Download - Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Transcript
Page 1: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Lecture 13Variational Inference

Scribes : Kaushal Panini

Niklas Smedeuranh - Margulies

Page 2: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Variational Inference

Idea , Approximate posterior by maximizing

a variational lower bound,

ply ? Ptt , fly )

" 9) = *

go.o.cn/eogPgY:I;:T

)

7. O ly= log pig ) t Eg o ,llogpqlcz.co#)= leg pays - KL (9170101711party ) )

q

s log pay ,Maximizing L lol ) is the

Same as minimizing KL

Page 3: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Variational Inference : Interpretation as Regularization

Equivalent Interpretation : Regularized maximum likelihood

Llp ) = Eq , .gg ,I leg MYTHOS ) pcy.t.os-pcyiz.ospcz.co )

I

917,01lol

=Ego..

o ,I log pcyiz.at t leg ]

= Ego,o ,

I log

pcyiz.io/-kL(qc7Olos//pl7.os)

I I"

male log likelihood as make sure got ,Oslo )

large as possible"

is similar to prior"

Page 4: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Intuition : Minimizing KL divergences

Ply ,×

, ,X . ) = PCYIX , ,×z ) pcx , ,xz )Z

/ qcx ) = Norm ( x

;µ, 2)g) qc ,× ,

,×z , ÷ q(× , )q( × . ,

qcx , ) ÷ Norm /×, ;µ ,

,6 ? )

qkz ) := Normkn ;µz,6i )

LC aim ) :[email protected], ,×z )

= pcyipix , ,×ziy ) = leg ply ) - KL ( q( x, ,x , ) Hpcx , ,×zly ) )

Intuition : KL divergence under

approximates

variance

Page 5: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Intuition : Minimizing KL divergences

z

gP( Yixi ,×z ) = pcylx , ,×up( 1-

, ,x > )

a. ( x ) = Norm ( x ; p, [ )

g) paganqc ,× ,

,×z , ÷ qk , , qkz )

Propagate qlx ,) :-. Norm ( ×

, ;µ , ,6 , )

91×21 :-. µorm( Xz ;µz , G)

* KL( plx . ,xzly ) 119k , ,xz ) )9k , ,×z I

KL( qlx , ,xz ) Hpcx . ,xzly ) ) = |d×,

dx . qk , ,xz 1 log-

plx , ,Xz1y )

ligng.

q leg 'f = o lipm,

a log ph = as

Intuition : q ( ×, ,xe ) → o whenever PC x , ,xz ly )→0

Page 6: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Algorithm :Variational Expectation Maximization

Define : qcz ,O ; g) = gets Of't ) g C O 's 90 )

Objective

:LClot ,

do ) = Etqiao , flog

'

"q¥toI slog ply ,

-

Repeat until Ileft ,00 )

converges ( change smallerthan some threshold )

1. Expectation Step

lot =

argy.mxL ( oligo) Analogous to EM

step for j

z. Maximization Step

Updates distribution

010 = angurax £ ( 97,010 ) glo ; go ) instead of40 point estimate O

Page 7: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Example : Gaussian Mixture ( Simplified )

Generative Model f !Isi

is :/huh ,

d ~ Norm ( pro ,d ,So )

2- n - Discrete ( YK,

. . . ,Yk )

ynl7n=h n Norml pea ,

EI )

Page 8: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Model Selection

µMargined likelihood

"

AverageEvidence livelihood

"

£ I log ply ) log pigs = log ldtdoply.z.io )

K=2•

I

I

Number of Clusters

Intuition : Can avoid over fitting by keeping model

with highest £

Page 9: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Variational Expectation Maximization : Updates

119707 ) =

Eqcziopsqcy, lbs

g%YgtYg¢n, ]

= #gczioftiqcylpn) ↳ Ply ,Z , 7 ) ) ← depends an

47 and 47- Egypt, I log917145) -Eqcyiqn, flog9411091)

depends on 47 depends on 47

E - step : o -

-

ftp.E.ge?,q.,fEqcy,qn,llogpcy.t.y7)-bgqczipl)

9171472 exp ( Eqcyipyllogpcyit.nl)M - step : o -

- ¥ y Egm, LEG ,y⇒ I log pcy.tn ) ) - by94144 )

genial ) a exp LEqczigzilloyplyit.nl))

Page 10: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Intermezzo : Functional Derivatives

Idea : Compute derivativeofan integral win . 't .a function

ply , 7. y )° = 8%7

, fat dy amain ) (log gifs )at

ply , 7. y )

= / dy gigs (log gig ) -

ldyactsang !%,

drop integral over 2-,

take derivative of integrand

= - log get , t Egg ,flog plyit.nl - log 9in ) ) - I

leg 9th = Egon ,flog ply , 7. y ) ) t const

depends on 7- ensures henna lineation

Page 11: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Variational Expectation Maximization : Updates

1197071 =

Eqcziopsqcy, lbs

g%YofYg¢n, ]

= Ege ,Ileg ply ,Z , y ) ) ← depends an

147917197)

47 and 47-Etgcziqz, I log9171ft) ) -Eqcyiqn, flog9411091)

depends on 47 depends on 47

E - step : 917197 ) x exp f Egg , µ ,I log ply , 2,77 ) )

M - step : qcy 147 ) L exp I Eg # 147 , flog ply .IM ) ) )

Page 12: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Gaussian Mixture : Derivation of Updates

Idea : Exploit Exponential Families

log pcy.z.ms = log pi y l 2-,

4)t log

pcztrf) + log pin )

9 9 9All of these are exponential family

log pcyiz . y'd

= E { y I[zn=h ) tcyn ) -acyilIEti-hli.bghey,h

log pctlyt ) = ? { ytuI[zn=h )

leg populate ) =D ! .FR - D ?. acyl ) t log hints

leg pcyt197) = ItTy ' t loghcyz )

Page 13: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Gaussian Mixture : Derivation of Updates

E - step : Collect all terms that depend on 2-n

leg

qcz.nllot ) = Egon , µ ,

[ log

pcyn.tn. n ) ] t

. . -

= In Egon , µ ,[ yhb ) I 7n=h ) Ayn ) t Egon , µ ,

[ME) I[7n=h ) t. . .

&9

Need expected valuesE (yandEdyta )

Page 14: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Gaussian Mixture : Derivation of Updates

M - step : Collect all terms that depend on y

z htleg 91414) = Ego ,,µz,

[ logpsyn.tn . n ) ) t- . -

YZ= can :(Kiyl+ . . -

YZ my¢ h Qu

, ,

-

log an! 9%= { y ! "

( f InEm, litton ) tan )tin!Need expected value t § alga ) #Eq , , ,

lIftn=h))) tD !! )

Eave ,[ Il7n=h ) ) onbu.ee#

Page 15: Lecture Variational 13 Inference Kaushal PaniniVariational Inference: Interpretation as Regularization Equivalent Interpretation: Regularized maximum likelihood Llp) = Eq,.gg, I leg

Gaussian Mixture : Variational EM

Objective : Variational Evidence Lower Bound ( ELBO )

1197071 = Eqcziopsqcy, lbsg%Y¥Yg¢n , ]Repeat until £10744 ) converges

I . Expectation Step ; Update get ) (keeping qcy ) fixed )

exp L Each , [ log plynitih17 ) ) )= Eg , ,lIL7n=hl )Th =

f exp #an , [ log pcyn.tn -- ely ) )

2.

Maximization Step : Update qcy) (keeping q CZ) fixed )

¢hI=Nutty

OIL?.

-- {loiitisni +9?

. ¢ ?! -

-Nuts ?