Download - 広島工業大学 電子情報工学科ec.it-hiroshima.ac.jp/jcd/JikkenC2017.pdf · >Ó¼(Kh Ù >Ó (DL Ù >Ó MÅ(rÁmö&5 ! >Ó &AOdf N 8 Û 96&5 ! N 8 â)©¾

Transcript
  • ii

    ii

  • i

    ±

    3 4 USB

    T.A. S.A.

    T.A. S.A.

    PHS

    A4

    .

    ,

  • ii

  • iii

    http://www.ec.it-hiroshima.ac.jp/jcd/

    1)

    1/10

  • iv

    2)

    (1)

    (a) (b) 2

    (a)

    0.7 0.8

    (b)

    2 12.

    (1)

  • v

    (2)

    2 (2) 2

    (1)

    (3)

    (4)

    100 %

    (3) 1

    1.

    0.2 0.2 %

    0.5 0.5 %

    1 1.0 % 0.5

    1.5 1.5 %

    2.5 2.5 %

    2/3

    3)

    (a) precision

    (b) accuracy

  • vi

    2

    4) 2 1)

    0.1 V 1 V 10 V 3 0.8 V

    1 V 10 V 2

    : : : :

    : : : :

    2

  • 1-1

    1.

    1.

    2. 2.1 (WDM Wavelength Division Multiplexing)

    IEEE1394

    2 12000

    2.2

    (a)DIM-BLE

    510nm

    510nm( )

    1(b)

    3 2

    2000

  • 1-2

    2.3

    USB2000CCD

    CCD 2048

    3. 3.1

    3.2 (LED) LED LED

    (LD) 3.3 DIM-RED DIM-BLE

    3.4 DIM-RED( ) DIM-BLE( )

    DIM-REDDIM-BLE 3)

    3.5 ( SH4001) 10m

    4. 4.1 ( )

    4.2 LED LED LED LD

    ( ) 4.3 LD LED

    4.4 3.3 3.4 4.5 3.4 3.3

    LED /

    CD )

  • 1-3

  • 1-4

  • 2-1

    2. MATLAB/Simulink

    1. RL MATLAB/Simulink

    MATLAB/Simulink MATLAB

    2. MATLAB/Simulink

    2.1

    42 52

    2 5 2 4 = 10 8 = 2 --------------------------------------------------------------------------------------------------------------------

    >> A = [2 2 ; 4 5]; >> det(A) ans =

    2

    [ ] det(A)

  • 2-2

    )

    Hint I 4~6 1~3

    1

    A1

    A

    1A

  • 2-3

    2.2

    i(t)(t)

    (t) = L i(t)

    V(t) = dttd )(

    (t)

    V(t) = Ldttdi )(

    i(t)

    = i(t) + L dttdi )(

    i(t) = dttRiEL

    ))((1

  • 2-4

    Step Mux

    Step

    Ri(t) integrator

    V=IR

    .3 RC

    RC

    Hint ) RC q (t) = C v (t)

    i (t)=dttdq )(

  • 2-5

    RLC

    Hint ) RLC

    E = Ldttdi )( + Ri(t) +

    C1 dtti )(

  • 2-6

    3. 3.1

    3.2

    3.3 MATLAB

    MATLAB

    3.4

    T=0

  • 3.4- 1 -

    . . 1.

    2.

    2.1 a.

    ( )

    b.

    ( ) c.

    ( 10)

  • 3.4- 2 -

    d. V V

    ( 11 12)

  • 3.4- 3 -

    e. (AND) ( 13 14) Y=A B ” ” ” ” ” ” f. (OR) ( 15 16) Y=A B ” ” ” ” ” ” g. (NOT) ( 17 18) h. ( 19 21) RC

  • 3.4- 4 -

    i. 22

    ( ) CR

    CR ( 23 24)

    j. CR

    CR( 25 26)

    k.

    ( 27 28)

  • 3.4- 5 -

    l.

    ( 29 30) 3.

    3.1

    a.

    CR b.

    CR c.

    d.

  • 3.4- 6 -

    e. (AND) ”0”,”1”

    f. (OR) ”0”,”1”

    g. (NOT) ”0”,”1”

    h. CR

    i. 2 2 (CR)

    j. 2

    k. 2 2 (RR)

    l.

    3.2 a.

    b.

    3.3 .

    . 4.

    (1)

    (2)

    (3) (4) (5) (6)

    (2) 1981 1989 1987 (2) 1988

  • 5-1

    IEEE1394

    IEEE1394

    AV AVDV b

    MPEG2 MD CDIEEE1394 1 125 s 1

    ACK

    DV CCD

    M DV 1MPEG

    IEEE1394

  • 5-2

    IEEE1394

    IEEE1394

    22

    high low

    2 XOR1 0 1 0 1 0

    125

    sec

    CH

    1

    CH

    2

    CH

    N

    Long

    Short

  • 5-3

    IEEE1394 8B10B 8 5 3

    1 5B 6B 3B 4B10 3

    1 0 2 8B10B0 1

    5 0 10

    1 0 1 00 1

    1 0 1 1 0 0 0 1

    1011 001

  • 5-4

    3 8B10B

    4 DVC PC IEEE1394

    2POF 2 DVC PC6

    IEEE1394 1

    2.1 4 IEEE1394 11

    2.3CH CH2 2

    100Mbps

    8B 10B 2.4 8B 10B 100Mbps

    8B 10B8B 10B

    1 0 0 1 1 0 1 0

    8 80ns

    3 5

    5B6B 3B4B 6 4

    1 0 1 0 1 1 0 1 1 0

    10 80ns

  • 5-5

    8B 10Bm n

  • 6-1

    1

    2

    4

    1 2 Web 3 E-Mail 4

  • 6-2

    PC jikken-vineWireshark

    UC RFIDucode

    2.1

    Wireshark Wireshark Network Analyzer

    Wireshark

    Wireshark jikken OK

    Wireshark

    Start

  • 6-3

    Wireshark

  • 6-4

    2.2

    Wireshark

    Ethereal

    1

    Continue without Saving

  • 6-5

    No.

    Time 0

    Source

    Destination

    Protocol

    Info

    2

    3 3.1

    LAN 2Wireshark

    Destination

    3.2

    WWW Web

    1 Wireshark 2 FireFox

    Web 3

    Web

    URL http://www.google.co.jp Web

  • 6-6

    3.3 [email protected]

    PC

    1 [email protected]

    2 Wireshark 3 Sylpheed 4 Sylpheed 5

    3.4

    UC RFID ucode

    ucode

  • 6-7

    ucode

    4

  • 7.8- 1 -

    7.8. C 1. 1 C

    2

    2. 2.1 1

    100”question1.cpp”

    //question1.cpp //saikoro #include #include #define count 100 void main(void) { int z,i,n[7]; double t; // for(i=1; i

  • 7.8- 2 -

    2.2 2

    10×10 0 9 n[k] 10×10” question2.cpp”

    k n[k] 0 n[0] 1 n[1] 2 : : : : : 9 n[9]

    //question2.cpp //histogram #include #include void main(void) { int i,j,k,n[10]; int v[10][10]; // for(i=0;i

  • 7.8- 3 -

    2.3 3

    10 i number[i]=100+i data[i]” question3.cpp”

    //question3.cpp //Bubble_Sort #include #include #include #define MAX 10 void sort(int data[], int number[], int n); void main(void) { int data[MAX]; int number[MAX]; int i; for(i=0;i

  • 7.8- 4 -

    printf(“%8d%6d%6d¥n”, i, number[i], data[i]); }

    sort(data, number,MAX); printf(“ ¥n ¥n”);

    for(i=0;i

  • 7.8- 5 -

    CPU 2 “1 “0

    2

    3.5 contour

    4 44 -1 S S R R

    0 -1 0

    -1 4 -1

    0 -1 0

    3.6 halftone

    1

    1 1 1

    1 2 1

    1 1 1

    3.7 median

    3×3 9 9 5

    3.8 BMP

    bitmap image / bitmap graphicspixel

    RGB

  • 7.8- 6 -

    x

    B G R B G R

    B G R B G R

    B G R B G R

    B G R B G R

    B G R B G R

    4. 4.1 1

    visualC++ 1 3

    ”JPEG” ” .jpg” ”.JPG”

    2

    2 2 USB 4.2 2

    1

    1

    ” ” ”in” ”24 ”

  • 7.8- 7 -

    ”in” ”4_1 histogram” ”4_2 inverse” ”4_3 monochrome” ”4_4 bi-level” ”4_5 contour” ”4_6 smooth” 2

    1 ”in_1” 1 ”in_2” 4_1 histogram

    c”in” ”histogram”

    ”histogram”

    4_2 inverse c

    ”in” ”inverse”

    4_3 monochrome

    c unsigned char Y; for(y=1;y

  • 7.8- 8 -

    c for(y=1;y

  • 7.8- 9 -

    4_7 median

    c

    ”in_1” ”median_1” ”in_2” ”median_2”

    5.

  • 9.10-1

    9. 10. LSI

    ASIC(Application Specific integrated Circuit) ASIC IC

    LSI ASIC IC

    CAD(computer aided design)MOS IC

    MOS MOS IC MOS MOS MOS FET field effect transistor FET

    MOS metal oxide semiconductorMOS FET Si

    FET +S

    D GA Si IC

    Si Al FET

  • 9.10-2

    MOS FET MOS FET ID-VDS

    linear region saturation regionVT, threshold

    voltage

    VDS VGS VT

    ID = W L COX ((VGS VT) VDS 1/2 VDS2

    VDS VGS VT 3

    ID = W L COX (VGS VT)2 4

  • 9.10-3

    2.4 CMOS pMOS nMOS

    CMOS CMOS OFF

    3 CMOS 2.5 inverter 2NAND

    inverter

    2NAND

    pMOS

    nMOS

    DDV ”H” pMOS OFF

    nMOS ON”L”

    ”L” pMOS ON

    nMOS OFF”H”

    DDV

    DDV

    A

    B

    ”H” pMOS OFFnMOS ON

    ”L”

    ”L” pMOS ONnMOS OFF

    ”H”

    A ”H” B ”H” A pMOS OFFnMOS ON B pMOS OFF nMOSON ”L”

    A ”H” B ”L” A pMOS OFFnMOS ON B pMOS ON nMOSOFF ”H”

    A ”L” B ”H” A pMOS ONnMOS OFF B pMOS OFF nMOS

    ON ”H” A ”L” B ”L” A pMOS ON

    nMOS OFF B pMOS ON nMOSOFF ”H”

  • 9.10-4

    2.6 invereter

    inverter 2.7 Inverter 2NAND

    7 inverter 8 2NAND

  • 9.10-5

    3. Alpha-SX

    Alpha-SXSmartSpice

    4. 4.1 SmartSpice 4.2 inverter 4.3 2NAND 5. 5.1 2NOR 5.2 2NAND nMOS 5.3

    MOS-IC FET

  • 11-1

    11.

    1.

    12

    2. Al Cu “ ”

    Pa Pascal 1 Pa 1 m2 1 N

    P

    = (1)

    R 8.31451 J/mol K V [m3] T [K]

    S [l/min]

    (1) t

    = (2)

    t [s] P0 [Pa]

    Si

    1×10-5 Pa

    Al Cu

    nm m

    10-3 Pa

    2.1

    A[m2]

    Mv [kg/s]( A8 Hertz-Knudsen )

    = 4.38 × 10 [kg/s] (3)

  • 11-2

    mu 1/NA NA 6.022×1023 mol 1 ps T

    M

    d

    dm

    = A (4)

    r

    vd [m/s] (3)

    = A (5)

    [kg/m3] t

    d

    = = A (6)

    A Vc [m3]

    = (7)

    2.2

    AT 11.2

    c

    = (8)

    11.1

  • 11-3

    tq

    = 2 (9)

    =2.65×103

    kg/m3 G =29.5 GPa

    = (10)

    (9), (10) (8)

    = = (11)

    N

    = = 1670 [Hz·m] (12)

    (11)

    d = = (13)

    (13) r dx

    = (14)

    r dx (14) dtq (13)

    d = (15)

    11.2

  • 11-4

    (15)

    (15) dx

    r1, r2 d

    = = | | (16)

    3.

    11.3 Cu

    11.3

  • 11-5

    (1)

    (2)

    (3)

    (4) 0.1 Pa

    4. (1) (1) (2)

    (2)

    (3)

    (4) 300 K N

    (5)

    A

    1.1

    JIS

    1×10-13 Torr 1.3×10-11 Pa

    1×10-10 Torr 1.3×10-8 Pa

    1.2

    1 Torr = 133.3 Pa [N/m2] =[Pa]

    1 atm = 760 Torr [=760 mmHg]

    1 Pa = 0.75×10-2 Torr

    1982 Pascal

    10-3 Torr = 1.33×10-1 Pa

    10-6 Torr = 1.33×10-4 Pa

    1.3

    Maxwell-Boltzmann

  • 11-6

    (1)

    n P T

    = (A1)

    P [Torr] n [cm-3]

    = 9.66 × 10 10 [ /cm3]

    Table 1 P n 300K

    P [Torr] n [ /cm3]

    760 2.4×1019

    10-1 3.2×1015

    10-2 3.2×1014

    10-3 3.2×1013

    10-4 3.2×1012

    10-5 3.2×1011

    10-6 3.2×1010

    10-7 3.2×109

    10-13 3.2×103

    Boyle Charles' law

    = =

    R 8.314 J/ K mol

    M = =

    m 1 NA

    = = 6.022 × 10 mol

    NA 1 mol

    (Loschmidt's number : NL) 0 1

    1mol NA =

  • 11-7

    6.022×1023 mol-1 Vm = 22.4×10 3 m3mol-1

    NL = 2.69×1025 m-3

    =

    = =

    = . / . × = 1.38 × 10 = : Boltzmann constant

    = =

    n n = / V

    = (A2)

    (2)

    c = = 146 [m/s] (A3)

    c = = 2.5 × 10 [m2/s2] (A4)

    M

    Table 2

    M [m/s] @ 300 K [m/s] @ 2000 K H2 2.016 1.8×103 4.6×103

    N2 28.01 4.8×102 1.2×103

    O2 32.00 4.5×102 1.2×103

    Al 26.98 4.9×102 1.3×103

    Ag 107.9 2.4×102 6.3×102

    Au 197.0 1.8×102 4.7×102

    T M T M

    100 m/s 1 km/

  • 11-8

    = ( ) = 4 2/

    exp

    = (A5)

    = = (A6)

    cT

    (3)

    NS [1/cm s]

    = c (A7)

    P [Torr] M

    = 3.52 × 10 [ / cm2 s] (A8)

    NS

    Table 3

    M T [K] P [Torr] NS [ / cm2 s]

    H2 2.016 300 10-5 14.3×1015

    N2 28.01 300 10-5 3.84×1015 O2 32.00 300 10-5 3.59×1015

    28.98 300 10-5 3.78×1015 Ar 39.95 300 10-5 3.22×1015

    P P = 10-5 Torr 1015 /cm2

    s

    P

  • 12-1

    12. Hall

    1.

    Hall

    11

    B

    2. J E J E

    = (1)

    r =1/

    1 S l I (1)

    = (2)

    (2)

    = = =

    = (3)

    R

    r R

    1 R 2 R

  • 12-2

    l S

    1 R

    R

    2

    3. 3 x J z

    B y

    -y

    y EH -y

    x

    Hall effect hole

    Hall 1879 Edwin Herbert Hall

    3

    q n

    v J

    = (4)

    = (5)

    x (5)

    EH

    + = 0 (6)

  • 12-3

    (5) (6) EH

    = (7)

    (1)

    = = (8)

    = 1/

    J B

    q = -e q = +e RH

    n RH

    4. 4.1 B

    4

    4 l0 B

  • 12-4

    B = (9)

    =

    (9) I B

    (1)

    (2) I 0 A 0.5 A 4 A

    B

    (3) 4 A 0 A 0.5 A B

    (4)

    4.2 r Hall

    (1) AB 20, 40, 100 mA CD

    (2)

    CD

    5

    A, B

    C, D

    D, E

  • 12-5

    4.3 (8) w

    = (10)

    w (10) I = wdJ

    = (11) I VH B

    m

    = (12)

    (1)

    (2) 100 mA

    (3) (0, 1, … , 5 A) VH

    (4) 4.1

    (5)

    RH

    5. (1) B (9)

    (2) (11)

    (3) RS r

    (4) n (5) = E = 1 V/m v

    実験実験Cテキスト目次諸注意CD1. 光通信特性2.MATLABSimulinkを用いた基礎問題の解析3.4. パルス回路5. マルチメディア光コミュニケーションシステム6. インターネットワーキングシステム7.8. c言語による画像処理1.目的2.基本練演習2.1練習問題12.2練習問題22.3練習問題3

    3.理論3.1 輝度ヒストグラム(histogram)3.2 輝度反転(inverse)3.3 モノクロ(monochrome)3.4 2値化表示(bi-level)3.5 輪郭強調(contour)3.6 平滑化(halftone)3.7 メディアンフィルタ(median)3.8 BMP形式

    4.実験方法4.1第1週目の実験4.2第2週目の実験

    5.検討

    9.10. LSI設計の基本11. 真空蒸着による金属薄膜の作製と膜厚測定12. 金属薄膜の電気伝導率とホール係数(Hall効果)