Download - Low dimensional quantum gases

Transcript
Page 1: Low dimensional quantum gases

Low dimensionalquantum gases

T. Giamarchi

http://dqmp.unige.ch/giamarchi/

Page 2: Low dimensional quantum gases

Plan of the lectures

More on TLL (factionalization, topology, etc.)Effect of perturbations (Lattice and disorder)

Notions of transport in 1DFrom 1D to 3D; Ladders; Dimensional crossover

Equilibrium, basic notions of Tomonaga-Luttinger liquid

Page 3: Low dimensional quantum gases

Why one dimension ?

Page 4: Low dimensional quantum gases

Three urban legends about 1D

It is a toy model to understand higher dimensional systems.

It does not exist in nature ! This is only for theorists !

Everything is understood there anyway !

Page 5: Low dimensional quantum gases

One dimension is speciallyinteresting

• No individual excitation can exist (onlycollective ones)

• Strong quantum fluctuations

Difficult to order| | ie θψ ψ=

Page 6: Low dimensional quantum gases

Many CM or cold atoms Systems

cb

Page 7: Low dimensional quantum gases

Drastic evolution of the 1d world

New methods (DMRG, correlations from BA, etc.)

New systems (cold atoms, magnetic insulators, etc.)

New questions (strong SOC, out of equilibrium, etc)

Page 8: Low dimensional quantum gases

How to treat ?

Page 9: Low dimensional quantum gases

``Standard’’ many body theory

Exact Solutions (Bethe ansatz)

Field theories(bosonization, CFT)

Numerics(DMRG, MC, etc.)

Page 10: Low dimensional quantum gases

ReferencesTG, Quantum physics in one dimension, Oxford (2004)

TG in ``Understanding Q. Phase Transitions’’, Ed. L. Carr, CRC Press (2010)

M. Cazalilla et al., Rev. Mod. Phys.83 1405 (2011)

TG, Int J. Mod. Phys. B 26 1244004 (2012)

TG, C. R. Acad. Sci. 17 322 (2016)

Page 11: Low dimensional quantum gases

And now we start….

Page 12: Low dimensional quantum gases
Page 13: Low dimensional quantum gases

Typical problem (e.g. Bosons)

• Continuum:

• Lattice:

Page 14: Low dimensional quantum gases

Luttinger liquid physics

Page 15: Low dimensional quantum gases

Labelling the particles

1D: unique wayof labelling

Page 16: Low dimensional quantum gases

φ(x) varies slowly

CDW

~ 0q 0~ 2q πρ

Page 17: Low dimensional quantum gases

θ: superfluid phase

Quantum fluctuations

U0 1

K1 1

Page 18: Low dimensional quantum gases

Correlations

1/2

Page 19: Low dimensional quantum gases

S(q,! ) J.S. Caux et al PRA 74 031605 (2006)

Page 20: Low dimensional quantum gases

Finite temperatureConformal theory

β

χ

K

r

21

βξβπ

/)2( xxK

ee −−=

Page 21: Low dimensional quantum gases

Other 1D systems

Page 22: Low dimensional quantum gases

Spins

Powerlaw correlation functions

Non universal exponents K(h,J)

Use boson or fermions mapping

( 1) cos(2 )i i iS e eθ θ φ+ = − +1 (-1) cos(2 )z iS φ φπ−

= ∇ +

Page 23: Low dimensional quantum gases

Fermions

Right (+kF) and left (-kF) particles

Page 24: Low dimensional quantum gases

Luttinger liquid concept

• How much is perturbative ?

• Nothing (Haldane):provided the correct u,K are used

• Low energy properties: Luttinger liquid(fermions, bosons, spins…)

Page 25: Low dimensional quantum gases

Luttinger parameters

Page 26: Low dimensional quantum gases

Attractive Hubbard model

TG + B. S. Shastry PRB 51 10915 (1995)

Page 27: Low dimensional quantum gases

``Quantitative’’ theory possible

• Trick: use thermodynamics and BA or numerics

• Compressibility: u/K

• Response to a twist in boundary: u K

• Specific heat : T/u

• Etc.

Page 28: Low dimensional quantum gases

Tonks limit

U = 1 : spinless fermions

Not for n(k) : ψF ≠ ψB

Free fermions: 21( ) (0) cos(2 )Fx k x

xρ ρ ⟨ ⟩ ∝

K=1

Note: 1/2

† 1( ) (0)B Bxx

ψ ψ ⟨ ⟩ ∝

Page 29: Low dimensional quantum gases

Tests of Luttinger liquids

Page 30: Low dimensional quantum gases

Organic conductors

c

b

A. Schwartz et al. PRB 58 1261 (1998)

First observation of LL/powerlaw !!

TG PRB (91) :Physica B 230 (1996)

Page 31: Low dimensional quantum gases

Cold gases

Page 32: Low dimensional quantum gases

Bosons (continuum)

Page 33: Low dimensional quantum gases

Optical lattices (dilute)B. Paredes et al., Nature 429 277 (2004)

†( ) ( ) (0)ikxn k dxe xψ ψ= ⟨ ⟩∫

Page 34: Low dimensional quantum gases

Atom chips

K large (42)

S. Hofferberth et al. Nat. Phys 4 489 (2008)

0( ) (0)

Ldr rψ ψ⟨ ⟩∫

Page 35: Low dimensional quantum gases

Charge velocity

https://www.futurity.org/one-dimensional-electrons-physics-1858622/

Page 36: Low dimensional quantum gases

Other important 1D propertiesFractionalization of excitations

Page 37: Low dimensional quantum gases

1S∆ = − ( )E q=

1/ 2S∆ = − 1/ 2S∆ = −

Magnon

Spinons

1·i ii

H J S S += ∑

Fractionalization of excitations

Page 38: Low dimensional quantum gases

Hidden (topological) order parameters

Continuum of excitations

E(k) = cos(k1) + cos(k2)

k = k1 + k2

Magnons and spinons: 1 = ½ + ½

Page 39: Low dimensional quantum gases

Spin Charge

Spinon Holon

Deconstruction of the electron: spin-charge separation

Page 40: Low dimensional quantum gases

arXiv:1605.05661v2

Page 41: Low dimensional quantum gases

Doped Hubbard model

Page 42: Low dimensional quantum gases

Spin

Spin-Charge Separation higher D ?

Charge

Energy increases with spin-charge separation

Confinement of spin-charge: « quasiparticle »

Page 43: Low dimensional quantum gases

Confinement of spinons BaCoVOQ. Faure, S. Takayoshi, et al. Nat. Phys 14, 716 (2018)

Page 44: Low dimensional quantum gases

Take home message

Good theoretical methods to deal withthe case of a ``simple’’ equilibrium 1d systems (analytics and numerics)

Stepping stone to go beyond: manyexciting questions and problems (out of equilibrium, disorder, many chains, etc.)

Controled experimental realizations in condensed matter and cold atoms

Page 45: Low dimensional quantum gases

Effect of lattices:Mott transition

Page 46: Low dimensional quantum gases

Mott transition

T

δ = n-1

Mott insulator (n=1)

T < T_N : antiferromagnetic phase

?

Page 47: Low dimensional quantum gases

Periodic lattice

• Incommensurate: Q ≠ 2 π ρ0

• Commensutate: Q = 2 π ρ0

cos(2 ( ) )H dx x xφ δ= +∫

cos(2 ( ))H dx xφ= ∫

0 cos( ) ( )H dxV Qx xρ= ∫0(2 2 ( ))

0 0cos( ) i x xH dxV Qx e πρ φρ −= ∫

Page 48: Low dimensional quantum gases

Competition

2 210 [ ( ( , )) ( ( , )) ]

2 xudxdS x u x

K ττ ϕ τ ϕ τ

π= ∂ + ∂∫

Beresinskii-Kosterlitz-Thoulesstransition at K=2

String orderparameter

0 0 cos(2 ( ))LS V dxd xρ τ ϕ= − ∫

Page 49: Low dimensional quantum gases

BKT transition

BKT: remarkable transision going outside the paradigm of Landau’s phase transitions

A transition wihout an order parameter Topological Vortex excitations

, ,cos( )i j i j

i j i jH J S S J θ θ

⟨ ⟩ ⟨ ⟩

= − ⋅ = − −∑ ∑

Page 50: Low dimensional quantum gases

Vortex operator

| |x+aiaPe x⟩ = ⟩ ( , ) ( , )x

x dx xθφ τ π τ−∞

′ ′= Π∫

x

τ

02π 1 1cos(2 ( , ))xφ τ

Vortex operator for θ

21 ( ) ( ) cos(2 )2 xKS dxd u g dx

u τθ θ φτπ

= ∂ + ∂ − ∫ ∫

K : inverse temperature

g : vortex fugacity

Page 51: Low dimensional quantum gases

Mott insulator:φ is lockedDensity is fixed

Gap in the excitation spectrum

T. Kuhner et al. PRB 61 12474 (2000)

TG, Physica B 230 975(97):arXiv/0605472 (Salerno lectures);

Oxford (2004);

M. Cazalilla et al., Rev. Mod. Phys.83 1405 (2011)/( ) rG r e ξ−∝

Page 52: Low dimensional quantum gases

E. Haller et al. Nature 466 597 (2010)

G. Boeris et al. PRA 93 93, 011601(R) (2016)

Shows:

K* = 2RenormalizedSine-Gordon

Page 53: Low dimensional quantum gases

Non local (topological) order

( ) ~ ( )x xρ φ∇

Science (2011)

Page 54: Low dimensional quantum gases

Topological excitations is the norm in 1D

Page 55: Low dimensional quantum gases

Disorder (equilibrium)

Page 56: Low dimensional quantum gases

Example: localization of 1D interacting bosons

2

1 1

1 ( ) ( )2 2

N Ni

i j ii i j i

PH V R R D Rm= ≠ =

= + − +∑ ∑ ∑

TG + H. J. Schulz EPL 3 1287 (1987); PRB 37 325 (1988)

Competition Disorder vs Interactions

Existence of a Many-Body localized phase: Bose glass

Page 57: Low dimensional quantum gases

Bose glass phase

U [interactions]

Db

0

Uc

Bose GlassSuperfluid

† /( ) (0) ~ xx e ξψ ψ −⟨ ⟩

Page 58: Low dimensional quantum gases

Other potentials: Biperiodics

G. Roux et al. PRA 78 023628 (2008);T. Roscilde, Phys. Rev. A 77, 063605 2008;X. Deng et al PRA 78, 013625 (2008);

Effect of interactions?Same as ``true’’ disorder ?

J. Vidal, D. Mouhanna, TG PRL 83 3908 (1999); PRB 65 014201 (2001)

0 0 1 1( ) cos( ) V cos( )V x V Q x Q x= +

• U= 0Aubry-André model

• Localization transition

Page 59: Low dimensional quantum gases

Quasi-periodics and interactionsC. D’Errico, E. Lucioni et al. PRL (2014);L. Gori et al PRA 93 033650 (2016)

Page 60: Low dimensional quantum gases

0 0 0 1( ) cos( ) V cos( )V x V Q x Q x= +

Page 61: Low dimensional quantum gases

d.c. transport at finite T

• In 1D all states are exponentially localized

• Finite T: sweeps energy E with probability f(E)

• No interactions σ(T)=0 for all T !

• Needs coupling to a thermal bath (phonons, etc.)

• Or with interactions can the system be its own thermal bath ?

Page 62: Low dimensional quantum gases

With a bath

Page 63: Low dimensional quantum gases

d.c. transport (high T)TG + H. J. Schulz EPL 3 1287 (1987); PRB 37 325 (1988)

Page 64: Low dimensional quantum gases

Transport with a Thermostat• Mott variable range hopping

• 1D with interactions T. Nattermann, TG, P. Le doussal, PRL 91, 056603 (2003)arXiv:cond-mat/0403487

Page 65: Low dimensional quantum gases

Without a bath

• With interactions can other particles be a ``bath’’ for one particle ?

• Can the system reach the thermodynamic equilibrium ? And explore ergodically the phase space ?

Page 66: Low dimensional quantum gases

Many body localizationBasko, Aleiner, Altshuler; Gornyi, Mirlin Polyakov; Huse, ……

Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and Maksym Serbyn, Rev. Mod. Phys. 91, 021001 (2019)

No thermostat σ(T) = 0 if T<T* even with interactions

The system is not ergodic even at finite temperatures/energies

Page 67: Low dimensional quantum gases

Take home message

Remarkable interplay betweenlocalization and interactions

Consequences and challenges both in equilibrium (LIP) and out of equilibrium (MBL).

Experimental possibilities to explore these phenomenaNeed better tools !

Page 68: Low dimensional quantum gases

Transport

Page 69: Low dimensional quantum gases

Transport

Condensed matter: a «routine» probe for materials

Theoretically: complicated ! Out of equilibrium

Often (but not always !) : linear response I=G V

Typical situation

Page 70: Low dimensional quantum gases

Questions

Kubo; Memory function; Landauer; Keldysh; …..

I=f(V) Reflects the properties of the system (interferences – metal, insulator, etc.)

Methods ?

Expectations for small V: contact system

V RIR R R== +

Other transport(s): spin, temperature, etc.

Page 71: Low dimensional quantum gases

Cold atoms

Page 72: Low dimensional quantum gases

1D ballistic: quantized conductance

Page 73: Low dimensional quantum gases

Atomtronic

M. Lebrat, P. Grisins et al., PRX 8 011053 (18)

Page 74: Low dimensional quantum gases

No interactions: band insulator

Page 75: Low dimensional quantum gases

What happens with interactions?

Page 76: Low dimensional quantum gases

Luther-Emery liquid

Gap in the spin sector (singlet pairing)

Conductance determined by the charge sector

Page 77: Low dimensional quantum gases

Many-body insulator``pinned’’ L.E. liquid

Page 78: Low dimensional quantum gases

Experimental evidence for L.E. liquid

Page 79: Low dimensional quantum gases

Spin transport

A.-M. Visuri, M. Lebrat, S. Häusler, L.Corman and TG, PRR 2, 023062 (2020)

Page 80: Low dimensional quantum gases

Spin transport and spin drag( )J j j Gσ σ µ µ↑ ↓ ↑ ↓= ⟨ − ⟩ = −

Spin Drag: µ↑∆ I↓ I µ↓ ↑= Γ∆

Page 81: Low dimensional quantum gases

Solution (using Sine-Gordon)

tJ σφ∝ ∂

Page 82: Low dimensional quantum gases

Comparison with experiments

Page 83: Low dimensional quantum gases

Lindblad reservoirs and lossesT. Jin, M. Filippone, TG PRB 102 205131 (2021)

( , ) ( , )dxdt x t x tξ ρ∫

T. Jin, J. Ferreira, M. Filippone, TG arxiv/2106.14765

Ballistic ? Diffusive ?

Page 84: Low dimensional quantum gases

Artificial gauge fields

Page 85: Low dimensional quantum gases

Meissner effect in bosonicladders

E. Orignac, TG, PRB 64 144515 (2001)

Page 86: Low dimensional quantum gases

A dl⋅ = Φ∫

Page 87: Low dimensional quantum gases

Orbital currents (``Meissner’’ effect)

Field ``Hc1’’: appearance of vortices

Page 88: Low dimensional quantum gases

Artificial gauge field (cold atoms)M Atala et al. Nat Phys, 10 588 (2014)

Page 89: Low dimensional quantum gases

Hall effect

Non interacting ``simple’’

||

1h

VRI B n⊥= ∝

No interactions: curvature of fermi surface- topological formula (Thouless-Kohmoto)

With interactions: open question

Page 90: Low dimensional quantum gases

Hall effect: measurements

Page 91: Low dimensional quantum gases

Hall effect on laddersS. Greshner, M. Filippone, TG, PRL 122, 083402 (19)

Experiments: out of equilibrium

Analytic: calculation on a ring

Page 92: Low dimensional quantum gases

Vanishing Hall responseM. Filippone, C.E. Bardyn, S. Greshner, TG, PRL 123, 086803 (19)

Exact zero of the Hall effect for LB geometry

Page 93: Low dimensional quantum gases

Hall votage vs polarizationM. Buser, S. Greshner, U. Schollwöck, TG, PRL 126, 030501 (21)

Practical protocol to compute Hall voltage Vh from Hall polarization Ph

Page 94: Low dimensional quantum gases

Dimensional crossover

Page 95: Low dimensional quantum gases

• Largely open physics • Strong difficulties to treat

(analytics, numeric)

• Many studies limited to non-interacting case

• Allows to incorporate SOC and magnetic field effects

• Relevant for many experimental systems

Page 96: Low dimensional quantum gases

c

b

D. Jaccard et al., J. Phys. C, 13 L89 (2001)

Deconfinement

TG Chemical Review 104 5037 (2004)

Page 97: Low dimensional quantum gases

Deconfinement

0 5 10 15 20 25

6080

100

200

400

600 TMTTF2PF6

∆a

T*

ICSDW

CSDWSpin-Peierls

∆c

Activ

ation

ener

gy, T

* (K)

Pressure (kbar)

P. Auban-Senzier, D. Jérome, C. Carcel and J.M. Fabre J de Physique IV, (2004)A. Pashkin, M. Dressel, M. Hanfland, C. A. Kuntscher, PRB 81 125109 (2010)

TG Chemical Review 104 5037 (2004)

Page 98: Low dimensional quantum gases

Chain (Cluster) - DMFTS. Biermann, A. Georges, A. Lichtenstein, TG, PRL 87 276405 (2001)C. Berthod et al. PRL 97, 136401 (2006)

Bath must be self consistently determined

Page 99: Low dimensional quantum gases

Transverse transport

Perpendicular hopping t’

T > t’: tunneling, not usual transport

2 1

11 14 2

( , ) ( , )( )T T

K K

ασ ω ω

α

= + −

Page 100: Low dimensional quantum gases

DMRG

Page 101: Low dimensional quantum gases

Conclusions

Tour of one dimensional physics

Luttinger liquid theory provides a framework to study this physics, and to go beyond

Remarkable and complementary realization in condensed matter and cold atomic gases

Beautiful open problems: out of equilibrium, disorder, coupled chains, impurities, etc. ……

Requires interplay of analytical and numerical techniques (and new ideas!) to make progress