Download - Line Integrals - Math 212bfitzpat/teaching/212s20/... · 2020-04-22 · Line Integrals Math 212 Brian D. Fitzpatrick Duke University March 25, 2020 MATH. Overview Scalar Line Integrals

Transcript

Line IntegralsMath 212

Brian D. Fitzpatrick

Duke University

March 25, 2020

MATH

Overview

Scalar Line IntegralsDefinitionExamples

Vector Line IntegralsDefinitionExamplesDifferential Form Notation

Scalar Line IntegralsDefinition

ThemeConsider a wire W in Rn connecting endpoints P and Q.

P

Q

f (P)=2 kg/m

f (Q)=13 kg/m

P1

f (P1)=3 kg/m P2

f (P2)=7 kg/m

P3

f (P3)=5 kg/m

P4

f (P4)=9 kg/m

Suppose f ∈ C (Rn) measures density (kg/m) at every point of W.

DefinitionThe scalar line integral of f along W is∫

Wf ds = mass of W (in kg)

Scalar Line IntegralsDefinition

DefinitionThe scalar line integral of f ∈ C (Rn) along x : [a, b]→ Rn is∫

xf ds =

∫ b

af (x(t)) · ‖x ′(t)‖ dt

Here, we adopt the notation ds = ‖x ′(t)‖ dt.

Scalar Line IntegralsDefinition

ObservationTracking units allows us to interpret scalar line integrals.∫

xf ds =

∫ b

af (x(t))

mass units

distance unit

· ‖x ′(t)‖

distance units

time unit

dt

time unit

= mass of the curve

Scalar Line IntegralsExamples

Example

Suppose f measures density (in kg/m) along x(t) where

f (x , y) = x2y x(t) = 〈cos (t) , sin (t)〉

and 0 ≤ t ≤ π. The mass of the curve is∫xf ds =

∫ π

0f (x(t)) · ‖x ′(t)‖ dt

=

∫ π

0x2y ‖〈− sin (t) , cos (t)〉 ‖ dt

=

∫ π

0cos2(t) sin(t) dt

u = cos(t) u(π) = −1du = − sin(t) dt u(0) = 1

=

∫ −11−u2 du

= 2/3 kg

Scalar Line IntegralsExamples

Example

The segment connecting P (−2,−2, 1) to Q (−1,−2,−1) is

x(t) = 〈−2, −2, 1〉P

+ t · 〈1, 0, −2〉

# ‰

PQ

= 〈t − 2, −2, −2 t + 1〉 P

Q

for 0 ≤ t ≤ 1. Suppose density is f (x , y , z) = (x + 2 z) · ex−y .∫xf ds =

∫ 1

0(x + 2 z) · ex−y · ‖〈1, 0, −2〉 ‖ dt

=√

5

∫ 1

0−3 t · et dt u = t du = dt

dv = et dt v = et

= − 3√

5 ·{t et∣∣10−∫ 1

0et dt

}= − 3

√5

Vector Line IntegralsDefinition

DefinitionThe work of a force F

“Newton” N

acting on a particle with displacement d“metre” m

is

work = F · d “joule” J = N ·m

The power of F along a velocity vm/s

is

power = F · v “watt” W = N ·m/s = J/s

Power is also called work density.

Vector Line IntegralsDefinition

ThemeConsider a particle’s path P in Rn from P to Q.

x′

F

x ′

F

x ′

F x′

F

P

Q

Suppose F ∈ X(Rn) exerts a force (in N) at every point of P.

DefinitionThe vector line integral of F along P is∫

PF · ds = work (in J)

Vector Line IntegralsDefinition

DefinitionThe vector line integral of F ∈ X(Rn) along x : [a, b]→ Rn is∫

xF · ds =

∫ b

aF (x(t)) · x ′(t) dt

Here, we adopt the notation ds = x ′(t) dt.

Vector Line IntegralsDefinition

ObservationTracking units allows us to interpret vector line integrals.∫

xF · ds =

∫ b

aF (x(t))

force units

· x ′(t)

distance units

time unit

dt

time unit

= work done

Vector Line IntegralsExamples

Example

Consider the data

F (x , y) =

⟨1

xy,

1

x + y

⟩x(t) =

⟨t, t2

⟩1 ≤ t ≤ 4

The work is∫xF · ds =

∫ 4

1F (x(t)) · x ′(t) dt =

∫ 4

1

1

t3+

2

t + 1dt

=

∫ 4

1

⟨1

xy,

1

x + y

⟩· 〈1, 2 t〉 dt =

{− 1

2 t2+ 2 log(t + 1)

}4

1

=

∫ 4

1

1

xy+

2 t

x + ydt =

15

32+ 2 log(5)− 2 log(2)

=

∫ 4

1

1

t3+

2 t

t2 + tdt

Vector Line IntegralsExamples

Example

Consider the data

F (x , y , z) = 〈yz , xz , xy〉 x(t) =⟨t, t2, t3

⟩0 ≤ t ≤ 1

The work is∫xF · ds =

∫ 1

0F (x(t)) · x ′(t) dt =

∫ 1

06 t5 dt

=

∫ 1

0〈yz , xz , xy〉 ·

⟨1, 2 t, 3 t2

⟩dt = t6

∣∣10

=

∫ 1

0

⟨t5, t4, t3

⟩·⟨1, 2 t, 3 t2

⟩dt = 1

=

∫ 1

0t5 + 2 t5 + 3 t5 dt

Vector Line IntegralsDifferential Form Notation

DefinitionFor F = 〈F1,F2,F3〉 it is common to write∫

xF · ds =

∫xF1 dx

x ′1 dt

+ F2 dy

x ′2 dt

+ F3 dz

x ′3 dt

The expression F1 dx + F2 dy + F3 dz is called a differential form.

Vector Line IntegralsDifferential Form Notation

Example

Consider x(t) =⟨t, t2, 1

⟩for 0 ≤ t ≤ 1. Then∫

xx2 dx + xy dy + 1 dz =

∫ 1

0

⟨x2, xy , 1

⟩· ds

=

∫ 1

0

⟨x2, xy , 1

⟩· 〈1, 2 t, 0〉 dt

=

∫ 1

02 txy + x2 dt

=

∫ 1

02 t4 + t2 dt

=11

15