Download - Joint Probability Distributions, Correlations

Transcript
Page 1: Joint Probability Distributions, Correlations

Joint Probability Distributions,Correlations

Page 2: Joint Probability Distributions, Correlations

What we learned so far…• Random Events:

– Working with events as sets: union, intersection, etc.• Some events are simple: Head vs Tails, Cancer vs Healthy• Some are more complex: 10<Gene expression<100• Some are even more complex: Series of dice rolls: 1,3,5,3,2

– Conditional probability:  P(A|B)=P(A ∩ B)/P(B)– Independent events: P(A|B)=P(A) or P(A ∩ B)= P(A)*P(B)– Bayes theorem: relates P(A|B) to P(B|A)

• Random variables:– Mean, Variance, Standard deviation. How to work with E(g(X))– Discrete (Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative 

binomial, Hypergeometric, Power law); PMF: f(x)=Prob(X=x); CDF: F(x)=Prob(X≤x);

– Continuous (Uniform, Exponential, Erlang, Gamma, Normal, Log‐normal);PDF: f(x) such that Prob(X inside A)= ∫A f(x)dx; CDF: F(x)=Prob(X≤x)

• Next step: work with multiple random variablesmeasured together in the same series of random experiments

Page 3: Joint Probability Distributions, Correlations

Concept of Joint Probabilities

• Biological systems are usually described not by a single random variable but by many random variables

• Example: The expression state of a human cell: 20,000 random variables Xi for each of its genes

• A joint probability distribution describes the behavior of several random variables

• We will start with just two random variables X and Y and generalize when necessary

Chapter 5 Introduction 3

Page 4: Joint Probability Distributions, Correlations

Joint Probability Mass Function Defined

Sec 5‐1.1 Joint Probability Distributions 4

The of the and ,

denoted as , , satifies:

(1) , 0 Al

joint probability mass functiondiscrete random vari

l probabilities are non-negative

(2) , 1 The sum of all

ables

XY

XY

XYx y

X Yf x y

f x y

f x y

probabilities is 1

(3) , , (5-1)XYf x y P X x Y y

Page 5: Joint Probability Distributions, Correlations

Example 5‐1:  # Repeats vs. Signal BarsYou use your cell phone to check your airline reservation. It asks you to speak 

the name of your departure city to the voice recognition system.• Let Y denote the number of times you have to state your departure city.• Let X denote the number of bars of signal strength on you cell phone.

Sec 5‐1.1 Joint Probability Distributions 5

Figure 5‐1  Joint probability distribution of X and Y.  The table cells are the probabilities.  Observe that more bars relate to less repeating.

OnceTwice3 Times4 Times

0.00

0.05

0.10

0.15

0.20

0.25

1 2 3

Prob

ability

Cell Phone Bars

Bar Chart of Number of Repeats vs. Cell 

Phone Bars1 2 3

1 0.01 0.02 0.252 0.02 0.03 0.203 0.02 0.10 0.054 0.15 0.10 0.05

x =  number of bars of signal strength

y =  number of times city 

name is stated

Page 6: Joint Probability Distributions, Correlations

Marginal Probability Distributions (discrete)For a discrete joint PDF, there are marginal distributions for each random variable, formed by summing the joint PMF over the other variable.

Sec 5‐1.2 Marginal Probability Distributions 6

,

,

X XYy

Y XYx

f x f x y

f y f x y

1 2 3 f Y (y ) =

1 0.01 0.02 0.25 0.282 0.02 0.03 0.20 0.253 0.02 0.10 0.05 0.174 0.15 0.10 0.05 0.30f X (x ) = 0.20 0.25 0.55 1.00

x =  number of bars of signal strength

y =  number of times city name 

is stated

Figure 5‐6  From the prior example, the joint PMF is shown in green while the two marginal PMFs are shown in purple.

Called marginal because they are written in the margins

Page 7: Joint Probability Distributions, Correlations

Mean & Variance of X and Y are calculated using marginal distributions

Sec 5‐1.2 Marginal Probability Distributions 7

1 2 3 f (y ) = y *f (y ) = y 2*f (y ) =1 0.01 0.02 0.25 0.28 0.28 0.282 0.02 0.03 0.20 0.25 0.50 1.003 0.02 0.10 0.05 0.17 0.51 1.534 0.15 0.10 0.05 0.30 1.20 4.80f (x ) = 0.20 0.25 0.55 1.00 2.49 7.61

x *f (x ) = 0.20 0.50 1.65 2.35x 2*f (x ) = 0.20 1.00 4.95 6.15

x =  number of bars of signal strength

y =  number of times city 

name is stated

μX =E(X) = 2.35;    σX2 = V(X) = 6.15 – 2.352 = 6.15  – 5.52 = 0.6275

μY= E(Y) = 2.49;    σY2 = V(Y) = 7.61 – 2.492 = 7.61 – 16.20 = 1.4099

Page 8: Joint Probability Distributions, Correlations

Conditional Probability Distributions

From Example 5‐1P(Y=1|X=3) = 0.25/0.55 = 0.455P(Y=2|X=3) = 0.20/0.55 = 0.364P(Y=3|X=3) = 0.05/0.55 = 0.091P(Y=4|X=3) = 0.05/0.55 = 0.091

Sum = 1.00

Sec 5‐1.3 Conditional Probability Distributions 8

Recall that P A B

P B AP A

1 2 3 f Y (y ) =1 0.01 0.02 0.25 0.282 0.02 0.03 0.20 0.253 0.02 0.10 0.05 0.174 0.15 0.10 0.05 0.30f X (x ) = 0.20 0.25 0.55 1.00

x =  number of bars of signal strength

y =  number of times city name 

is stated

Note that there are 12 probabilities conditional on X, and 12 more probabilities conditional upon Y.

P(Y=y|X=x)=P(X=x,Y=y)/P(X=x)==f(x,y)/fX(x)

Page 9: Joint Probability Distributions, Correlations

Joint Random Variable Independence• Random variable independence means that knowledge of the value of X does not change any of the probabilities associated with the values of Y. 

• Opposite: Dependence implies that the values of X are influenced by the values of Y

Sec 5‐1.4 Independence 9

Page 10: Joint Probability Distributions, Correlations

Independence for Discrete Random Variables

• Remember independence of events (slide 13 lecture 4) :  Events are independent if any one of the three conditions are met:1) P(A|B)=P(A ∩ B)/P(B)=P(A) or 2) P(B|A)= P(A ∩ B)/P(A)=P(B) or 3) P(A ∩ B)=P(A) ∙ P(B)

• Random variables independent if all eventsA that Y=y and B that X=x are independent if any one of these conditions is met:1) P(Y=y|X=x)=P(Y=y) for any x or 2) P(X=x|Y=y)=P(X=x) for any y or 3) P(X=x, Y=y)=P(X=x)∙P(Y=y) for every pair x and y

Page 11: Joint Probability Distributions, Correlations

Credit: XKCD comics 

Page 12: Joint Probability Distributions, Correlations

Joint Probability Density Function Defined

Sec 5‐1.1 Joint Probability Distributions 12

(1) , 0 for all ,

(2) , 1

(3) , , (5-2)

XY

XY

XYR

f x y x y

f x y dxdy

P X Y R f x y dxdy

Figure 5‐2  Joint probability density function for the random variables X and Y.  Probability that (X, Y) is in the region R is determined by the volume of fXY(x,y) over the region R.

The joint probability density function for the continuous random variables X and Y, denotes as fXY(x,y), satisfies the following properties:

Page 13: Joint Probability Distributions, Correlations

Joint Probability Density Function Graph

Sec 5‐1.1 Joint Probability Distributions 13

Figure 5‐3  Joint probability density function for the continuous random variables X and Y of expression levels of two different genes.  Note the asymmetric, narrow ridge shape of the PDF – indicating that small values in the X dimension are more likely to occur when small values in the Y dimension occur.

Page 14: Joint Probability Distributions, Correlations

Marginal Probability Distributions (continuous)

• Rather than summing a discrete joint PMF, we integrate a continuous joint PDF.

• The marginal PDFs are used to make probability statements about one variable.

• If the joint probability density function of random variables X and Y is fXY(x,y), the marginal probability density functions of X and Y are:

Sec 5‐1.2 Marginal Probability Distributions 14

,

, (5-3)

X XYy

Y XYx

f x f x y dy

f y f x y dx

,

,

X XYy

Y XYx

f x f x y

f y f x y

Page 15: Joint Probability Distributions, Correlations

Conditional Probability Density Function Defined

Sec 5‐1.3 Conditional Probability Distributions 15

Given continuous random variables and with joint probability density function , , the conditional probability densiy function of given =x is

, , = if 0

,

XY

XY XYXY x

X XYy

X Yf x y

Y Xf x y f x y

f y f xf x f x y dy

(5-4)

which satifies the following properties:(1) 0

(2) 1

(3) for any set B in the range of Y

Y x

Y x

Y xB

f y

f y dy

P Y B X x f y dy

Compare to discrete: P(Y=y|X=x)=fXY(x,y)/fX(x)

Page 16: Joint Probability Distributions, Correlations

Conditional Probability Distributions

• Conditional probability distributions can be developed for multiple random variables by extension of the ideas used for two random variables.

• Suppose p = 5 and we wish to find the distribution of X1, X2 and X3 conditional on X4=x4 and X5=x5.

Sec 5‐1.5 More Than Two Random Variables 16

1 2 3 4 5

1 2 3 4 5

4 5

4 5

1 2 3 4 51 2 3

4 5

4 5

, , , ,, ,

,

for , 0.

X X X X XX X X x x

X X

X X

f x x x x xf x x x

f x x

f x x

Page 17: Joint Probability Distributions, Correlations

Independence for Continuous Random Variables

For random variables X and Y, if any one of the following properties is true, the others are also true.  Then Xand Y are independent.

Sec 5‐1.4 Independence 17

(1) ,

(2) for all x and y with 0

(3) for all x and y with 0

(4) P , for any sets and in the range of and , respectively. (5-7)

XY X Y

Y XY x

X YX y

f x y f x f y

f y f y f x

f y f x f y

X A Y B P X A P Y BA B X Y

P(Y=y|X=x)=P(Y=y) for any x or P(X=x|Y=y)=P(X=x) for any y or P(X=x, Y=y)=P(X=x)∙P(Y=y) for any x and y

Page 18: Joint Probability Distributions, Correlations
Page 19: Joint Probability Distributions, Correlations
Page 20: Joint Probability Distributions, Correlations
Page 21: Joint Probability Distributions, Correlations
Page 22: Joint Probability Distributions, Correlations

22

X and Y are uniformly distributed in the disc x2+y2≤1

Are they independent?

A. yesB. noC. I could not figure it out

Get your i‐clickers

Page 23: Joint Probability Distributions, Correlations
Page 24: Joint Probability Distributions, Correlations

Credit: XKCD comics 

Page 25: Joint Probability Distributions, Correlations

Covariation,Correlations

Page 26: Joint Probability Distributions, Correlations
Page 27: Joint Probability Distributions, Correlations
Page 28: Joint Probability Distributions, Correlations

Covariance Defined

Sec 5‐2 Covariance & Correlation 28

The covariance between the random v

Covariance is a number qunatifying

ariables X and Y, denoted as co

average dependence betwee

v , or is

(

n two random variables.

XY

XY X Y X Y

X Y

E X Y E XY

5-14)

The units of are units of times units of .

Unlike the range of variance, - .

XY

XY

X Y

Page 29: Joint Probability Distributions, Correlations

Covariance and PMF tables

Sec 5‐2 Covariance & Correlation 29

The probability  distribution of Example 5‐1 is shown.

By inspection, note that the larger probabilities occur as Xand Ymove in opposite directions.  This indicates a negative covariance.

1 2 31 0.01 0.02 0.252 0.02 0.03 0.203 0.02 0.10 0.054 0.15 0.10 0.05

x =  number of bars of signal strength

y =  number of times city 

name is stated

Page 30: Joint Probability Distributions, Correlations

Covariance and Scatter Patterns

Sec 5‐2 Covariance & Correlation 30

Figure 5‐13  Joint probability distributions and the sign of cov(X, Y).  Note that covariance is a measure of linear relationship.  Variables with non‐zero covariance are correlated.

Page 31: Joint Probability Distributions, Correlations

Independence Implies σ=ρ = 0 but not vice versa

• If X and Y are independent random variables,σXY = ρXY = 0  (5‐17)

• ρXY = 0 is necessary, but not a sufficient condition for independence.  

Sec 5‐2 Covariance & Correlation 31

NOT independentcovariance=0

Independentcovariance=0

Page 32: Joint Probability Distributions, Correlations

Correlation is “normalized covariance”

• Also called: Pearson correlation coefficient 

ρXY=σXY /σXσYis the covariance normalized to be ‐1 ≤ ρXY ≤ 1

Karl Pearson (1852– 1936) English mathematician and biostatistician

Page 33: Joint Probability Distributions, Correlations
Page 34: Joint Probability Distributions, Correlations
Page 35: Joint Probability Distributions, Correlations

Spearman rank correlation• Pearson correlation tests for linear relationship between X and Y

• Unlikely for variables with broad distributions  non‐linear effects dominate

• Spearman correlation tests for any monotonic relationship between X and Y  

• Calculate ranks (1 to n), rX(i) and rY(i) of variables in both samples. Calculate Pearson correlation between ranks: Spearman(X,Y) = Pearson(rX, rY) 

• Ties: convert to fractions, e.g. tie for 6s and 7s place both get 6.5. This can lead to artefacts. 

• If lots of ties: use Kendall rank correlation (Kendall tau)

Page 36: Joint Probability Distributions, Correlations

Matlab exercise: Correlation/Covariation• Generate a sample with Stats=100,000 of two Gaussian random variables r1 and r2 which have mean 0 and standard deviation 2 and are:– Uncorrelated– Correlated with correlation coefficient 0.9– Correlated with correlation coefficient ‐0.5– Trick: first make uncorrelated r1 and r2. Then make anew variable: r1mix=mix.*r2+(1‐mix.^2)^0.5.*r1; where mix= corr. coeff.

• For each value of mix calculate covariance and correlation coefficient between r1mix and r2

• In each case make а scatter plot: plot(r1mix,r2,’k.’);

Page 37: Joint Probability Distributions, Correlations
Page 38: Joint Probability Distributions, Correlations

Linear Functions of Random Variables

• A function of multiple random variables is itself a random variable.

• A function of random variables can be formed by either linear or nonlinear relationships.  We will only work with linear functions.

• Given random variables X1, X2,…,Xp and constants c1, c2, …, cpY= c1X1 + c2X2 + … + cpXp (5‐24) is a linear combination of X1, X2,…,Xp.

Sec  5‐4 Linear Functions of Random Variables 38

Page 39: Joint Probability Distributions, Correlations
Page 40: Joint Probability Distributions, Correlations

Mean & Variance of a Linear Function

Y= c1X1 + c2X2 + … + cpXp

Sec  5‐4 Linear Functions of Random Variables 40

1 1 2 2

2 2 21 1 2 2

1 2

2 21 1 2 2

... (5-25)

V ... 2 cov (5-26)

If , ,..., are , then cov 0,

..

independent

.

p p

p p i j i ji j

p i j

E Y c E X c E X c E X

Y c V X c V X c V X c c X X

X X X X X

V Y c V X c V X c

2 (5-27)p pV X

Page 41: Joint Probability Distributions, Correlations

Example 5‐31: Error Propagation

A semiconductor product consists of three  layers.  The variances of the thickness of each layer is 25, 40 and 30 nm2.  What is the variance of the finished product?

Answer:

Sec  5‐4 Linear Functions of Random Variables 41

1 2 3

32

1

25 40 30 95 nm

95 9.7 nm

ii

X X X X

V X V X

SD X

Page 42: Joint Probability Distributions, Correlations
Page 43: Joint Probability Distributions, Correlations
Page 44: Joint Probability Distributions, Correlations

Mean & Variance of an Average

Sec  5‐4 Linear Functions of Random Variables 44

1 2

2

2 2

2

...If and

Then (5-28a)

If the are independent with

Then (5-28b)

pi

i i

X X XX E X

p

pE Xp

X V X

pV Xp p

Page 45: Joint Probability Distributions, Correlations

Credit: XKCD comics 

Page 46: Joint Probability Distributions, Correlations

Principal Component Analysis (PCA)

Page 47: Joint Probability Distributions, Correlations

4.0 4.5 5.0 5.5 6.02

3

4

5

Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU

Suppose we have a population measured on p random variables X1,…,Xp. Note that these random variables represent the p-axes of the Cartesian coordinate system in which the population resides. Our goal is to develop a new set of p axes (linear combinations of the original p axes) in the directions of greatest variability:

Trick: Rotate Coordinate Axes

1st Principal Component, y1

2nd Principal Component, y2

This is accomplished by rotating the axes.

Page 48: Joint Probability Distributions, Correlations

PCA Scores

4.0 4.5 5.0 5.5 6.02

3

4

5

xi2

xi1

yi,1 yi,2

Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU

Page 49: Joint Probability Distributions, Correlations

PCA Eigenvalues and Eigenevectors

4.0 4.5 5.0 5.5 6.02

3

4

5

λ1λ2

Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU

Page 50: Joint Probability Distributions, Correlations

such that:yk's are uncorrelated (orthogonal)y1 explains as much as possible of original variance in data sety2 explains as much as possible of remaining varianceetc.

PCA: General

Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU

Answer: PCAdiagonalize thep x p symmetric matrix of corr. coefficients

From p original variables: x1,x2,...,xp:I need to produce p new variables: 

y1,y2,...,yp:

y1 = a11x1 + a12x2 + ... + a1pxpy2 = a21x1 + a22x2 + ... + a2pxp...yp = ap1x1 + ap2x2 + ... + appxp

Page 51: Joint Probability Distributions, Correlations

Choosing the Dimension K

K pi = 

eigenvalues

• How many eigenvectors to use?

• Look at the decay of the eigenvalues– the eigenvalue tells you the amount of variance “in the direction” of that eigenvector

– ignore eigenvectors with low variance

Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU

Page 52: Joint Probability Distributions, Correlations

Applications of PCA

• Uses:– Data Visualization– Dimensionality Reduction

– Data Classification

Examples:– How to best present what is “interesting”?

– How many unique subsets (clusters, modules) are there in the sample?

– How are they similar / different– What are the underlying factors that most influence the samples?

– Which measurements are best to differentiate between samples?

– Which subset does this new sample rightfully belong?

Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU

Page 53: Joint Probability Distributions, Correlations

Let’s work with real cancer data!• Data from Wolberg, Street, and Mangasarian (1994) • Fine‐needle aspirates = biopsy for breast cancer • Black dots – cell nuclei. Irregular shapes/sizes may mean cancer

• 212 cancer patients and 357 healthy individuals (column 1)

• 30 other properties (see table)

Page 54: Joint Probability Distributions, Correlations

Matlab exercise 1 • Download cancer data in cancer_wdbc.mat• Data in the table X (569x30). First 357 patients are healthy. The remaining 569‐357=212 patients have cancer.

• Calculate the correlation matrix of all‐against‐all variables: 30*29/2=435 correlations. Hint: look at the help page for corr

• Visualize 30x30 table of correlations using pcolor

• Plot the histogram of these 435 correlation coefficients

Page 55: Joint Probability Distributions, Correlations

Matlab exercise 2

• Carry out PCA of the cancer dataIn the template I use eigs. Matlab also has a dedicated pca commands (read the manual)

• Which variables give the strongest positive or negative contributions to the 1st, 2nd, and 3rdlargest eigenvalues? 

• Plot the scores (Score=Z*V) of the  1st vs 2ndeigenvalues for normal and cancer patients separately. Can these PCA scores be used to separate cancer from normal patients? 

Page 56: Joint Probability Distributions, Correlations

Multivariable statistics and Principal Component Analysis (PCA)

• A table of n observations in which p variables were measured 

p x p symmetric matrix R of corr. coefficients

PCA: Diagonalizematrix R

Page 57: Joint Probability Distributions, Correlations

Principle Component Analysis (PCA)• p x p symmetric matrix R of corr. coefficients

• R=n‐1Z’*Z is a “square” of the matrix Z of standardized r.v.:  all eigenvalues of R are non‐negative

• Diagonal elements=1  tr(R)=p• Can be diagonalized: R=V*D*V’ where D is the diagonal matrix

• d(1,1) –largest eig. value, d(p,p) – the smallest one• The meaning of V(i,k) – contribution of the data type i to the k‐th eigenvector 

• tr(D)=p, the largest eigenvalue d(1,1) absorbs a fraction =d(1,1)/p of all correlations can be ~100%

• Scores: Y=Z*V: n x p matrix. Meaning of Y(,k) –participation  of the sample #  in the k‐th eigenvector

Page 58: Joint Probability Distributions, Correlations

Suppose we have a population measured on p random variables X1,…,Xp. Note that these random variables represent the p-axes of the Cartesian coordinate system in which the population resides. Our goal is to develop a new set of p axes (linear combinations of the original p axes) in the directions of greatest variability:

This is accomplished by rotating the axes.

X1

X2

Trick: Rotate Coordinate Axes

Adapted from slides by Prof. S. Narasimhan, “Computer Vision” course at CMU