As concerns the parallelism between the temperature claims of the developing mycelia and the building of the fruit bodies, comparisons can but be made in a restricted measure. Namely, whilst temperature is, aside of humidity, the deciding factor among the conditions acting on the development of the my­celium on a suitable culture media, there are other factors besides humidi ty and temperature playing an important role during the growth of the fruit body. It can be stated generally that the temperature claims of the mycelium and the fruit body may be identical but they may also be different. For this latter case, Collybia velutipes serves as one of the best examples, since the temperature op­t imum for its mycelium is between 23—26° (60 mm during i ö days), — and even though it develops almost as well at 27,5—31,5° (56 mm during 10 days), — the growth of the fruit body begins generally in the cold autumnal weather (10° or below).

Page 3: On the Results of Researches Concernin Claimg ths e …publication.nhmus.hu/pdf/annHNHM/Annals_HNHM_1957_Vol_49... · 2011-03-25 · On the Results of Researches Concernin Claimg

5. W i t h regard to how far the special temperature claim may undergo changes, that is, how far it remains identical concerning the various forms, races, or individuals of the given species, we have experimented wi th four forms of Tricholoma conglobatum. We have found that the courses of the temperature graphs are nearly identical.*

Table 1.

The development of the mycelia of macroscopic fungi on various temperatures.

The growth of mycelia in mm, during 10 clays

! 5—7° j j

3—12° < 13—14° j 16—18° 19 -22° 23—26° 27,5 — 31,5°

31,5— 34,5

Boletus granulatus Fr o 0,5 1,5 2 2,5 10 2 0 Calvalia saccata (Vahl.) Morg o 0 2 6 6 9 9 0 Clitocybe eryngii Fr 1 4,5 7 10 17 50 36 20 Clitocybe infundibalifórinis Fr 1,5 1,5 3,5 5 5 6 6 0 Clitocybe i nor nat a Fr 1,5 12 15 22 21 6 3 0 Clitocybe phosphorea Batt 1 2 12 23,5 37,5 45 45 0 Collvbia butyracea Fr 3 4 5 11 12,5 17 7 0 Collvbia dryophila Fr 4 11 12 17,5 17,5 20 9 0 Collvbia longipes Fr 1 3 3 21 30 33 6 0 Collvbia velutipes Fr 2 5 15 25 31 60 56 0 Coprinus atramentarius Fr 1 16 25 37 50 34 18 0 Coprinus micaceus Fr 12 24 33 40 43 52 24 0 Flammula tenta Fr 2,5 6,5 8 16,5 19 13 16 0 Hebeloma crustuliniforme Fr 0 1 3 4 9 8 3,5 0 Hypholoma fasciculare Fr 1 2 6,5 6,5 11 36 19 0 Hvpholoma sablateritium Fr 5 8,5 10 15 22,5 28 15 0 Inocybe fastiglata Fr 0 1 1,5 5 7,5 11 9 0 Lepiota excoriata Schff 1 1,5 7 7 7,5 8 11 10 Lepiota gracilenta Krombh 0,8 4,5 7 8,5 14 10 12 0 Lepiota procera Scop 2 3 12 12,5 15 20 19 4 Marasmius oreades Fr 0 3 8 10 9 16 10 6 Marasmius peronatus Fr 0,5 6,5 10 22 22,5 21 13 0 Mycena polygramma Fr 3 3,5 5 11,5 11 13 12 0 Naucoria furfuracea Fr 7 13 16 27,5 27,5 18 9 0 Phallus impudicus Pers 0 1,5 3 5,5 11 14 16 20 Plioliota destruens Brond 0,5 1 6 9,5 10 9 5 0 Phot iota praecox Fr 0,3 1 7 11 11 15 6 0 Pholiota squarrosa Fr 4,5 11 18,5 22 35 25 4 2 Psalliota depauperata Mol l 0 1 4 4 5 2 2 0 Psalliota bispora (Lge.) Treschow. f. 2 5 6 12,5 28,5 15 13 4 Psalliota xanthoderma Genev 0,5 3 3 5 5 4 7 0 Psathyrella hydrophila Bull 10 19 19 35,5 22 22 19 0 Stropharia coronilla Fr 3,5 3,5 5 7 10 12 10 0 Stropharia merdaria Fr 8 13 13 21,5 22,5 18 16 4 Tricholoma bu/biqerum Fr 2 4 6 7,5 15 6 4 0 Tricholoma scalpturatum Fr 0 1,5 2 3 4 5 1,5 0

* A. L á t k ó c z k y helped considerably during these investigations.

6 T e r m é s z e t t u d o m á n y i Múzeum É v k ö n y v e

Page 4: On the Results of Researches Concernin Claimg ths e …publication.nhmus.hu/pdf/annHNHM/Annals_HNHM_1957_Vol_49... · 2011-03-25 · On the Results of Researches Concernin Claimg

4—5° 7,5 — 9.5°

1 — 14° 16—19° 1 9 - 2 2 ° ,22—26°

i

2^— 29,0°

31,"— 34, r»°

Clitocybe inversa Fr 2 2,5 4 8 10,5 2 1 0 Collybia mucida Fr 7 10,5 23 25,5 35,5 50 19 0 Cortinarius calochrous Fr 1 1,3 4 11 16 8,3 8,3 0 Lepiota naucina Fr 1 1,6 5,5 7,7 14 32,5 33 20 Morchella esculenta (L.) Pers 5 17,5 42 83 100 150 107 0 Morchella hy brida (Sow.) Pers 10 38 50 83 110 100 5 0 Tricholoma irinurn Fr 3 6 11 17 18 11 0,7 0 Tricholoma nudum Fr 2,5 6,5 9 19 20 9 8 0

Table 2.

The developmental rate of the mycelia of macroscopic fungi on the temperature optimum as related to the developmental rate observed under 12°C.

Index of ther-mophily

I Index 'of tlier-jmophily

Boletus granulatus Fr, Calvatia saccata (Vahl) Morg. . . . Clitocybe eryngii Fr Clitocybe infundibuliformis Fr. Clitocybe inornata Fr Clitocybe phosphorea Batt Collybia butyracea Fr Collybia dryoplula Fr Collybia longipes Fr

Coprinus atrementarius Fr Coprinus micaceus Fr Flammula lenta Fr Hebeloma crustuliniforme Fr Hypholoma fasciculare Fr Hypholoma sublateritium Fr Inocybe fastigiata Fr Lepiota excoriata Schff

20 18 11 4

> 2 22

>i 11 12 3 2

> 3 9

18 < 3

11 5

Lepiota gracilenta Krombh Lepiota procera Scop Marasmius oreades Fr Marasmius peronatus Fr Mycena polygramma Fr Naucoria furfuracea Fr Phallus impudicus Pers Pholiota destruens Brond Phollota praecox Fr Pholiota squarrosa Fr Psalliota depauperata Mol l Psalliota bispora (Lge.) Treschuw f.. Psalliota xanthoderma Genev Psathyrella hvdrophila Bull Stropharia coronilla Fr. Stropharia merdaria Fr Tricholoma bulbigerurn Fr Tricholoma scalpturatum Fr

3 < 6

5 < 3 > 4

2 18 10 15 3 5

< 5 2

> 2 < 3 > 2 > 4

3

Page 5: On the Results of Researches Concernin Claimg ths e …publication.nhmus.hu/pdf/annHNHM/Annals_HNHM_1957_Vol_49... · 2011-03-25 · On the Results of Researches Concernin Claimg

Table 3. The temperature optimum of the mycelia of macroscopic fungi.

Group Temperature optimum The percentage

of species studied Species under grouping

I . 16—18° 4 Clitocybe inornata Fr. Psathyrella hydrophila Bull.

I I . 16—22° 2 Naucoria furfnracea Fr.

I I I . 19—22° 35 Clitocybe inversa Fr. Coprinus atrarnentarius Fr. Cortinarius calochrous Fr. Flammula lenta Fr. Hebeloma crustuliniforme Fr. Lepiota gracilenta Krombh. Marasmius peronatus Fr. Morchella hybrida (Sow.) Pers. Pholiota destruens Brond. Pholiota squarrosa Fr. Psalliota depauperata Mo l l . Psalliota bispora (Lge.) Treschow f. Stropharia merdaria Fr. Tricholoma bulbigerwn Fr. Tricholoma irinum Fr. Tricholoma nudum Fr.

IV. 2 3 - 2 6 ° 42 Boletus granulatus Fr. Clitocybe eryngii Fr. Collybia butyracea Fr. Collybia dryophi/a Fr. Collybia longipes Fr. Collybia mucida Fr. Collybia velutipes Fr. Coprinus micaceus Fr. Hypholoma fasciculare Fr. Hypholoma sublateritium Fr Inocybe fastigiata Fr. Lepiota procera Scop. Marasmius oreades Fr. Morchella esculenta (L.) Pers. Mycena polygramma Fr. Pholiota praecox Fr. Stropharia coronilla Fr. Tricholoma conglobatum Vi t t . Tricholoma scalpturatum Fr.

V. 23—31,5° 6 Calvatia saccata (Vahl.) Morg. Clitocybe phosphorea Batt.

V I . 26—31,5° 6 Lepiota excoriata Schff. Lepiota naucina Fr. Psalliota xanthoderma Genev.

V I I . 31,5—34,5° 2 Phallus impudicus Pers.

Page 6: On the Results of Researches Concernin Claimg ths e …publication.nhmus.hu/pdf/annHNHM/Annals_HNHM_1957_Vol_49... · 2011-03-25 · On the Results of Researches Concernin Claimg

Literature : F a 1 c k, R.: Wachstumgesetze, Wachstumfaktoren und Temperaturwerte der Holzzerstörenden Mycelien (Hausschwammforschungen Jena, Heft 1, 1907, p. 53—154). — S n e 11, W. H. : The effect of heat upon the mycelium of certain structural timber destroying fungi within wood (Phytopathology, 12, 1922, p. 59). — S n e l l — H u t c h i n s o n — N e w t o n : Temperature and moisture relations of Fomes roseus and Tr^.netes subrosea (Mycologia, 20, 1928, p. 267—291). — H u m p h r e y , C. J. & S i g g e r s, P. V.: Temperature relations of wood-destroying fungi (Journal of Agricult. Research, 47, 1933, p. 997—1008).

- C a r t w r i g h t — F i n d l a y : Studies in the physiology of wood-destroying fungi. I I . Temperature and rate of growth (Annals of Botany, 48, 1934, p. 481—495). — B a v e n -d a m m, W.: Erkennen, Nachweis und Kultur der holzzersetzenden Pilze (In Abderhalden) Handbuch der biologischen Arbeitsmethoden X I I / 2 , Berlin—Wien, 1936). — B o n u s : G.: Néhány gomba micéliumának häigenye (Acta Mycologica Hungarica, 4, 1947, p. 12—15).

Figs.

1. Phallus impudicus. — A strongly thermophilous species. The developmental rate of the mycelium increases parallel with the temperature. The temperature optimum

is between 31,5°—34,5° C.

c- ^ un O»

to tn Rí 7ï

mm

30

20

iO

mm

30

20

iO

mm

30

20

iO

mm

30

20

iO

2. Psathyrella hydrophila. — A rather cold-resisting species. Its temperature opti­mum is low, between 16—18° C. The myce­lium shows good development even on a

lower temperature.

mm

3. Hypholoma fasciculare. — The de­velopmental rate of the mycelium sharply increases above 22° C, then shortly de­creases. Its temperature optimum is re­

stricted.

mm'

4. Clitocybe phosphorea. — Its temperature optimum is rather broad. The temperature

maximum is rather near the optimum.

Page 7: On the Results of Researches Concernin Claimg ths e …publication.nhmus.hu/pdf/annHNHM/Annals_HNHM_1957_Vol_49... · 2011-03-25 · On the Results of Researches Concernin Claimg

50

40

30

20

10

5. Clitocybe eryngii. — A thermophilous species. The developmental rate of the mycelium increases strongly over 22° C, and there is a good development even between

31,5—34,5° C.

6. Coprinus micaceus. — The mycelium shows a rather good development on any

temperature between 5° C and 30° C.

7. Lepiota naucina. —• The developmental rate of the mycelium increases more strongly over 22° C. The temperature optimum is between 26—29,5° C. The mycelium grows better between 31,5—34,5° C than between

19—22° C.

<£> Zj in

mm

100

90

80

70

60'

50

40

30

20

-„ . . .

8. Morchella hybrida. — The strong de­crease of the developmental rate of the

mycelium above 26° C is very striking.

Page 8: On the Results of Researches Concernin Claimg ths e …publication.nhmus.hu/pdf/annHNHM/Annals_HNHM_1957_Vol_49... · 2011-03-25 · On the Results of Researches Concernin Claimg

Pe3yjibTaTbi nccjie/ioBaHHH B oö j iacru TpeôoBaimii MaKpocKOrmqecKHX

rpHÖOB K TefwnepaType

T. Eoxyin , EyAaneiirr

AßTOp npOBOflHJI HCCJICA0B3HHH H3A 44 BH^aMH rpHŐOB RJIH BblflCHeHHfl HX TpeÖOBaHHH K TeivinepaType. OH B H A E J I H H C S T O H TOMKH 3peHHH HecKOJibKO ™noB (pnc. 1) Pe3ynbTaTbi HCCJie-AOBaHHH noAKpenHJiH TO ycTaHOBJieHne, HTO TeivinepaTypHbie onTHMyMbi pocTa MHUCHHH H pa3-BHTHH njioAOBoro Tejia qacTO He TOM<AecTBeHHbi.