Download - Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Transcript
Page 1: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Lesson 17: Vector AutoRegressive Models

Umberto Triacca

Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversita dell’Aquila,

[email protected]

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 2: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Vector AutoRegressive models

The extension of ARMA models into a multivariate frameworkleads to

Vector AutoRegressive (VAR) models

Vector Moving Average (VMA) models

Vector AutoregRegressive Moving Average (VARMA)models

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 3: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Vector AutoRegressive models

The Vector AutoRegressive (VAR) models ,

made famous in Chris Sims’s paper Macroeconomics and Reality,Econometrica, 1980,

are one of the most applied models in the empirical economics.

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 4: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Vector AutoRegressive models

Let {yt = (y1t , ..., yKt)

′; t ∈ Z}

be a K -variate random process.

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 5: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Vector AutoRegressive models

We say that the process {yt ; t ∈ Z} follows a vector autoregressivemodel of order p, denoted VAR(p) if

yt = ν + A1yt−1 + ...+ Apyt−p + ut , t ∈ Z

p is a positive integer,

Ai are fixed (K × K ) coefficient matrices,

ν = (ν1, ..., νK )′ is a fixed (K × 1) vector of intercept terms,

ut = (u1t , ..., uKt)′ is aK -dimensional white noise with

covariance matrix Σu.

The covariance matrix Σu is assumed to be nonsingular.

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 6: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Example: Bivariate VAR(1)

[y1t

y2t

]=

[ν1

ν2

]+

[a11 a12

a21 a22

] [y1t−1

y2t−1

]+

[u1t

u2t

]or

y1t = ν1 + a11y1t−1 + a12y2t−1 + u1t

y2t = ν1 + a21y1t−1 + a22y2t−1 + u2t

where cov(u1t , u2s) = σ12 for t = s, 0 otherwise

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 7: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Advantages of VAR models

1 They are easy to estimate.

2 They have good forecasting capabilities.

3 The researcher does not need to specify which variables areendogenous or exogeneous. All are endogenous.

4 In a VAR system is very easy to test for Granger non-causality.

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 8: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Problems with VARs

1 So many parameters. If there are K equations, one for each Kvariables and p lags of each of the variables in each equation,(K + pK 2) parameters will have to be estimated.

2 VARs are a-theoretical, since they use little economic theory.Thus VARs cannot used to obtain economic policyprescriptions.

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 9: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Estimation

In this lesson, the estimation of a vector autoregressive model isdiscussed.

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 10: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Estimation

Consider the VAR(1)

y1t = ν1 + a11y1t−1 + a12y2t−1 + u1t

y2t = ν1 + a21y1t−1 + a22y2t−1 + u2t

wherecov(u1t , u2s) = σ12 for t = s, 0 otherwise.

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 11: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Estimation

The model corresponds to 2 regressions with different dependentvariables and identical explanatory variables.

We could estimate this model using the ordinary least squares(OLS) estimator computed separately from each equations.

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 12: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Estimation

It is assumed that a time series

y1 = [y11, y21]′, ..., yT = [y1T , y2T ]′

of the y variables is available.In addition, a presample value

y0 = [y10, y20]′

is assumed to be available.

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 13: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Estimation

Consider the first equation

y1t = ν1 + a11y10 + a12y2t−1 + u1t ; t = 1, ...,T

y11 = ν1 + a11y10 + a12y20 + u11

y12 = ν1 + a11y11 + a12y21 + u12

...

y1T = ν1 + a11y1T−1 + a12y2T−1 + u1T

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 14: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Estimation

We definey1 = [y11, ..., y1T ]′,

X1 =

1 y1,0 y2,0

1 y1,1 y2,1...

......

1 y1,T−1 y2,T−1

,

πππ1 = [ν1, a11, a12]′,

u1 = [u11, ..., u1T ]′,

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 15: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Thusy1 = Xπππ1 + u,

The OLS estimator πππ1 is given by

πππ1 = (X′X)−1X′y1

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 16: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Estimation

Consider the second equation

y2t = ν2 + a21y10 + a22y2t−1 + u2t ; t = 1, ...,T

y21 = ν2 + a21y10 + a22y20 + u21

y22 = ν2 + a21y11 + a22y21 + u22

...

y2T = ν2 + a21y1T−1 + a22y2T−1 + u2T

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 17: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Estimation

We definey2 = [y21, ..., y2T ]′,

πππ2 = [ν2, a21, a22]′,

u2 = [u21, ..., u2T ]′,

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 18: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Estimation

Thusy2 = Xπππ2 + u2,

The OLS estimator πππ2 is given by

πππ2 = (X′X)−1X′y2

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 19: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

OLS estimators

πππ1 = (X′X)−1X′y1 ⇒ πππ1 = [ν1, a11, a12]′

πππ2 = (X′X)−1X′y2 ⇒ πππ2 = [ν2, a21, a22]′

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 20: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

OLS Estimation

Are the OLS estimators for πππ2 and πππ2 efficient estimators?

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 21: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Seemingly Unrelated Regressions Estimation

We remember that

cov(u1t , u2t) = σ12 6= 0

When contemporaneous correlation exists, it may be more efficientto estimate all equations jointly, rather than to estimate each oneseparately using least squares.

The appropriate joint estimation technique is the GLS estimation

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 22: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Seemingly Unrelated Regressions Equations

Let as consider the following set of two equations

y1t = β10 + β11x1t + β12z1t + u1t

y2t = β10 + β11x2t + β12z2t + u2t

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 23: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Seemingly Unrelated Regressions Equations

The two equation can be written in the usual matrix algebranotation as

y1 = X1βββ1 + u1

y2 = X2βββ2 + u2

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 24: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Seemingly Unrelated Regressions Equations

whereyi = [yi1, ..., yiT ]′ i = 1, 2

Xi =

1 xi ,1 zi ,11 xi ,2 zi ,2...

......

1 xi ,T zi ,T

i = 1, 2,

βββi = [βi0, βi1, βi2]′, i = 1, 2,

andui = [ui1, ..., uiT ]′, i = 1, 2,

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 25: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Seemingly Unrelated Regressions Equations

Further, we assume that

1 E [uit ] = 0 i = 1, 2 t = 1, 2...T

2 var(uit) = σ2i i = 1, 2 t = 1, 2...T ;

3 E [uitujt ] = σij i , j = 1, 2;

4 E [uitujs ] = 0 for t 6= s and i , j = 1, 2;

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 26: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Seemingly Unrelated Regressions Equations

Now we write the two equations as the folllowing ‘super model’[y1

y2

]=

[X1 00 X2

] [βββ1

βββ2

]+

[u1

u2

]or

y = Xβββ + u

The first point to note is that it can be shown that least squaresapplied to this system is identical to applying least squaresseparately to each of the two equations.

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 27: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Seemingly Unrelated Regressions Equations

Note that the covariance matrix of the joint disturbace vector u isgiven by

ΦΦΦ =

[σ2

1I σ12Iσ12I σ2

2I

]=

[σ2

1 σ12

σ12 σ22

]⊗ IT = ΣΣΣ⊗ IT

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 28: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Seemingly Unrelated Regressions Equations

The disturbance covariance matrix ΦΦΦ is of dimension(2T × 2T ).An important point to note is that ΦΦΦ cannot be writtenas scalar multiplied by a 2T -dimensional identity matrix. Thus thebest linear unbiased estimator for βββ is given by the generalizedleast squares estimator

βββGLS = (X′ΦΦΦ−1X)−1X′ΦΦΦ−1y = [X′(ΣΣΣ−1 ⊗ IT )X]−1X(ΣΣΣ−1 ⊗ IT )y

It has lower variance than the least squares estimators for βββbecause it takes into account the contemporaneous correlationbetween the disturbances in different equation.

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 29: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Seemingly Unrelated Regressions Equations

There are two conditions under the which least squares is identicalto generalized least squares.

1 The first is when all contemporaneus covariances are zero,σ12 = 0.

2 The second is when the explanatory variables in each equationare identical, X1 = X2

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 30: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Estimation of A VAR model

The use of generalized least squares estimator does not lead to again in efficiency when each equation contains the sameexplanatory variables.

Thus the autoregressive cooefficients of our VAR(1) model can beestimated, without loss of estimation efficiency, by ordinary leastsquares. This in turn is equivalent to estimating each equationseparately by OLS

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 31: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Estimation of A VAR model

The (2× 2) unknown covariance matrix Σ may be consistentestimated by Σ whose elements are

σij =u′i uj

T − 2p − 1for i , j = 1, 2

where ui = yi − Xπππi

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 32: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Estimation of A VAR model

In general, the autoregressive cooefficients of a K -dimensionalVAR(p) model

yt = ν + A1yt−1 + ...+ Apyt−p + ut

can be estimated, without loss of estimation efficiency, by ordinaryleast squares.In the first equation, we have to run the regression

y1t on y1t−1, ..., yKt−1, ..., y1t−p, ..., yKt−p,

in the second equation, we regress

y12 on y1t−1, ..., yKt−1, ..., y1t−p, ..., yKt−p,

and so on.

Umberto Triacca Lesson 17: Vector AutoRegressive Models

Page 33: Lesson 17: Vector AutoRegressive · PDF fileLesson 17: Vector AutoRegressive Models Umberto Triacca Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Universit

Conclusion

Since the VAR(p) model is just a Seemingly Unrelated Regression(SUR) model where each equation has the same explanatoryvariables, each equation may be estimated separately by ordinaryleast squares without losing efficiency relative to generalized leastsquares.

Umberto Triacca Lesson 17: Vector AutoRegressive Models