Download - Lecture 1 Scattering and Diffraction

Transcript

Basic Principles of Scattering and DiffractionEfrain E. RodriguezChemistry and BiochemistryUniversity of Maryland, College Park

Acknowledgements

Sunil SinhaUC San Diego

Roger PynnU. Indiana

Jacob TosadoU. Maryland

Acknowledgements

Outline

1. Scattering geometry basics: Plane waves and Fourier transforms

3. Scattering from ensemble of atoms and diffraction

2. Scattering cross sections for neutrons and x-rays

Scattering geometry basicsPlane waves and Fourier transforms

Scattering geometry basics: The sinusoidal wave

A

-A

ψ= 𝐴𝐴 sinπœƒπœƒ ψ = 𝐴𝐴 cosπœƒπœƒ

ψ

πœ“πœ“ = 𝐴𝐴 sin(πœƒπœƒ + πœ™πœ™)

cosπœƒπœƒ = sin(πœƒπœƒ + πœ‹πœ‹/2)

A = amplitudeθ = angleφ = phase difference

θππ2

-Ο€ -Ο€2

Ο†

𝐴𝐴 sinπœƒπœƒ

𝐴𝐴 cos πœƒπœƒ

ΞΈ

Scattering geometry basics: The wavenumber k

πœ“πœ“ = 𝐴𝐴 sin(π‘˜π‘˜π‘˜π‘˜ + πœ™πœ™)

k = wavenumberx = positionΞ» = wavelength

Ξ»A

-A

ψ

x

πœ“πœ“ = 𝐴𝐴 sin(πœƒπœƒ + πœ™πœ™)

π‘˜π‘˜ =2πœ‹πœ‹πœ†πœ†

k has SI units of rad m-1

Scattering geometry basics: The travelling waveψ

Wave moves in x-direction with time, t

πœ™πœ™0 = initial phase angleπœ™πœ™ = phase after time tΟ‰ = angular frequency x

πœ”πœ” = 2πœ‹πœ‹πœ‹πœ‹

Ο†πœ“πœ“ = 𝐴𝐴 sin(π‘˜π‘˜π‘˜π‘˜ + πœ™πœ™)

πœ™πœ™ = πœ™πœ™0 βˆ’ πœ”πœ”πœ”πœ”

πœ“πœ“ = 𝐴𝐴 sin(π‘˜π‘˜π‘˜π‘˜ βˆ’ πœ”πœ”πœ”πœ” + πœ™πœ™0)

Ξ»A

-A

Scattering geometry basics: The plane wave

y

x

Ξ»

kky

kx

We define a plane wave:Amplitude in the z-direction,Propagates in y- and x-directions.

r = direction of propagation

k = wavevector

πœ“πœ“ = 𝐴𝐴 sin(π‘˜π‘˜ π‘Ÿπ‘Ÿ βˆ’ πœ”πœ”πœ”πœ” + πœ™πœ™0)

π‘˜π‘˜ =2πœ‹πœ‹πœ†πœ†

Scattering geometry basics: The traveling plane wave

Plane wave in x-direction only Plane wave in xy-direction

Animation courtesy of Dr. Dan Russell, Grad. Prog. Acoustics, Penn State

Scattering geometry basics: Complex numbers

β€’ Useful to work with exponential over sinusoidal waves

β€’ Complex numbers allow us to simplify wavefunctionequations

𝑒𝑒iπœƒπœƒ = cosπœƒπœƒ + i sinπœƒπœƒ

i = imaginary number ΞΈ

Argand diagram

𝑧𝑧 = π‘Žπ‘Ž + i𝑏𝑏

Re z = a Im z = b

Im

Re

b

a

π‘§π‘§βˆ— = π‘Žπ‘Ž βˆ’ iπ‘π‘πœ“πœ“ = 𝐴𝐴 sin(π‘˜π‘˜ π‘Ÿπ‘Ÿ βˆ’ πœ”πœ”πœ”πœ” + πœ™πœ™0)

r

πœ“πœ“ = 𝐴𝐴𝑒𝑒i π‘˜π‘˜π‘Ÿπ‘Ÿβˆ’πœ”πœ”πœ”πœ”

Scattering geometry basics: The Fourier seriesβ€’ We approximate a periodic structure through a sum of cosines and sines.β€’ Let f(x) be a function expanded by a Fourier series

𝑓𝑓 π‘˜π‘˜ β‰ˆ π‘Žπ‘Ž0 + π‘Žπ‘Ž1 cos π‘˜π‘˜π‘˜π‘˜ + π‘Žπ‘Ž2 cos 2π‘˜π‘˜π‘˜π‘˜ +π‘Žπ‘Ž3 cos 3π‘˜π‘˜π‘˜π‘˜ +β‹―+ 𝑏𝑏1 sin π‘˜π‘˜π‘˜π‘˜ + 𝑏𝑏2sin 2π‘˜π‘˜π‘˜π‘˜ + 𝑏𝑏3 sin 3π‘˜π‘˜π‘˜π‘˜ + β‹―

n = 1, fundamental harmonic n = 3, higher harmonics included

Goes to zero if f(x) = f(-x)

The Fourier coefficients

β€’ We write sum more efficiently if we pick the coefficients correctly.β€’ Now a definition and not approximation.

𝑓𝑓 π‘˜π‘˜ = 𝑛𝑛=βˆ’βˆž

∞

𝑐𝑐𝑛𝑛 π‘’π‘’π‘–π‘–π‘›π‘›π‘˜π‘˜π‘–π‘–

where π‘π‘βˆ’π‘›π‘› = π‘π‘π‘›π‘›βˆ—

𝑐𝑐𝑛𝑛 =1πœ†πœ†0

πœ†πœ†

𝑓𝑓(π‘˜π‘˜)π‘’π‘’βˆ’iπ‘›π‘›π‘˜π‘˜π‘–π‘–dπ‘˜π‘˜

β€’ We extend the analysis to a non-periodic function

β€’ The Fourier coefficients become continuous functions we call F(k)

𝑐𝑐𝑛𝑛 =12πœ‹πœ‹

𝐹𝐹(π‘˜π‘˜)βˆ†π‘˜π‘˜

The Fourier transformThe limiting case is πœ†πœ† β†’ ∞ and βˆ†π‘˜π‘˜ β†’ 0β€’ We call F(k) the Fourier transform of f(x), and vice versaβ€’ We can toggle between real space (x) and reciprocal space (k)

𝑓𝑓 π‘˜π‘˜ =12πœ‹πœ‹

βˆ’βˆž

∞

𝐹𝐹(π‘˜π‘˜)𝑒𝑒iπ‘˜π‘˜π‘–π‘–dπ‘˜π‘˜ 𝐹𝐹 π‘˜π‘˜ =12πœ‹πœ‹

βˆ’βˆž

∞

𝑓𝑓(π‘˜π‘˜)π‘’π‘’βˆ’iπ‘˜π‘˜π‘–π‘–dπ‘˜π‘˜

A duck in real space A duck in reciprocal space

Argand diagram for real and imaginary components

Im

Re

Credit: Dr. David Cowtan, University of York

Fourier optics: Young’s double slit experiment

ΞΈπ‘žπ‘ž =ksinΞΈ

ki

kf

π‘˜π‘˜ =2πœ‹πœ‹πœ†πœ†

An important Fourier transform: Young’s double slit

𝒙𝒙

𝑨𝑨(𝒙𝒙)

𝑑𝑑

𝐴𝐴 π‘˜π‘˜ = 𝛿𝛿 π‘˜π‘˜ βˆ’π‘‘π‘‘2

+ 𝛿𝛿 π‘˜π‘˜ +𝑑𝑑2

𝒒𝒒

𝝍𝝍(𝒒𝒒)

πœ“πœ“ π‘žπ‘ž = πœ“πœ“0 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖/2 + π‘’π‘’βˆ’π‘–π‘–π‘–π‘–π‘–π‘–/2

πœ“πœ“ π‘žπ‘ž = πœ“πœ“02 cosπ‘žπ‘žπ‘‘π‘‘2

π‘žπ‘ž =2πœ‹πœ‹ sinπœƒπœƒ

πœ†πœ†

We don’t see the transform, but its amplitude squared

𝒙𝒙

𝑨𝑨(𝒙𝒙)

𝑑𝑑

𝐼𝐼 π‘žπ‘ž ∝ cosπ‘žπ‘žπ‘‘π‘‘2

2

𝐼𝐼 π‘žπ‘ž ∝ 1 + cos(π‘žπ‘žπ‘‘π‘‘)I(q) is our intensity or diffraction function

𝒒𝒒

𝑰𝑰(𝒒𝒒)2 πœ‹πœ‹π‘‘π‘‘

Bragg’s law from Fourier transform of a diffraction grating

𝒙𝒙

𝑨𝑨(𝒙𝒙)𝑑𝑑

𝒒𝒒

𝑰𝑰(𝒒𝒒)2 πœ‹πœ‹π‘‘π‘‘

𝐴𝐴 π‘˜π‘˜ = π‘šπ‘š=βˆ’βˆž

∞

𝛿𝛿(π‘˜π‘˜ βˆ’π‘šπ‘šπ‘‘π‘‘) 𝐼𝐼 π‘žπ‘ž ∝ 𝑛𝑛=βˆ’βˆž

∞

𝛿𝛿(π‘žπ‘ž βˆ’ π‘›π‘›π‘žπ‘ž0)2πœ‹πœ‹π‘›π‘›π‘‘π‘‘

=2πœ‹πœ‹ sinπœƒπœƒ

πœ†πœ†

π‘›π‘›πœ†πœ† = 𝑑𝑑 sinπœƒπœƒ

The phase problem with cats and ducksanimals in real space animals in reciprocal space

Im

Re

Credit: Dr. David Cowtan, University of York

The phase problem, mixing phases and amplitudesamplitudes from original animal, but

phases from opposite animal

Im

Re

Credit: Dr. David Cowtan, University of York

Scattering cross sectionsneutrons and x-rays

The differential cross-section

When neutrons (or X-rays) scattered by the sample, we use Οƒ to represent number scattered particles

particles

We are after the differential cross-section

dΞ© =dπ‘†π‘†π‘Ÿπ‘Ÿ2

d𝜎𝜎dΩ

Flux of particles from beam and scattering at a solid angle

Ξ¦ = Flux of incoming particles

Number per unit time per unit area (s-1 cm-2)

Scattering occurs within the plane by 2ΞΈ and out by angle Ο†

particlesWe can define the solid angle as βˆ†Ξ©

The differential and double differential cross section

dE d dE & d into secondper scattered neutrons ofnumber

d d into secondper scattered neutrons ofnumber

/ secondper scattered neutrons ofnumber totalsecondper cmper neutronsincident ofnumber

2

2

ΩΦΩ

=Ξ©

ΩΦΩ

=Ξ©

Ξ¦==Ξ¦

dEdd

dd

Οƒ

σσ

Plane waves impinge on a single atom

Top-down view of incident plane wave arriving at atomic center.

πœ“πœ“π‘–π‘– = πœ“πœ“0𝑒𝑒iπ‘˜π‘˜π‘˜π‘˜

𝑒𝑒iπ‘˜π‘˜π‘˜π‘˜ 2ΞΈr

πœ“πœ“π‘“π‘“ = πœ“πœ“0𝑓𝑓(πœ†πœ†,πœƒπœƒ)𝑒𝑒iπ‘˜π‘˜π‘–π‘–

π‘Ÿπ‘Ÿ

z-direction

The β€˜aperture’ function f(Ξ»,ΞΈ) for scattering a plane wave

β€’ We approximate f(Ξ»,ΞΈ) as a constant for neutron scattering as a fixed point.β€’ For x-rays, we cannot make this approximation which affects f(Ξ»,ΞΈ)

Increasing slit-size means that the scattered wave has more 2ΞΈ-dependenceIntensity drops off at higher scattering angles

GIFs of plane wave arriving at a slit

The neutron scattering lengthβ€’ In neutron scattering, the nucleus is a point source. β€’ f(Ξ»,ΞΈ) is therefore a constantβ€’ f(Ξ»,ΞΈ) = b where b is known as the scattering length

πœ“πœ“π‘“π‘“ = πœ“πœ“0𝑓𝑓(πœ†πœ†,πœƒπœƒ)𝑒𝑒iπ‘˜π‘˜π‘–π‘–

π‘Ÿπ‘Ÿ

β€’ Note that f(Ξ»,ΞΈ) and b must have units of length since it is divided by r

β€’ Typical b are in fm or 10-15 m

β€’ Can be positive or negative!

The neutron scattering cross section

πœ“πœ“0 2 = Ξ¦ πœ“πœ“π‘“π‘“2 =

Ξ¦π‘Ÿπ‘Ÿ2

𝑓𝑓(πœ†πœ†,πœƒπœƒ) 2

𝜎𝜎 = 4πœ‹πœ‹ 𝑏𝑏 2

𝜎𝜎 = 2πœ‹πœ‹ 2πœƒπœƒ=0

πœ‹πœ‹

𝑓𝑓(πœ†πœ†,πœƒπœƒ) 2 sin2πœƒπœƒd2πœƒπœƒ

Rate = incident flux x cross-sectional areaΦ dSR

𝑅𝑅 = 2πœƒπœƒ=0

πœ‹πœ‹

πœ™πœ™=0

2πœ‹πœ‹

πœ“πœ“π‘“π‘“2 d𝑆𝑆 dSdS

ΦΦ

Neutron scattering length for hydrogen

β€’ Units given in barns, where 1 barn = 10-28 m2

β€’ These are isotope specific and will depend on the orientation of nuclear spin with respect to the neutron

β€’ Example hydrogen vs. deuteriumβ€’ H has triplet and singlet from proton

𝑏𝑏 = 𝑏𝑏 Β± βˆ†π‘π‘π‘π‘ =

34𝑏𝑏+ +

14π‘π‘βˆ’

𝑏𝑏 = βˆ’0.374 Γ— 10βˆ’14π‘šπ‘š

βˆ†π‘π‘ = 𝑏𝑏2 βˆ’ 𝑏𝑏 2

βˆ†π‘π‘ = 2.527 Γ— 10βˆ’14 π‘šπ‘š

𝑏𝑏+ = 1.085 Γ— 10βˆ’14π‘šπ‘šπ‘π‘βˆ’ = βˆ’4.750 Γ— 10βˆ’14π‘šπ‘š

Neutron scattering length for deuteriumβ€’ Deuterium has a quartet and doublet from proton and neutron in its

nucleusβ€’ 2/3 of states are quartet, 1/3 are doublet

𝑏𝑏 =23𝑏𝑏+ +

13π‘π‘βˆ’

𝑏𝑏 = 0.668 Γ— 10βˆ’14π‘šπ‘š

βˆ†π‘π‘ = 0.403 Γ— 10βˆ’14π‘šπ‘š2

𝜎𝜎 = 4πœ‹πœ‹ 𝑏𝑏 2

𝑏𝑏2 = 𝑏𝑏 2 + βˆ†π‘π‘ 2

𝜎𝜎 = πœŽπœŽπ‘π‘π‘π‘π‘ + πœŽπœŽπ‘–π‘–π‘›π‘›π‘π‘

(barns)Hydrogen 1.76 80.27Deuterium 5.59 2.05

πœŽπœŽπ‘π‘π‘π‘π‘ = 4πœ‹πœ‹ 𝑏𝑏 2 πœŽπœŽπ‘–π‘–π‘›π‘›π‘π‘π‘π‘π‘ = 4πœ‹πœ‹ βˆ†π‘π‘ 2

The intrinsic cross section for x-raysβ€’ The x-ray is a

electromagnetic radiation with the electric field Einoscillating normal to the wave’s propagation.

β€’ The electrons in the atomic center will oscillate with the x-ray and re-emit the x-ray with the oscillating field Erad

Thompson scattering length of the electron

The cross section for x-rays

ΟˆΟƒ

Οƒ

Ξ±

Ξ±

2202

in

22

0

2in

22

0

2

cosE)/(

*area)per raysincident x of(number in secper scattered xraysofnumber section cross aldifferenti

Eintensityincident detector in measuredintensity

; beam of areaunit per Energy energy/sec photons)ray - xofnumber (i.e.intensity Measured

rRE

AII

dd

dd

ARE

II

E

radsc

radsc

==βˆ†Ξ©

=Ξ©

βˆ†Ξ©βˆ†Ξ©

=Ξ©

=

βˆ†Ξ©==β‡’

The atomic form factor for x-rays

Scattering from multiple atomsDiffraction from a crystal

The scattering triangle

β€’ ki is the incident wavevector and kf is the scattered wavevector

β€’ Useful to work with another vector besides ki or kf

β€’ We define Q, as our momentum transfer

Sample2ΞΈki

kf

Q

Scattering angle

-kf𝑸𝑸 = π’Œπ’Œπ’Šπ’Š βˆ’ π’Œπ’Œπ’‡π’‡

Momentum transfer, or Q-space

Sample2ΞΈki

kf

Q

ΞΈ

Scattering angle

-kf

𝑄𝑄 = π‘˜π‘˜π‘–π‘– βˆ’ π‘˜π‘˜π‘“π‘“

π‘˜π‘˜ =2πœ‹πœ‹πœ†πœ†

𝑄𝑄2

= π‘˜π‘˜ sinπœƒπœƒπ‘„π‘„ =

4πœ‹πœ‹ sinπœƒπœƒπœ†πœ†

For elastic scattering, no energy transfer

π‘˜π‘˜π‘–π‘– = π‘˜π‘˜π‘“π‘“

𝑄𝑄 = π‘˜π‘˜π‘“π‘“ βˆ’ π‘˜π‘˜π‘–π‘–or

Scattering from an ensemble of atoms

2ΞΈ

ki

kf

Q

𝑄𝑄 =4πœ‹πœ‹ sinπœƒπœƒ

πœ†πœ†

𝑄𝑄 = π‘˜π‘˜π‘“π‘“ βˆ’ π‘˜π‘˜π‘–π‘–

Waves scattered can add up in phase

Adding up the waves scattered from different centers

A crystal has translational symmetry

Relationship between real and reciprocal space in crystals

Diffraction and Bragg’s law

a*

b*(hkl)=(260)

Ghkl

OGhkl = 2Ο€/dhkl

k0kβ€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’

β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’

β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’

β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’

β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’ β€’

Ghkl is called a reciprocal lattice vector (node denoted hkl)

h, k and l are called Miller indicesβ€’ (hkl) describes a set of

planes perpendicular to Ghkl, separated by dhkl

β€’ hkl represents a set of symmetry-related lattice planes

β€’ [hkl] describes a crystallographic direction

β€’ <hkl> describes a set of symmetry equivalent crystallographic directions

πΊπ‘π‘˜π‘˜π‘˜π‘˜ = 𝑄𝑄

2πœ‹πœ‹π‘›π‘›π‘‘π‘‘π‘π‘˜π‘˜π‘˜π‘˜

=4πœ‹πœ‹ sinπœƒπœƒ

πœ†πœ†

π‘›π‘›πœ†πœ† = 2π‘‘π‘‘π‘π‘˜π‘˜π‘˜π‘˜ sinπœƒπœƒ

Example: diffraction from a crystal – the fcc lattice

Lattice in real space

β€’ A monochromatic (single Ξ») neutron beam is diffracted by a single crystal only if specific geometrical conditions are fulfilled

β€’ Useful Ξ» are typically between 0.4 Γ… and 2.5 Γ….

β€’ These conditions can be expressed in several ways:β€’ Laue’s conditions: with h, k, and l as integers β€’ Bragg’s Law: β€’ Ewald’s construction

β€’ Diffraction tells us about:β€’ The dimensions of the unit cellβ€’ The symmetry of the crystalβ€’ The positions of atoms within the unit cellβ€’ The extent of thermal vibrations of atoms

in various directions

Relationship between real and reciprocal space

Beam of neutrons or x-rays scattered from planes

Bragg reflections from crystallographic planes

Centering operations lead to systematic absences

001 family of planes are systematically absent

Other allowed reflections in fcc lattice

[111] view of the (220) reflection

The Ewald sphere and scattering triangle

The Ewald SphereRadius is 2Ο€/Ξ»

SummaryFor x-ray and neutron scattering, we are dealing with the scattering of plane waves by atoms and nuclei.

𝐹𝐹 π‘˜π‘˜ =12πœ‹πœ‹

βˆ’βˆž

∞

𝑓𝑓(π‘˜π‘˜)π‘’π‘’βˆ’iπ‘˜π‘˜π‘–π‘–dπ‘˜π‘˜

𝑄𝑄 =4πœ‹πœ‹ sinπœƒπœƒ

πœ†πœ†

π‘‘π‘‘πœŽπœŽπ‘‘π‘‘Ξ©

= π‘Ÿπ‘Ÿ02𝑖𝑖,𝑗𝑗

𝑓𝑓(𝑄𝑄) 2π‘’π‘’βˆ’π‘Έπ‘Έ(π‘Ήπ‘Ήπ’Šπ’Šβˆ’π‘Ήπ‘Ήπ’‹π’‹) 𝑃𝑃(2πœƒπœƒ)π‘‘π‘‘πœŽπœŽπ‘‘π‘‘Ξ©

= 𝑖𝑖,𝑗𝑗

π‘π‘π‘–π‘–π‘π‘π‘—π‘—π‘’π‘’βˆ’π‘Έπ‘Έ(π‘Ήπ‘Ήπ’Šπ’Šβˆ’π‘Ήπ‘Ήπ’‹π’‹)

π‘›π‘›πœ†πœ† = 2π‘‘π‘‘π‘‘π‘˜π‘˜π‘‘π‘‘ sinπœƒπœƒ

neutrons

When Ghkl = Q, Bragg’s Law

x-rays

Questions?