Download - Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

Transcript
Page 1: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Low Power Wir elessCommunication Network

DesignMethodologies

WayneE. StarkHuaWang,Andrew Worthen,PaulLiang,

RobbyGupta,JackEast,Al Hero,StephaneLafortune,DemosthenisTeneketzis

Universityof MichiganAnn Arbor, MI 48109

e-mail: [email protected]

1

Page 2: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Objectives� Determinethetrade-off betweenperformanceand

energy in awirelesscommunicationnetwork

(TASK I).

Energy

Performance

2

Page 3: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Observations

� Theperformanceandenergy consumptionof a

wirelessnetwork is determinedby network

protocol,physicallayersdesign(codingand

modulation)aswell aspropagationanddevice

characterisitics

3

Page 4: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Observations

� Withoutaconstraintonenergy eachof these

subsystemscanbeoptimizedindividually.

� By imposinganenergy constrainttheoverall

systemsoptimizationrequiresacouplingbetween

thedifferentlayersin thesystemhierarchy.

4

Page 5: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Objectives(cont.)

� Provideamethodologyfor integrateddesign,

optimizationandsimulationof acommunication

systemincludingtheapplicationlayer, network

protocol,datalink layerprotocols,physicallayer

anddevice layer.

5

Page 6: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Example Scenario(Application Layer)

� Mobilesareinitially locatedin a smallgeographicalregionanddesireto keeptrackof thepositionof othernodesasnodesmove towarda destination(situationawareness).

� Eachnodemovestowardthedestination(1 m/s)but withrandomvariations(uniformover a1 m2 area)andknows itsown position(throughGPS).

� Eachnodehasafinite amountof energy for transmissionofmessagesandprocessingof receivedmessages.

6

Page 7: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Destination

6km

1km

Nodes

7

Page 8: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Destination

6km

1km

Nodes

8

Page 9: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

PropagationEffects� Propagationdecreasesthereceivedpower

proportionalto d4.

10−1

100

101

102

103

−120

−100

−80

−60

−40

−20

0

20

distance (m)

Lo

ss (

dB

)

9

Page 10: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Amplifier Effects� Theamplifierhaslow efficiency at low drive levels

andhighefficiency athigh levels.

0 2 4 6 8 100

10

20

30

40

50

60

70

80

Pin

(mW)

P out (m

W)

0 2 4 6 8 100

10

20

30

40

50

60

70

Pin

(mW)

Powe

r add

ed e

fficie

ncy

(%)

10

Page 11: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Observations� Thepropagationeffectwouldseemto imply thatroutingthe

messageswouldbepower efficientwith low power for eachlink.

� Thepower efficiency curvewouldsuggestthatasinglebroadcaststrategy wouldbepower efficientsincetheamplifieris not efficientat low drive levels.

� Higheramplifierintermodulationproductsathighdrivelevelscauseincreasedinterference.

� Whatis theroutingalgorithm/amplifierdrive level for

optimumperformancefor a givenenergy constraint?

11

Page 12: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Methodology� To determinetradeoff betweenperformanceand

energy for complex systemsanappropriate

combinationof simulationandoptimizationis

necessary. Thesystemsaregenerallytoocomplex

for niceanalyticformulationandthusrequire

simulation.

� Thenumberof parametersis very largesoefficient

optimizationandsimulationis necessary.

12

Page 13: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Methodology (cont.)

� Webreaktheprobleminto layersandare

investigatingthesimulation/optimizationproblem

andthecouplingbetweenlayers.

13

Page 14: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

PerformanceOptimization Methodology

Network

SimulationOpt

.

Processing

SimulationOpt

.

Device

Simulation

Opt

imiz

atio

n

Opt

.

Alg

orith

ms

OptimizationCriteria

Scenarios/Requirements

BatteryCapacity

ProtocolCompressionType

CodingType

ModulationType

Frequency

AntennaModelAmplifier Models

Parameters Objective Function

14

Page 15: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Optimization

� How oftenshouldnodestransmittheir location

packets?

� How muchenergy shouldbeallocatedto the

receiver for processingpackets?

� At whatdrive level shouldtheamplifieroperate?

15

Page 16: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Objective Function

Let Gi � j= mean-squareerrorfor user j of theposition

of useri,

G � E � � minEct ,Ecr

Ect Ecr � E

minT � q

1N � N 1 �

∑i

∑j !#" i

Gi � j

E � total energy $ Ect � energy for transmitter$

Ecr � energy for receiver

16

Page 17: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Protocolat Network Layer� Eachnodecarriesa batterywith a certaincapacityand

broadcastsits positionawarenesspacketeveryT seconds.

� Themobilenetwork usestimedivision multiple access(TDMA), whereeachnodein thenetwork hasits owntransmissiontimeslot.

� After a transmission,thenoderetransmitsthesamepacketwith probabilityq if thereis enoughenergy left in thebatteryandenoughtime left in its transmissiontimeslot for onepacket transmission.

17

Page 18: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

ProcessingLayer Block Diagram

Channel

EncoderInterleaver Modulate Spread PA

Channel

DespreadDemodulateDeinterleaverChannel

Decoder

Pcc PInt Pmod Pspread Pamp

PdespreadPdemodPDeintPcd

18

Page 19: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Goal for ProcessingLayer

Computethepacketerrorprobabilitiesasa function

of thetransmitterandreceiverenergy andreceived

SNRoptimizedover otherparameters.

Pe � fP � Ect $ Ecr $ SNR�

� minNM � ND

gP � Ect $ Ecr $ SNR$ NM $ ND �

NM % bits of quantizationfor demodulator

ND % bits of quantizationfor decoder&

19

Page 20: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Initial Models for ProcessingLayer� Convolutional,Turbo,(Golayor Hadamard,otherBlock)

ChannelCode

� BPSKModulationwith RaisedCosineFiltering

� Frequency-HoppedSpread-Spectrum

� AWGN,(Flat(Ideal)Rayleigh,PineStreet,AmericanLegionDrive,Measurements)

� TappedDelayLine MatchedFilter (Equalization)

� CoherentDemodulation

� Viterbi Decoding,Iterative Decoding,(Hadamard/Golay)Decoding

20

Page 21: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Parametersfor Optimization� Block Lengthof Packet

� PreambleSize(for synchronization)

� Numberof Bits/Hop

� SampleRateat Input to Equalizer/MatchedFilter

� Numberof Bits of Quantizationat Input toEqualizer/MatchedFilter

� Numberof Bits of Quantizationfor CoefficientsinEqualizer/MatchedFilter

21

Page 22: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Parametersfor Optimization (cont.)

� Numberof Tapsin Equalizer/MatchedFilter

� Bits of QuantizationatOutputof Equalizer/MatchedFilter(Input to Decoder)

� Numberof Bits Quantizationin DecoderMetric (e.g.Turboor Convolutionalor Golayor Hadamard)

� Numberof Iterationsfor Iterative Decoder

22

Page 23: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

ProcessingEnergy Estimation

� Energy dissipationof digital circuitry is estimated

basedon0.6µmstandardcell technology.

� Energy for thecomputationintensive algorithmis

estimatedby summingtheenergy of the

operations.Theenergy for eachindividual

operationis individually synthesizedusingEpoch

CAD tool.

23

Page 24: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

� Power/Energy consumptionfor thealgorithm

containingintensivememoryaccessor highly

interconnectedstructureareestimatedfrom the

actualcircuit layoutsynthesis(e.g.turbodecoding,

convolutionaldecoding).

� Thesupplyvoltageof thecircuit usedfor the

algorithmimplementationarescaledto handlethe

rangeof operatingspeedsto getthelowestpossible

energy.

24

Page 25: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Matched Filter Structur e

w0

xk z-1

Qcw1Qc

dQ xk-1( )dQ (xk )z-1

Qcwp-1

dQ (xk-p+1 )

dQ yk^( )

dQ

dQ dQdQ

25

Page 26: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

MSE Performancefor Matched Filter Alone

2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.2

0.4

0.6

0.8

1

1.2

Energy per iteration (pJ)

Mea

n S

qu

are

Err

or

Finite Precision Matched Filter Perf. vs. Energy

26

Page 27: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Power PerformanceTradeoffs for Codes

0 50 100 150 200 250 3002

2.5

3

3.5

4

4.5

5

5.5

6

6.5

convolutional K=7 bit=hard,3,4,5,6

turbo 1 iteration

N=256 bit=2,3,4

N=512 bit=3,4

N=1024 bit=3,4

turbo 2 iterations

turbo 3 iterations

turbo 4 iterations

Decoder Performance vs PowerS

NR

(E

b/N0)

at B

ER

= 1

0−5

Power Dissipation (mW)

27

Page 28: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Initial SystemAssumptions� Packet lengthof 224(252)informationbitsor 460

(512)channelbits

� Constraintlength7 convolutionalcode(Turbo

code)

� BPSKmodulationwith squareroot raisedcosine

filter (rolloff=0.3)

� Transmitterfilter implementedwith 19 taps

(infinite quantization)

28

Page 29: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

� Symbolduration20µs.

� Frequency-hoppedwith 23 (32)bits/hop,20(16)

hopsperpacket

� Nonlinearamplification(modelfrom device layer)

� AdditivewhiteGaussiannoisechannel

29

Page 30: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Initial SystemAssumptions(cont.)� Variablesignalenergy-to-noisedensityratio (SNR)

� Idealdown conversion(frequency dehopping)

� Matchedfilter implementedwith a tapdelayline

modelwith 19 tapsandND bitsof quantizationfor

thecoefficientsandtheinput sampledat four times

thedatarate.

� Convolutionaldecoderwith NE bits of quantization

� Variablereceiver processingenergy constraint

30

Page 31: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Packet Err or Probability vs. Ect, Ecr

4

6

8

10

x 10−4 1.922.12.22.32.42.52.62.7

x 10−4

10−5

10−4

10−3

10−2

10−1

100

Ecr (J)

Performance vs. Energies

Ect (J)

Pac

ket e

rror

rat

e

PacketErrorProbabilityfor SNR=1,2,3,4,5dB

31

Page 32: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Notes

This plot shows thebit errorrateasa functionof the

receiverprocessingenergy constraintandthe

transmitteramplifierenergy constraint.Thesurfaces

are,from topdown, SNR=1dB, 2 dB, 3dB,4 dB, and

5 dB. ThegridsareinterpolatedandtheSNR=5dB

datais extrapolatedfrom thesimulationresults.

32

Page 33: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Objective Function

Next we renormalizeour resultsby relatingthe

receivedSNRto Ect , N0 � 174dBm/Hzandanoise

figureof 3 dB.

SNR � PoutTsGtGrh2t h2

r ηrηt

d4N0

wherePout � f1 � Ect � .

33

Page 34: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Objective Function

distances=3162m,3320m,3558m,3953m

34

Page 35: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

46

810 x 10

−4

1.8 2 2.2 2.4 2.6 2.8

x 10−4

10−4

10−3

10−2

10−1

100

Ect (J)

Performance vs. Energies

Ecr (J)

Pac

ket e

rror

rat

e

35

Page 36: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Objective Function

46

810 x 10

−4

1.8 2 2.2 2.4 2.6 2.8

x 10−4

10−5

10−4

10−3

10−2

10−1

100

Ect (J)

Performance vs. Energies

Ecr (J)

Bit

erro

r ra

te

36

Page 37: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Flat RayleighFading (SNR=8,12,15dB)

4

6

8

10

x 10−4

22.12.22.32.42.52.62.7

x 10−4

10−3

10−2

10−1

Ect (J)Ecr (J)

Performance vs. Energies: Flat Rayleigh channelB

it er

ror

rate

37

Page 38: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Fading with Interleaving (SNR=3,6,9)

4

6

8

10

x 10−4

22.12.22.32.42.52.62.7

x 10−4

10−5

10−4

10−3

10−2

10−1

100

Ect (J)

Performance vs. Energies: Flat Rayleigh channel, SNR=3,6,9 dB

Ecr (J)

Bit

erro

r ra

te

38

Page 39: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Conclusions

Error ratesignificantlylargerwith Rayleighfading

without interleaving.

39

Page 40: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Objective Function

Considerthecasewhereeachnodeis transmittinga

fractionα of thetime andreceiving packetsa fraction

1 α of thetime. Weoptimizethedesignto getthe

lowestpacketerrorratefor agivenaverageenergy per

packet. In otherwords,for E given,find theoptimal

performancesubjectto

αEct � 1 α � Ecr ' E

This givesthesolutionto theabove optimization

40

Page 41: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

problemusingtheprocessinglayermodelandchannel

propagationmodelgivenabove.

41

Page 42: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Objective Function (d=3320m)

2 3 4 5 6 7 8 9

x 10−4

10−3

10−2

10−1

100

Average packet energy (J)

pack

et e

rror

rat

e

Performance vs. Weighted Total Energy

α=0.125 α=0.5 α=0.8

42

Page 43: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Thefloor in performanceoccursbecausethe

transmitterhasamaximumoutputpower (becauseof

theamplifier)

43

Page 44: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Objective Function for Turbo Codes

distance=3200m

2 3 4 5 6 7 8 9 10 11

x 10−4

10−4

10−3

10−2

10−1

100

Average packet energy (J)

pack

et e

rror

rat

e

α=0.5

α=0.8

α=0.125

44

Page 45: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Conclusion

� For low power levelsthetransmittedpowergain in

usingturbocodesdoescompensatefor the

additionalcomplexity at thereceiver.

� For largerpower levelsweexpectthis to reverse.

45

Page 46: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Optimal Parameters(α ( 0 ) 125)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

x 10−4

0.5

1

1.5

2

2.5x 10

−4

aver

age

com

pone

nt e

nerg

y (J

)

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

x 10−4

10−3

10−2

10−1

100

Average packet energy (J)

pack

et e

rror

rat

e

Uppercurve is receiverpower andlowercurve is

transmitterpower.

46

Page 47: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Optimal Parameters(α ( 0 ) 5)

3 3.5 4 4.5 5 5.5 6 6.5

x 10−4

0

1

2

3

4

5x 10

−4

aver

age

com

pone

nt e

nerg

y (J

)

3 3.5 4 4.5 5 5.5 6 6.5

x 10−4

10−3

10−2

10−1

100

Average packet energy (J)

pack

et e

rror

rat

e

Uppercurve is transmitterpower andlowercurve is

receiverpower.

47

Page 48: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Amplifier Effects

Considerdifferentbiasvoltagesasoptimization

parameterratherthanbackoff.

48

Page 49: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

0 5 10 15 20 25 30 350

20

40

60

80

100

120

140

160

180

Pin (mW)

Pout

(mW)

vd=34 5 6 7

0 5 10 15 20 25 30 350

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pin (mW)

Powe

r added

efficie

ncy (%

)

vd=34 5 6 7

49

Page 50: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Objective Function

0 0.5 1 1.5 2 2.5

x 10−3

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Average packet energy (J)

pack

et er

ror r

atePerformance vs. Weighted Total Energy

α =0.125α =0.5 α =0.8

IBO=1 dB

50

Page 51: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T� H� E� U� N� I� V� E� R� S I T� Y� O F� M� I� C� H

I�G�A�N�1� 8� 1� 7� ElectricalEngineeringandComputerScience

Objective Function

2.5 3 3.5 4 4.5 5 5.5

x 10−4

10−8

10−6

10−4

10−2

100

Average packet energy (J)

pack

et e

rror r

ate

Performance vs. Weighted Total Energy (α = 0.125)

IBO=2 dB IBO=1 dB IBO=0.5 dB

51

Page 52: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

PerformanceEvaluation

1

2

3

x 10−3

1.922.12.22.32.42.5

x 10−4

10−5

10−4

10−3

10−2

10−1

100

Ect (J)

Performance vs. Energies

Ecr (J)

Pack

et e

rror r

ate

IBO=2 dB

52

Page 53: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

PerformanceEvaluation

01

23

x 10−31.922.12.22.32.42.5

x 10−4

10−5

10−4

10−3

10−2

10−1

100

Ect (J)

Performance vs. Energies

Ecr (J)

Pack

et e

rror r

ate

IBO=1 dB

53

Page 54: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

SystemEvaluation

0

1

2

3

x 10−3

1.922.12.22.32.42.5

x 10−4

10−5

10−4

10−3

10−2

10−1

100

Ect (J)

Performance vs. Energies

Ecr (J)

Pack

et e

rror r

ate

IBO=0.5dB

54

Page 55: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Simulation Times

In orderto producethesimulation5 differentPin drive

levelswerechosen,and5 differentSNR’s were

chosenandthenoptimizedover theparameters(bits

of quanitzationfor matchedfilter anddecoder).This

resultedin about250differentsimulationswhich

takesabout3 daysrunningon20SparcUltra 10s.

55

Page 56: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Overall Optimization and Simulation

PoutEct

q, T, Ect

E , Ect cr

PePout

Optimization

ProcessingLayer

SNR

Position Error

Device Layer

DistributedSystemLayer

56

Page 57: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Overall Optimization and Simulation

Step1: Optimizationprogramdeterminesparameters

Ect D Ecr D T D q.

Step2: Deviceandprocessinglayerdetermines

Pout D Eat D Ear amplifieroutputpower.

Pout E f1 F Ect G

Eat E f2 F Ect GEar E f3 F Ecr G

57

Page 58: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

This is actualenergy perpacket consumed(which

might belessthantheenergy constraint)

58

Page 59: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Overall Optimization and Simulation

Step3: Distributedsystem(network) layer

determinesSNR.

SNR E PoutTsGtGrh2t h2

r ηrηt

d4N0

wherePoutH amplifieroutputpower TsH channelsymbolduration

GtH transmitterantennagain GrH receiver antennagain

htH transmitterantennaheight hrH receiver antennaheight

ηtH transmitterantennaefficiency ηrH receiver antennaefficiency

dH distance N0H thermalnoisepowerdensity

59

Page 60: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Overall Optimization and Simulation

Step4: ProcessinglayerdeterminesPe, packeterror

probability. This is actuallydoneoff line resulting

in a function fI 4 usedby thenetwork layer:

Pe E fI 4 F Ect D Ecr D SNRG

Step5: Network layerusesPe to determineif the

simulatedpacket transmissionleadsto acorrect

receptionor not; it thenupdatesthepositionerror.

60

Page 61: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Overall Simulation and Optimization

J For agivenparametersetrun 40parallel

simulationsof network performance(mean-square

error).Usethefirst 30 thatfinish.

J Usesimulatedannealingwith thehide-and-seek

algorithmto determineparametersvaluesfor each

iteration

61

Page 62: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

MSE vs. Energy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

2

3

4

5

6

7

8

9

Battery Capacity (Joule)

Ave

rag

e P

osi

tio

n E

stim

atio

n E

rro

r (m

eter

)Average Position Estimation Error As a Function of Battery Capacity

one−hop broadcastingmulti−hop routing

Drop Zone 1km x 1km50mW AmplifierConvolutional CodePacket Length 224 bits

62

Page 63: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

MSE vs. Energy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

2

3

4

5

6

7

8

9

Battery Capacity (Joule)

Ave

rag

e P

osi

tio

n E

stim

atio

n E

rro

r (m

eter

)Average Position Estimation Error As a Function of Battery Capacity

50mW Amplifier 120mW Amplifier

Drop Zone 2km x 2kmConvolutional CodePacket Length 224 bitsOne−hop Broadcasting

63

Page 64: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

MSE vs. Energy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

2

3

4

5

6

7

8

9

Battery Capacity (Joule)

Ave

rag

e P

osi

tio

n E

stim

atio

n E

rro

r (m

eter

)Average Position Estimation Error As a Function of Battery Capacity

one−hop broadcastingmulti−hop routing

Drop Zone 2km x 2km 50mW Amplifier Convolutional Code Packet Length 224 bits

64

Page 65: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

MSE vs. Energy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

2

3

4

5

6

7

8

9

10

11

Battery Capacity (Joule)

Ave

rag

e P

osi

tio

n E

stim

atio

n E

rro

r (m

eter

)Average Position Estimation Error As a Function of Battery Capacity

turbo code convolutional code

Drop Zone 1km x 1km50 mW AmplifierPacket Length 224 bitsOne−hop Broadcasting

65

Page 66: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

MSE vs. Energy

0 1 2 3 4 5 6 7 82.5

3

3.5

4

4.5

5

5.5

6

Battery Capacity (Joule)

Ave

rag

e P

osi

tio

n E

stim

atio

n E

rro

r (m

eter

)Average Position Estimation Error As a Function of Battery Capacity

turbo code convolutional code

Drop Zone 2km x 2km 50mW Amplifier Packet Length 1024 bitsOne−hop Broadcasting

66

Page 67: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

MSE vs. Energy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

2

3

4

5

6

7

8

9

10

11

Battery Capacity (Joule)

Ave

rag

e P

osi

tio

n E

stim

atio

n E

rro

r (m

eter

)Average Position Estimation Error As a Function of Battery Capacity

turbo code convolutional code

Drop Zone 2km x 2km 50 mW Amplifier Packet Length 224 bitsOne−hop Broadcasting

67

Page 68: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Conclusions

J A methodologyfor optimizingandsimulatinga

wirelesscommunicationnetwork including,

applicationlayer, network protocol,processing

layeranddevice layerwith significantlylower

computationthanabruteforceapproachhasbeen

achieved.

68

Page 69: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

J Themethodologyhasbeenverifiedfor anexample

scenario.Themethodologyallowsusto compare

differenttypesof routingalgorithmstakinginto

accountdeviceeffects(amplifiernonlinearity, for

example),propagationeffects,modulationand

codingeffectsaswell aspower consumptionof

digital. circuitry.

69

Page 70: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Next Steps:Network Layer

K Comparedifferentroutingalgorithms

K Examinemethodologiesfor differentcontrolfunctionsandtheireffecton thecommunicationalgorithms

K Investigateoptimizationof OFDM for highspeedcommunications.

K Determineamethodologyfor couplingincrementalredundancy transmissionwith theoverall simulation.

70

Page 71: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Next Steps:ProcessingLayer

J Incorporateadaptiveequalizationinto simulation

(with preamble).

J Incorporateothercodes(e.g.turbocodes)into the

simulation.

J Incorporateadjacentchannelinterferenceinto the

simulation.

71

Page 72: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Next Steps:ProcessingLayer (cont.)

J Investigatedifferentmodulationtechniquesandthe

interactionwith theamplifier

simulation/optimization

J Investigateoptimizationof OFDM for highspeed

communications.

72

Page 73: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Next Steps:DeviceLevel

J Incorporateanalogdecodingsimulationfor

iterative receiversinto simulation

J Incorporatefadingchannelmodelsinto simualtion

J Incorporatedirectionalantennasinto

simulation/optimization

73

Page 74: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Next Steps:DeviceLevel (cont.)J Incorporatetherecentresultsfor nonlinear

amplifiersbelow into thesimulation(JackEast)

1. Discovereda new techniquefor nonlinearsimulationusingharmonicbalnanceandfixedpoint techniques

2. Extendedconventionalnonlinearmicrowavesimulationtoolsfor widebanddigitally modulatedsignalsusingareducedcomplexity approach

3. Discovereda new optimizationalgorithmthateliminatestehneedfor gradientcalculationwhichsignificantlyreducesthecomputationalcomplexity

74

Page 75: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Publication

[1] W. Stark,H. Wang,A. Worthen,P. Liang,

A. Hero,S.Lafortune,andD. Teneketzis,“Low

energy wirelesscommunicationnetwork

design,” 2000AllertonConferenceon

Communication,Control andComputing,

October2000.

75

Page 76: Electrical Engineering and Computer ScienceT N H A E G U N I V E R S I F T Y O I C H I 1 8 1 7 ElectricalEngineeringandComputerScience Example Scenario (Application Layer) Mobiles

T* H+ E, U- N. I/ V0 E1 R2 S3 I4 T5 Y6 O7 F8 M9 I: C; H

I<G=A>N?1@ 8A 1B 7C ElectricalEngineeringandComputerScience

Outside Opinion

Date: Fri, 10 Nov 2000 17:38:43 -0800 (PST)

From: Andrea Goldsmith <[email protected]>

To: [email protected]

Subject: thanks for the talk slides and paper

Wayne,

Thanks much for the slides and paper from your

Allerton talk. It’s really great stuff.

Andrea

76