Download - F.S.N., V.P. Gonçalves and E. Cazaroto

Transcript
Page 1: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

F.S.N., V.P. Gonçalves and E. Cazaroto

IFUSP / BRAZIL

Charm production in the dipole approach Introduction

Summary

Charm structure function

Charm pt distribution in eA

Charm production in pp and pA

(focus on saturation effects)

Page 2: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Introduction

Collinear factorization + DGLAP evolution

KT factorization + unintegrated gluon densitiesColor dipole + dipole cross section

Dipoles: easy inclusion of saturation effects

Why charm ?

Heavy enough for perturbative QCD

Light enough to be abundant

How to calculate ?

Nikolaev, Zakharov (1991), A. Müller (1994)

sc Qm ~ saturation effects ?

22 25.0 FF c more important at low x

Zotov´s talk

Page 3: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

ep: boson-gluon fusion

pp: gluon-gluon fusion

color (singlet) dipole

color (octet) dipole

A Ap

Page 4: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Charm structure function in eA

)(4

),(2

22

2 LTem

A QQxF

),(|),,(| 22,

2, rxQrdrd dALTLT

),,(2),( 2 brxNbdrx AdA

])(),(2

1[exp1),,( bTrxbrxN AdpA Armesto (2002)

QCD input: in the dipole – proton cross section !

Albacete´s talk

Stasto´s talk

AA

Page 5: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Dipole – proton cross section

Kowalski - Motyka - Watt bCGC (2006)

Iancu – Itakura - Munier IIM (2004)Kharzeev - Kovchegov -Tuchin KKT (2004)

Dumitru - Hayashigaki – Jalilian-Marian DHJ (2006)

Boer - Utermann - Wessels BUW (2008)

Gonçalves – Kugeratski – Machado – Navarra GKMN (2006)

Marquet - Peshanski - Soyez MPS (2007)

Albacete – Armesto – Milhano - Salgado rcBK (2009)

Kowalski - Teaney IPsat (2003)

(and others...sorry for omissions)

Golec-Biernat - Wüsthoff GBW (1998)

Bartels – Golec-Biernat - Kowalski BGK (2002)

Page 6: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Linear limit with dipoles

})(4

1{exp1),( 22

sQrrxN

)(4

1{exp1),( 22

sQrrxN }

)](lnexp[1 2sQrba

),( rxN

20

sQrN

eff22sQr

2sQr

linear

saturationfull

GBW )(4

1),( 22

sQrrxN

)(4

1),( 22

sQrrxN

KKT

IIM

dp

0r

rcBK

(all numerical)

Page 7: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Color transparency (CT)

Color transparency + Shadowing (CT + Shad)gR from EKS98

Ng from GRV98

Mixed description: ),(3

),( 222

2 Qxgxrrx AsdA

),(),( 22 QxgxAQxgx NA

),(),(),( 222 QxgxQxRAQxgx NgA

dA

])(),(2

1[exp1),,( bTrxbrxN AdpA dp linear

Linear - p:

Page 8: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Saturation: reduction by a factor 3 to 4 at

Charm structure function in eA

510x

Pb

Gonçalves, Kugerastski, Navarra (2010)

Pb

Linear - p

Gonçalves, Kugerastski, Navarra (2005)

Almost no reduction

Page 9: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Stasto´s talk Saturation: reduction by a factor ~ 2

Linear limit without dipoles

Page 10: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

pc

Ac

c FA

FR

2

2Collinear factorization approach:

),(),(2

)(),,(

1 212

222

xgy

xC

y

dyemQxF

x xa

scc

c ),( zC Coefficient function from pQCD

),( 2Qxgx A

DS: de Florian, Sassot (2004)

EPS: Eskola, Paukkunen, Salgado (2008) Cazaroto, Gonçalves, Carvalho, Navarra (2009)

Linear limit without dipoles

Difficult tosee saturation

Page 11: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Heavy quark pt distribution

Flöter, Kopeliovich, Pirner, Raufeisen (2007)

eA

AA

Page 12: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

charm

bottom

Gonçalves,Kugerastski, Navarra (2010)

5 - 83 - 4

1.5 - 2

~1.5

~2 ~3

22 2 GeVQ

eA

Page 13: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

charm

bottom

Gonçalves,Kugerastski, Navarra (2010)

22 4 GeVpT

~1.5

~3 ~4

5 3 - 42

eA

Page 14: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

D meson pt distribution

Gonçalves,Kugerastski, Navarra (2010)

eA

Petersonfragment.

Page 15: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Charm production in pA collisions

Kopeliovich, Tarasov (2002)

),(|),(|}{ 21

0

21

0

qgqQQgddXQQNg

)(8

1)]()([

8

9),( dpdpdpqgq

})()()({)2(

)(|),(| 2

12222

02

2

22

QQQQ

sQQg mKmmKm

}{),(}{ 2

11 XQQpgxGxyd

XQQppd

}{),(2}{ 211

)2/ln(

0

XQQpgxGxydXQQppQms

)( 1xG

s

emx

yQ2

1

s

emx

yQ

2

2

)(ln2

1

2

1

x

xyGRV 98 22

cm

Page 16: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

pp

Cazaroto, Gonçalves, Navarra in progress

PHENIX

UA2

C-Rays Merino et al. (2009)

Merino,Pajares,Ryzhinskiy, Shabelski,Shuvaev, arXiv:0910.2364

NLO QCD

KT factorization

KT fac

C-Rays nucl-ex/0607015

Page 17: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

])])(2

1[exp1(2[2

0

bTbbd Adp

R

dA

A

pA

Saturation: reduction by 10 % with x going down to

62 10x

Total cross section

linear p

220

4 sdp Q

Page 18: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Rapidity distribution

Saturation: reduction by 1.7 at y = 6

yd

XQQppd }{

Page 19: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Summary

Dipole models reproduce well the data on

Well established dipole model for charm production in ep, eA, pp and pA

eA @ 1TeV: large suppression factors (1.5 – 8) in dN/d pt (CT , CT+Shad)

pA @ 10 TeV: reduction by 10 % (or 1.1) in the total cross section (linear-p)

pA @ 10 TeV: reduction by 1.7 in dN/dy at large y (linear–p)

CT (overestimates linear regime)

CT+ShadLinear p (underestimates linear regime)

)( XQQpp

F2c: large suppression factors (3 – 4) with (CT , CT+Shad)

F2c: almost no suppression with (linear-p)

Rc: no sign of saturation F2c: large suppression factors (2) in other approaches

Different ways to estimate the linear predictions in eA and pA:

Page 20: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

x

xQAQs

020

3/1222

0 0.1 GeVQ 4

0 10267.0 x

253.0

Page 21: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

pp

Very small r

})(4

1{exp1),( 22

sQrrxN

)(4

1{exp1),( 22

sQrrxN }

GBW )(4

1),( 22

sQrrxN

)(4

1),( 22

sQrrxN

0r

rcBK (?)

Not so small r

Page 22: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Discussion

On charm production in pp and AA :Merino,Pajares,Ryzhinskiy, Shabelski,Shuvaev, arXiv:0910.2364

NLO QCD

KT factorization

KT factorization

NLO QCD

FONLL

STAR data

Will we have data on total cross section from Tevatron?

Disagreement between PHENIX and STAR is gone ?

Page 23: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

KT factorization

NLO QCD

Tevatron data

Fragmentation ?

If STAR was right enhanced production might have non-pert. origin: strong fields

Should we prefer KT factorization?

Page 24: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 25: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 26: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

pp

Cazaroto, Gonçalves, Navarra in progress

PHENIX

UA2

C-Rays Merino et al. (2009)

Merino et al. (2009)

Page 27: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Merino,Pajares,Ryzhinskiy, Shabelski,Shuvaev, arXiv:0910.2364

KT factorization

NLO QCD

Page 28: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

R = full / linearF2

Page 29: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 30: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Charm structure function in the KLN model

),(),(2

)(),,(

1 212

222

xgy

xC

y

dyemQxF

x xa

scc

c

2

2

1Q

ma c

),( zC Coefficient function from pQCD

222 4 Qmc 22 4 cm

),( 2xgx

422

0 )1()(

xQSQss

422

0 )1()(

xQSQ s

ss

22sQQ

22sQQ linear

saturation

)( 020

2

x

xQQs

Glück, Reya, Stratmann (1994)

Glück, Reya, Vogt (1995)

Kharzeev, Levin, Nardi (2001)

GeVmc 2.1

2RS

Page 31: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

ep

220 34.0 GeVQ

30 103 x

25.0

Carvalho, Durães Navarra, Szpigel (2009)

Page 32: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

eA

),(),( 22 xgxg A

SASS A 3/2

23/122s

Ass QAQQ

pc

Ac

c FA

FR

2

2

linear

fullRFL

Page 33: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 34: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 35: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Charm production in pA collisions

Kopeliovich, Tarasov (2002)

Page 36: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Back ups

Page 37: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 38: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 39: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 40: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 41: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Introduction

NLO collinear factorization

Fixed Order plus Next to Leading Log (FONLL)

Page 42: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

KT factorization

Page 43: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

Color dipole formalism

Page 44: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 45: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 46: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 47: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 48: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

pA

Page 49: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto

pA

Rapidity distribution

Saturation: reduction by 1.7 at y = 6

Page 50: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto
Page 51: F.S.N.,  V.P. Gonçalves   and  E. Cazaroto