Download - Introduccion a la descomposicion espectral

Transcript
Page 1: Introduccion a la descomposicion espectral

descomposicion espectral 1

Introduccion a la descomposicion espectral

Spectral unmixing, N Hashava, J,F, Mustard, IEEE Signal Processing

Magazine, Jan 2002

Page 2: Introduccion a la descomposicion espectral

descomposicion espectral 2

Introducción

• Razones de la mezcla de varias substancias que se produce:– La resolucion espacial del sensor es tan baja

como para que materiales distintos ocupen un pixel.

– Los materiales están combinados en una mezcla homogenea en el pixel.

Page 3: Introduccion a la descomposicion espectral

descomposicion espectral 3

Ilustración de la interacción de superficie que justifica un modelo lineal (a) o un modelo no lineal (b), dependiendo de si la mezcla de componentes en homogénea en la superficie del pixel (b) o los componentes están separados (a).

Page 4: Introduccion a la descomposicion espectral

descomposicion espectral 4

Spectral unmixing

• Descomposición espectral: el espectro medido en un pixel se descompone en – una colección de espectros componentes: endmembers y

– Abundancias que indican el porcentaje de cada endmember presente en el pixel.

• Problema inverso generalizado: estimar parámetros que describen un objeto estudiando una señal que ha interactuado con el objeto antes de llegar al sensor.

Page 5: Introduccion a la descomposicion espectral

descomposicion espectral 5

El modelo lineal (LMM)

• Premisa del modelado de mezclas:– Dentro de una escena dada la superficie está dominada

por un pequeño numero de materiales distintos con propiedades espectrales constantes.

• Endmembers: materiales distintos

• Abundancias fraccionales: fracciones de aparición

• El modelo lineal asume que existe una relación lineal entre las abundancias de los materiales y el espactro observado.

Page 6: Introduccion a la descomposicion espectral

descomposicion espectral 6

Modelo de mezcla lineal (LMM)

Restricciones sobre las abundancias: no negatividad y aditividad completa

En notación matricial

Page 7: Introduccion a la descomposicion espectral

descomposicion espectral 7

Modelo lineal versus modelo no lineal

• Puede asumirse el modelo lineal de composición si los materiales están espacialmente segregados, – cada subregión espacial está dominada por un material y el espectro del

pixel mezcla puede considerarse como combinación lineal de los de los materiales

• No puede asumirse el modelo lineal si los materiales están en asociación intima– La luz interacciona de forma no lineal con mas de un material antes de

ser reflejada– Se ha reconocido en casos de minerales y cubiertas boscosas.

• Determinar si las conds no lineales dominan la escena es un problema abierto

Page 8: Introduccion a la descomposicion espectral

descomposicion espectral 8

Distribución de los puntos sobre dos bandas en caso de mezcla espectral simulada con un modelo lineal (a) y un modelo no lineal (b).

La mezcla no lineal esta sesgada hacia el componente de bajo albedo D y los puntos entre los endmembers no están distribuidos en segmentos de rectas, sino en segmentos curvilíneos.

Page 9: Introduccion a la descomposicion espectral

descomposicion espectral 9

Error de prediccion inhente al modelo lineal en un caso simulado.

Una de las causas es que el modelo lineal introduce abundancias de todos los componentes para minimizar el error, aunque no estén presentes (lo que ocurre en las aristas del triángulo)

Page 10: Introduccion a la descomposicion espectral

descomposicion espectral 10

Imagenes lunares, 5 bandas entre 400nm y 1000nm, resolución espacial entre 120 y 150 m/pixel.

Problema: examinar la estabilidad de fronteras geológicas (highland y zona volcanica) sujeta a bombardeo de meteoros

El modelo lineal muestra que existe una distribución asimétrica del transporte de material, reflejado en las abundancias de basalto a ambos lados de la frontera geológica.

El modelo lineal muestra una distribución simétrica.

Page 11: Introduccion a la descomposicion espectral

descomposicion espectral 11

Dificultades para el uso de modelos de mezclas no lineales:

Es necesario conocer todas las propiedades de dispersión de los materiales en la mezcla para realizar los cálculos fotométricos

Se pueden simplificar las cos asumiendo superficies lambertianas.

Se requiere información detallada sobre la orientación relativa de los endmembers y el sensor.

Se puede usar información de situación del aparato y modelos de elevación del terreno.

El tamao de las particulas, su composición y estado de alteración son parámetros importantes del modelo no lineal y difíciles de conocer.

Page 12: Introduccion a la descomposicion espectral

descomposicion espectral 12

Elementos del proceso de descomposición espectral (unmixing) lineal.

•Reducción de dimensiones:•Produce una transformación a datos en un espacio de dimensiones reducidas

•Determinación de los endmembers•Estima los espectros de los materiales que aparecen en la escena.

•Inversión de la mezcla:•Calcula las abundancias fraccionales de cada material en cada pixel.

Page 13: Introduccion a la descomposicion espectral

descomposicion espectral 13

Imagen experimental

HYDICE

210 bandas entre 400nm y 2500 nm.

400x320 pixeles (muestras)

Conversión de radiancia a reflectancia mediante ATREM

Resolución espacial 1x1 m2.

144 bandas se usan.

Page 14: Introduccion a la descomposicion espectral

descomposicion espectral 14

Page 15: Introduccion a la descomposicion espectral

descomposicion espectral 15

Distribución de la energia acumulada de los autovectores de la transformación en componentes principales en la imagen experimental

Page 16: Introduccion a la descomposicion espectral

descomposicion espectral 16

Page 17: Introduccion a la descomposicion espectral

descomposicion espectral 17

Determinación de los endmembers

• Estimación empírica desde la escena:– Observación e intuición física

• Métodos automatizados– Basados en criterios estadísticos– Optimización de una función criterio– Los endmembers pueden ser irrealistas

Page 18: Introduccion a la descomposicion espectral

descomposicion espectral 18

Determinación interactiva

• Los endmembers deben ser linealmente independientes.– El máximo número será el número de bandas.

• Los canes están altamente correlacionados.

• Materiales diferentes pueden tener espectros muy similares o presentar combinación lineal de otros, por lo que no pueden ser identificados o usados.

Page 19: Introduccion a la descomposicion espectral

descomposicion espectral 19

• Aproximación práctica:– Detectar pixeles con alta abundancia de un

material o de clases claramente difereciadas como image endmembers (IE).

– Los IE deben acotar lo mejor posible los datos definiendo un envolvente convexo (convex hull).

– Al resolver las abundancias, los datos pueden caer fuera del envolvente convexo, dado que los IE son a su vez combinación de materiales.

Page 20: Introduccion a la descomposicion espectral

descomposicion espectral 20

Page 21: Introduccion a la descomposicion espectral

descomposicion espectral 21

Metodos automaticos de determinación de endmembers

• Métodos no paramétricos¨– Clustering: se han propuesto variantes del k-means para incorporar

el modelo de mezcla lineal

• Métodos paramétricos:– Estimación de los endmembers como va gausianas mediante EM a

partir de los datos de la imagen: Stochastic Mixing Model (SMM)

– Modified Spectral Mixture Analysis (MSMA): estima simultaneamente las abundancias y los endmembers mediante un método iterativo no lineal que minimiza el error de ajuste

• Métodos geométricos: se basan en la similitud de los endmembers y la tería de conjuntos convexos.

Page 22: Introduccion a la descomposicion espectral

descomposicion espectral 22

Metodo geométrico

• Los endmembers residen en los extremos de los volumenes ocupados por los datos,

• Se estiman los planos extremos del volumen de los datos,

• Los endmember son los vertices del simplex que encierra los datos y tiene el mismo numero de vertices

• Shrink-wrapping solo requiere conocimiento de los pixeles en el perimetro

• Suele ser requerida la reduccion de dimensiones mediante PCA o MSN.

• Sensible a outliers y artefactos.

Page 23: Introduccion a la descomposicion espectral

descomposicion espectral 23

Endmembers obtenidos mediante el método geométrico, endmember 3 es ruido.

Page 24: Introduccion a la descomposicion espectral

descomposicion espectral 24

Métodos de mínimos cuadrados para la inversion de la mezcla.

En el caso sin restricciones se reduce a la seudo-inversa.

Con restricción de aditividad se convierte en una corrección del caso sin restricciones con un término que depende de la colección de endmembers.

Con restricción de no negatividad, el problema cae dentro de la clase de problemas de programación cuadrática. La aproximación es iterativa, estimando versiones de la solución que minimizan el funcional no restringido con las correcciones dadas sobre la libreria de endmembers.

Page 25: Introduccion a la descomposicion espectral

descomposicion espectral 25

Calculo de las abundancias con la restricción de no negatividad

Page 26: Introduccion a la descomposicion espectral

descomposicion espectral 26

El examen de la imagen de la suma de las abundancias demuestra que garantizar la no-negatividad no lleva consigo la aditividad completa de los componentes en todos los pixeles.

Page 27: Introduccion a la descomposicion espectral

descomposicion espectral 27