Download - Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Transcript
Page 1: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

1

Example 2.2 [Ribbed slab design]

A typical floor system of a lecture hall is to be designed as a ribbed slab. The joists which are spaced at

400mm are supported by girders. The overall depth of the slab without finishing materials is 300mm.

Imposed load of 1.5KN/m2 for partition and fixture is considered in the design. In addition, the floor has

a floor finish material of 3cm marble over a 2cm cement screed and it ha 2cm plastering as ceiling. Take

the unit weight of ribbed block to be 2KN/m2.

Use: C 20/25

S – 300

Class 1 works

a) Analyze the ribbed slab system, considering the effects of loading pattern

b) Design the ribbed slab system

Page 2: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

2

Solution:

Step 1:Material property

Concrete:

π‘“π‘π‘‘π‘˜, 0.05 = 1.5π‘€π‘π‘Ž

π‘“π‘π‘‘π‘š = 2.2π‘€π‘π‘Ž

ɀ𝑐 = 1.5

π‘“π‘π‘˜ = 20π‘€π‘π‘Ž, 𝑓𝑐𝑒 = 25π‘€π‘π‘Ž

𝑓𝑐𝑑 = 0.85 βˆ— 20

1.5= 11.33π‘€π‘π‘Ž

Rebar

π‘“π‘¦π‘˜ = 300π‘€π‘π‘Ž

𝑓𝑦𝑑 =π‘“π‘¦π‘˜

1.15= 260.87π‘€π‘π‘Ž

ɛ𝑦𝑑 =𝑓𝑦𝑑

𝐸𝑠=

260.87

200= 1.74‰

Step 2: Verify if the general requirements for Rib slab are met using Euro Code 2

1. The centers of the ribs should not exceed 1.5 m:

- This is satisfied, as the center-to-center spacing between the ribs is 400mm.

2. The depth of ribs excluding topping should not exceed four times their average width.

- Also satisfied as 80 x 4 > 240 mm.

3. The minimum rib width should be determined by consideration of cover, bar spacing

and fire resistance

- BS 8110 code - recommends 125 mm,

- Assume for this example the conditions are satisfied hence assume requirement

satisfied.

4. The thickness of structural topping or flange should not be less than 50mm or one tenth

of the clear distance between ribs.

- 60 mm satisfies this requirement.

Step 3: Loading

Dead load:

Joist→ 0.2 * 0.08 * 25 = 0.4

Topping→ 0.4 * 0.06 * 25 = 0.6

Floor finish β†’ 0.4 * 0.03 * 27 = 0.32

Cement Screed β†’ 0.4 * 0.02 * 23 = 0.184

Page 3: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

3

Plastering β†’ 0.4 * 0.02 * 23 = 0.184

Partition and fittings β†’ 0.4*1.5 = 0.6

Ribbed block β†’ 0.4 * 2 = 0.8

Gk = 3.092 KN/m

Live load:

Qk = 4KN/m2 * 0.4 = 1.6 KN/m

Design load:

𝐺𝑑 = 1.35 βˆ— πΊπ‘˜ = 1.35 βˆ— 3.092 = 4.174𝐾𝑁/π‘š

𝑄𝑑 = 1.5 βˆ— π‘„π‘˜ = 1.5 βˆ— 1.6 = 2.4𝐾𝑁/π‘š

Step 4: Analysis (for Ribs)

i) Full design load

ii) Maximum support moment [at B and C]

Page 4: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

4

iii) For maximum span moment [ at span AB and CD]

iv) Maximum span moment [ at BC]

Page 5: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

5

v) Only dead load acting

- Moment envelope diagram for the rib

- Maximum reaction envelope

- Minimum reaction envelope

Page 6: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

6

Step 5.Loading on Girders

- Assume Width of girders A , D ………….W=300mm

B, C ………….W=600mm

For all girders …...D=300mm

- Note: the section should be checked for serviceability

Self-weight: A & D …………= 0.3 x 0.3 x 25 = 2.25 KN. m

B&C …………= 0.6 x 0.3 x 25 = 4.5 KN. m

Design loads: A & D …………Gd = 1.35 x2.25 = 3.04 KN. m

B & C …….……Gd= 1.35 x4.5 = 6.08 KN. M

Step 6. Analysis of Girders

i. For Girder on axis β€œA” and β€œD”

- To get to maximum support moment [at 2]

From the maximum reaction of the Ribs divided by the rib spacing at A and D 10.67

0.4=10.67 KN.m

Total load W=26.68 + 3.04 = 29.72 KN.m

Page 7: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

7

- To get maximum span moment on girder A & D at 12 & 23

From the maximum reaction of the Ribs divided by the rib spacing A & D

10.67

0.4=10.67 KN.m

From the minimum reaction of the Ribs divided by the rib spacing 6.24

0.4=15.52 KN.m

- Moment envelop for girder A and D

Page 8: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

8

ii. For Girder on axis β€œB” and β€œC”

- Loading: Self-weight = 6.08 KN.m

Reactions from the ribs (divided by the rib spacing) 29.8

0.4= 74.5 𝐾𝑁. π‘šand

18.467

0.4= 46.15 𝐾𝑁. π‘š

- To get maximum support moment [at β€œ2”]

- To get maximum span moment [at β€œ12” or β€œ23”]

Page 9: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

9

- Moment envelop diagram for girders on axis B and C

Step 7.Loading on the Beam …. Axis 1, 2 and 3

- Self-weight width= 200 mm

Depth= 300 mm

N.B: cross section should be checked for serviceability.

Since there are columns at the intersection of the beams and girders, the beams will only support

their own loads.

DL = 0.2 x 0.3 x 25 = 1.5 KN/m

Gd= 1.35 x 1.5 = 2.025 KN/m

- Beam analysis

Page 10: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

10

Step 8. Design

1. Rib design

Cross section at span

β„Žπ‘“ = 60 π‘šπ‘š

𝑏𝑀 = 80 π‘šπ‘š

β„Ž = 260 π‘šπ‘š

π‘‡π‘Žπ‘˜π‘’ π‘π‘œπ‘£π‘’π‘Ÿ 15 π‘šπ‘š

𝑑 = 260 βˆ’ 15 βˆ’ 6 βˆ’12

2= 233 π‘šπ‘š

- Effective width computation

𝑏𝑒𝑓𝑓,𝑖 = 0.2𝑏𝑖 + 0.1π‘™π‘œ ≀ 0.2π‘™π‘œ

I. For end span(sagging moment)

π‘™π‘œ = 0.85𝑙1

π‘™π‘œ = 0.85 βˆ— 4000 = 3400π‘šπ‘š

𝑏1 = 𝑏2 = 160 π‘šπ‘š

𝑏𝑒𝑓𝑓 1 = 𝑏𝑒𝑓𝑓 2 = 372 < 680 < 𝑏1

Page 11: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

11

𝑏𝑒𝑓𝑓 = βˆ‘ 𝑏𝑒𝑓𝑓,𝑖 + 𝑏𝑀 ≀ 𝑏

𝑏𝑒𝑓𝑓 = 824 ≀ 400 𝑡𝑢𝑻 𝑢𝑲

𝒃𝒆𝒇𝒇 = πŸ’πŸŽπŸŽ π’Žπ’Ž

II. For interior sagging moment (+ve)

π‘™π‘œ = 0.7𝑙2

π‘™π‘œ = 0.7 βˆ— 4000 = 2800π‘šπ‘š

𝑏1 = 𝑏2 = 160 π‘šπ‘š

𝑏𝑒𝑓𝑓 1 = 𝑏𝑒𝑓𝑓 2 = 312 < 560 < 𝑏1

𝑏𝑒𝑓𝑓 = βˆ‘ 𝑏𝑒𝑓𝑓,𝑖 + 𝑏𝑀 ≀ 𝑏

𝑏𝑒𝑓𝑓 = 704 ≀ 400 𝑡𝑢𝑻 𝑢𝑲

𝒃𝒆𝒇𝒇 = πŸ’πŸŽπŸŽ π’Žπ’Ž

III. For support hogging moment (-ve)

π‘™π‘œ = 0.15(𝑙1 + 𝑙2)

π‘™π‘œ = 1200π‘šπ‘š

𝑏1 = 𝑏2 = 160 π‘šπ‘š

𝑏𝑒𝑓𝑓 1 = 𝑏𝑒𝑓𝑓 1 = 152 < 240 < 𝑏1

𝑏𝑒𝑓𝑓 = βˆ‘ 𝑏𝑒𝑓𝑓,𝑖 + 𝑏𝑀 ≀ 𝑏

𝑏𝑒𝑓𝑓 = 384 ≀ 400 𝑢𝑲

𝒃𝒆𝒇𝒇 = πŸ‘πŸ–πŸ’ π’Žπ’Ž

Note: However since it is a negative moment the width of the compression zone will be, b= 80mm

- Design of the T-section

A. Positive span moment AB and CD

Page 12: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

12

𝑀𝑠𝑑 = 9.506 πΎπ‘π‘š 𝑏𝑒𝑓𝑓 = 400 π‘šπ‘š 𝑑 = 233π‘šπ‘š 𝑓𝑐𝑑 = 11.33 π‘šπ‘π‘Ž 𝑓𝑦𝑑 = 260.87 π‘šπ‘π‘Ž

¡𝑠𝑑 =𝑀𝑠𝑑

𝑓𝑐𝑑𝑏𝑑2=

9.506 βˆ— 106π‘π‘šπ‘š

11.33 βˆ— 400 βˆ— 2332= 0.0386

πœ‡π‘ π‘‘ < πœ‡π‘ π‘‘,π‘™π‘–π‘š = 0.295 π‘Ίπ’Šπ’π’ˆπ’π’š π’“π’†π’Šπ’π’‡π’π’“π’„π’†π’…

𝐾π‘₯ = 0.055 𝑋 = 𝐾π‘₯𝑑 = 12.815 π‘šπ‘š < β„Žπ‘“ π’…π’†π’”π’Šπ’ˆπ’ 𝒂𝒔 𝒂 π’“π’†π’„π’•π’‚π’π’ˆπ’–π’π’‚π’“ π’”π’†π’„π’•π’Šπ’π’

𝐾𝑧 = 0.975 𝑍 = 𝐾𝑧𝑑 = 227.175π‘šπ‘š

𝐴𝑠 =𝑀𝑠𝑑

𝑓𝑦𝑑𝑍=

9.506 βˆ— 106π‘π‘šπ‘š

260.87 βˆ— 227.175= 160.40 π‘šπ‘š2

π΄π‘ π‘šπ‘–π‘› =0.26π‘“π‘π‘‘π‘š

π‘“π‘¦π‘˜π‘π‘‘π‘‘ π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑏𝑑 = 𝑏𝑀 𝑑 = 233π‘šπ‘š π‘“π‘π‘‘π‘š = 2.2 π‘šπ‘π‘Ž π‘“π‘¦π‘˜

= 300 π‘šπ‘π‘Ž

π΄π‘ π‘šπ‘–π‘› = 35.54 π‘šπ‘š2 < 𝐴𝑠 𝑢𝑲!

𝑒𝑠𝑖𝑛𝑔 βˆ… 12 π‘Žπ‘  = 113.1π‘šπ‘š2 𝑛 =𝐴𝑠

π‘Žπ‘ = 1.418 𝒖𝒔𝒆 πŸβˆ…πŸπŸπ’ƒπ’π’•π’•π’π’Ž 𝒃𝒂𝒓𝒔

B. Negative moment on the rib support B and C

𝑀𝑠𝑑 = 11.512 πΎπ‘π‘š 𝑏𝑀 = 80 π‘šπ‘š 𝑑 = 233π‘šπ‘š 𝑓𝑐𝑑 = 11.33 π‘šπ‘π‘Ž 𝑓𝑦𝑑 = 260.87 π‘šπ‘π‘Ž

¡𝑠𝑑 =𝑀𝑠𝑑

𝑓𝑐𝑑𝑏𝑑2=

11.512 βˆ— 106π‘π‘šπ‘š

11.33 βˆ— 80 βˆ— 2332= 0.2339

πœ‡π‘ π‘‘ < πœ‡π‘ π‘‘,π‘™π‘–π‘š = 0.295 𝑆𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘

𝐾𝑧 = 0.88 𝑍 = 𝐾𝑧𝑑 = 205.04 π‘šπ‘š

𝐴𝑠 =𝑀𝑠𝑑

𝑓𝑦𝑑𝑍=

11.512 βˆ— 106π‘π‘šπ‘š

260.87 βˆ— 205.04= 215.22π‘šπ‘š2

π΄π‘ π‘šπ‘–π‘› =0.26π‘“π‘π‘‘π‘š

π‘“π‘¦π‘˜π‘π‘‘π‘‘ π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑏𝑑 = 𝑏𝑀 𝑑 = 233π‘šπ‘š π‘“π‘π‘‘π‘š = 2.2 π‘šπ‘π‘Ž

π‘“π‘¦π‘˜ = 300 π‘šπ‘π‘Ž

π΄π‘ π‘šπ‘–π‘› = 35.54 π‘šπ‘š2 < 𝐴𝑠 𝑢𝑲!

Page 13: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

13

𝑒𝑠𝑖𝑛𝑔 βˆ… 12 π‘Žπ‘  = 113.1π‘šπ‘š2 𝑛 =𝐴𝑠

π‘Žπ‘ = 1.9029 𝒖𝒔𝒆 πŸβˆ…πŸπŸ 𝒃𝒂𝒓𝒔 𝒂𝒕 𝒕𝒉𝒆 𝒕𝒐𝒑

C. Span moment between B and C

𝑀𝑠𝑑 = 4.63 πΎπ‘π‘š 𝑏𝑒𝑓𝑓 = 400 π‘šπ‘š 𝑑 = 233π‘šπ‘š 𝑓𝑐𝑑 = 11.33 π‘šπ‘π‘Ž 𝑓𝑦𝑑 = 260.87 π‘šπ‘π‘Ž

¡𝑠𝑑 =𝑀𝑠𝑑

𝑓𝑐𝑑𝑏𝑑2=

4.63 βˆ— 106π‘π‘šπ‘š

11.33 βˆ— 400 βˆ— 2332= 0.0188

πœ‡π‘ π‘‘ < πœ‡π‘ π‘‘,π‘™π‘–π‘š = 0.295 π‘Ίπ’Šπ’π’ˆπ’π’š π’“π’†π’Šπ’π’‡π’π’“π’„π’†π’…

𝐾π‘₯ = 0.07 𝑋 = 𝐾π‘₯𝑑 = 16.31 π‘šπ‘š < β„Žπ‘“ π’…π’†π’”π’Šπ’ˆπ’ 𝒂𝒔 𝒂 π’“π’†π’„π’•π’‚π’π’ˆπ’–π’π’‚π’“ π’”π’†π’„π’•π’Šπ’π’.

𝐾𝑧 = 0.985 𝑍 = 𝐾𝑧𝑑 = 229.505π‘šπ‘š

𝐴𝑠 =𝑀𝑠𝑑

𝑓𝑦𝑑𝑍=

4.63 βˆ— 106π‘π‘šπ‘š

260.87 βˆ— 229.505= 77.33π‘šπ‘š2

π΄π‘ π‘šπ‘–π‘› =0.26π‘“π‘π‘‘π‘š

π‘“π‘¦π‘˜π‘π‘‘π‘‘ π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑏𝑑 = 𝑏𝑀 𝑑 = 233π‘šπ‘š π‘“π‘π‘‘π‘š = 2.2 π‘šπ‘π‘Ž π‘“π‘¦π‘˜ = 300 π‘šπ‘π‘Ž

π΄π‘ π‘šπ‘–π‘› = 35.54 π‘šπ‘š2 < 𝐴𝑠𝑢𝑲!

𝑒𝑠𝑖𝑛𝑔 βˆ… 12 π‘Žπ‘  = 113.1π‘šπ‘š2 𝑛 =𝐴𝑠

π‘Žπ‘ = 0.6837 𝒖𝒔𝒆 πŸβˆ…πŸπŸ π’ƒπ’π’•π’•π’π’Ž 𝒃𝒂𝒓𝒔

Note: For the shear design of the ribs, refer to Example 2.3 for ribbed slabs.

2. Girder design

a. Girder at A and D

- Positive span moment

𝑀𝑠𝑑 = 37.728 πΎπ‘π‘š 𝑏𝑀 = 300 π‘šπ‘š 𝐷 = 300 π‘šπ‘š 𝑓𝑐𝑑 = 11.33 π‘šπ‘π‘Ž 𝑓𝑦𝑑 = 260.87 π‘šπ‘π‘Ž

𝑑 = 300 βˆ’ 25 βˆ’ 8 βˆ’16

2= 259 π‘šπ‘š

¡𝑠𝑑 =𝑀𝑠𝑑

𝑓𝑐𝑑𝑏𝑑2=

37.728 βˆ— 106π‘π‘šπ‘š

11.33 βˆ— 300 βˆ— 2592= 0.165

πœ‡π‘ π‘‘ < πœ‡π‘ π‘‘,π‘™π‘–π‘š = 0.295 𝑆𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘

𝐾𝑧 = 0.907 𝑍 = 𝐾𝑧𝑑 = 234.91 π‘šπ‘š

𝐴𝑠 =𝑀𝑠𝑑

𝑓𝑦𝑑𝑍=

37.728 βˆ— 106π‘π‘šπ‘š

260.87 βˆ— 234.91= 615.525π‘šπ‘š2

Page 14: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

14

π΄π‘ π‘šπ‘–π‘› =0.26π‘“π‘π‘‘π‘š

π‘“π‘¦π‘˜π‘π‘‘π‘‘ π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑏𝑑 = 𝑏𝑀 𝑑 = 259 π‘šπ‘š π‘“π‘π‘‘π‘š = 2.2 π‘šπ‘π‘Ž π‘“π‘¦π‘˜ = 300 π‘šπ‘π‘Ž

π΄π‘ π‘šπ‘–π‘› = 148.148π‘šπ‘š2 < 𝐴𝑠𝑢𝑲!

𝑒𝑠𝑖𝑛𝑔 βˆ… 16π‘Žπ‘  = 200.96 π‘šπ‘š2 𝑛 =𝐴𝑠

π‘Žπ‘ = 3.0629 𝒖𝒔𝒆 πŸ’βˆ…πŸπŸ” π’ƒπ’π’•π’•π’π’Ž 𝒃𝒂𝒓𝒔

- Negative support moment

𝑀𝑠𝑑 = 59.442 πΎπ‘π‘š 𝑏𝑀 = 300 π‘šπ‘š 𝐷 = 300 π‘šπ‘š 𝑓𝑐𝑑 = 11.33 π‘šπ‘π‘Ž 𝑓𝑦𝑑 = 260.87 π‘šπ‘π‘Ž

𝑑 = 300 βˆ’ 25 βˆ’ 8 βˆ’16

2= 259 π‘šπ‘š

¡𝑠𝑑 =𝑀𝑠𝑑

𝑓𝑐𝑑𝑏𝑑2=

59.442 βˆ— 106π‘π‘šπ‘š

11.33 βˆ— 300 βˆ— 2592= 0.260

πœ‡π‘ π‘‘ < πœ‡π‘ π‘‘,π‘™π‘–π‘š = 0.295 𝑆𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘

𝐾𝑧 = 0.841 𝑍 = 𝐾𝑧𝑑 = 217.819 π‘šπ‘š

𝐴𝑠 =𝑀𝑠𝑑

𝑓𝑦𝑑𝑍=

59.442 βˆ— 106π‘π‘šπ‘š

260.87 βˆ— 217.819= 1046.1π‘šπ‘š2

π΄π‘ π‘šπ‘–π‘› =0.26π‘“π‘π‘‘π‘š

π‘“π‘¦π‘˜π‘π‘‘π‘‘ π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑏𝑑 = 𝑏𝑀 𝑑 = 259 π‘šπ‘š π‘“π‘π‘‘π‘š = 2.2 π‘šπ‘π‘Ž π‘“π‘¦π‘˜ = 300 π‘šπ‘π‘Ž

π΄π‘ π‘šπ‘–π‘› = 148.148 π‘šπ‘š2 < 𝐴𝑠 𝑢𝑲!

𝑒𝑠𝑖𝑛𝑔 βˆ… 16 π‘Žπ‘  = 200.96 π‘šπ‘š2 𝑛 =𝐴𝑠

π‘Žπ‘ = 3.0629 𝒖𝒔𝒆 πŸ”βˆ…πŸπŸ” π’ƒπ’π’•π’•π’π’Ž 𝒃𝒂𝒓𝒔

b. Girder at B and C

Positive span moment

𝑀𝑠𝑑 = 101.59 πΎπ‘π‘š 𝑏𝑀 = 600 π‘šπ‘š 𝐷 = 300 π‘šπ‘š 𝑓𝑐𝑑 = 11.33 π‘šπ‘π‘Ž 𝑓𝑦𝑑 = 260.87 π‘šπ‘π‘Ž

𝑑 = 300 βˆ’ 25 βˆ’ 8 βˆ’20

2= 257 π‘šπ‘š

¡𝑠𝑑 =𝑀𝑠𝑑

𝑓𝑐𝑑𝑏𝑑2=

101.59 βˆ— 106π‘π‘šπ‘š

11.33 βˆ— 600 βˆ— 2572= 0.226

πœ‡π‘ π‘‘ < πœ‡π‘ π‘‘,π‘™π‘–π‘š = 0.295 𝑆𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘

𝐾𝑧 = 0.867 𝑍 = 𝐾𝑧𝑑 = 222.819 π‘šπ‘š

𝐴𝑠 =𝑀𝑠𝑑

𝑓𝑦𝑑𝑍=

101.59 βˆ— 106π‘π‘šπ‘š

260.87 βˆ— 222.819= 1747.73π‘šπ‘š2

Page 15: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

15

π΄π‘ π‘šπ‘–π‘› =0.26π‘“π‘π‘‘π‘š

π‘“π‘¦π‘˜π‘π‘‘π‘‘ π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑏𝑑 = 𝑏𝑀 𝑑 = 259 π‘šπ‘š π‘“π‘π‘‘π‘š = 2.2 π‘šπ‘π‘Ž π‘“π‘¦π‘˜

= 300 π‘šπ‘π‘Ž

π΄π‘ π‘šπ‘–π‘› = 148.148 π‘šπ‘š2 < 𝐴𝑠𝑢𝑲!

𝑒𝑠𝑖𝑛𝑔 βˆ… 20π‘Žπ‘  = 314π‘šπ‘š2 𝑛 =𝐴𝑠

π‘Žπ‘ = 5.566 𝒖𝒔𝒆 πŸ”βˆ…πŸπŸŽ π’ƒπ’π’•π’•π’π’Ž 𝒃𝒂𝒓𝒔

Negative support moment

𝑀𝑠𝑑 = 161.16 πΎπ‘π‘š 𝑏𝑀 = 600 π‘šπ‘š 𝐷 = 300 π‘šπ‘š 𝑓𝑐𝑑 = 11.33 π‘šπ‘π‘Ž 𝑓𝑦𝑑 = 260.87 π‘šπ‘π‘Ž

𝑑 = 300 βˆ’ 25 βˆ’ 8 βˆ’20

2= 257 π‘šπ‘š

¡𝑠𝑑 =𝑀𝑠𝑑

𝑓𝑐𝑑𝑏𝑑2=

161.16 βˆ— 106π‘π‘šπ‘š

11.33 βˆ— 300 βˆ— 2572= 0.358

πœ‡π‘ π‘‘ > πœ‡π‘ π‘‘,π‘™π‘–π‘š = 0.295 π·π‘œπ‘’π‘π‘™π‘¦ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›

𝐾𝑧,π‘™π‘–π‘š = 0.814

𝑀𝑠𝑑,π‘™π‘–π‘š = ¡𝑠𝑑,π‘™π‘–π‘šπ‘“π‘π‘‘π‘π‘‘2 = 0.295 βˆ— 11.33 βˆ— 600 βˆ— 2572 = 132.455 πΎπ‘π‘š

𝑍 = 𝐾𝑧,π‘™π‘–π‘š βˆ— 𝑑 = 0.814 βˆ— 257 = 209.19 π‘šπ‘š

𝐴𝑠1 =𝑀𝑠𝑑,π‘™π‘–π‘š

𝑍𝑓𝑦𝑑+

𝑀𝑠𝑑,𝑠 βˆ’ 𝑀𝑠𝑑,π‘™π‘–π‘š

𝑓𝑦𝑑(𝑑 βˆ’ 𝑑2)=

132.455 βˆ— 106

260.87 βˆ— 209.19+

(161.16 βˆ’ 132.455) βˆ— 106

260.87 βˆ— (257 βˆ’ 35)

= 2915.617π‘šπ‘š2

𝒖𝒔𝒆 𝟏𝟎 βŒ€πŸπŸŽ

Compression reinforcement design

- Check if the reinforcement has yielded

𝑑2

𝑑=

35

257= 0.14πœ€π‘ 2 = 2.6‰ (π‘Ÿπ‘’π‘Žπ‘‘ π‘“π‘Ÿπ‘œπ‘š π‘β„Žπ‘Žπ‘Ÿπ‘‘)

πœ€π‘ 2 = 2.6‰ > πœ€π‘¦π‘‘ 𝑒𝑠𝑒 𝑓𝑦𝑑 = 260.87

- Calculate the stress in the concrete at the level of compression reinforcement to avoid

double counting of area.

πœ€π‘π‘ 2 = 2.6‰ β‰₯ 2‰ , Therefore, we take

πœ€π‘ = 3.5‰ π‘Žπ‘›π‘‘ πœŽπ‘π‘‘,𝑠2 = 11.33 π‘šπ‘π‘Ž

Page 16: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

16

𝐴𝑠2=

1

(πœŽπ‘ 2βˆ’πœŽπ‘π‘‘,𝑠2)(

π‘€π‘ π‘‘π‘ βˆ’π‘€π‘ π‘‘,π‘™π‘–π‘šπ‘‘βˆ’π‘‘2

)=

1

(260.87 βˆ’ 11.33)((161.16 βˆ’ 132.455) βˆ— 106

(257 βˆ’ 35)= 518.160π‘šπ‘š2

𝒖𝒔𝒆 πŸβŒ€πŸπŸŽ

3. Beams Design

i) Negative support moment

𝑀𝑠𝑑 = 3.491πΎπ‘π‘š 𝑏𝑀 = 200 π‘šπ‘š 𝐷 = 300 π‘šπ‘š 𝑓𝑐𝑑 = 11.33 π‘šπ‘π‘Ž 𝑓𝑦𝑑 = 260.87 π‘šπ‘π‘Ž

𝑑 = 300 βˆ’ 25 βˆ’ 8 βˆ’12

2= 261 π‘šπ‘š

¡𝑠𝑑 =𝑀𝑠𝑑

𝑓𝑐𝑑𝑏𝑑2=

3.491 βˆ— 106π‘π‘šπ‘š

11.33 βˆ— 200 βˆ— 2612= 0.0226

πœ‡π‘ π‘‘ < πœ‡π‘ π‘‘,π‘™π‘–π‘š = 0.295 π‘Ίπ’Šπ’π’ˆπ’π’š π’“π’†π’Šπ’π’‡π’π’“π’„π’†π’…

𝐾𝑧 = 0.985 𝑍 = 𝐾𝑧𝑑 = 257.08 π‘šπ‘š

𝐴𝑠 =𝑀𝑠𝑑

𝑓𝑦𝑑𝑍=

3.491 βˆ— 106π‘π‘šπ‘š

260.87 βˆ— 257.08= 52.04π‘šπ‘š2

π΄π‘ π‘šπ‘–π‘› =0.26π‘“π‘π‘‘π‘š

π‘“π‘¦π‘˜π‘π‘‘π‘‘ π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑏𝑑 = 𝑏𝑀 = 200 𝑑 = 261 π‘šπ‘š π‘“π‘π‘‘π‘š = 2.2 π‘šπ‘π‘Ž π‘“π‘¦π‘˜ = 300 π‘šπ‘π‘Ž

π΄π‘ π‘šπ‘–π‘› = 99.52π‘šπ‘š2 > π΄π‘ π‘π‘œπ‘‘ 𝑢𝑲!

𝑒𝑠𝑖𝑛𝑔 βˆ… 12π‘Žπ‘  = 113.04π‘šπ‘š2 𝑛 =𝐴𝑠,π‘šπ‘–π‘›

π‘Žπ‘ = 0.88 𝒖𝒔𝒆 πŸβˆ…πŸπŸ π’ƒπ’π’•π’•π’π’Ž 𝒃𝒂𝒓𝒔

𝑼𝒔𝒆 πŸβˆ…πŸπŸ π’ƒπ’π’•π’•π’π’Ž 𝒂𝒏𝒅 𝒕𝒐𝒑 𝒃𝒂𝒓 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒕𝒐𝒕𝒂𝒍 𝒍𝒆𝒏𝒕𝒉 𝒐𝒇 𝒕𝒉𝒆 π’ƒπ’†π’‚π’Ž.

Step 8. Transverse reinforcement

Secondary reinforcement is required for temperature and shrinkage.

𝐴𝑠2 = 20% 𝐴𝑠,π‘šπ‘–π‘›

𝐴𝑠2 = 0.12% π΄π‘‘π‘œπ‘π‘π‘–π‘›π‘”

π‘†π‘π‘Žπ‘π‘–π‘›π‘” 𝑆 =π‘π‘Žπ‘ 

𝐴𝑠

𝒖𝒔𝒆 βˆ… πŸ– 𝒄𝒄⁄ 𝟐𝟎𝟎 π’Žπ’Ž

Page 17: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

17

Step 9. Detailing

Page 18: Example 2.2 [Ribbed slab design] - · PDF fileExample 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. ... -Effective width computation

Reinforced concrete structures II – Ribbed slab Example 2

18