Download - Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

Transcript
Page 1: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

Functional Ecology. 2018;1–18. wileyonlinelibrary.com/journal/fec  | 1© 2018 The Authors. Functional Ecology © 2018 British Ecological Society

Received:29May2018  |  Accepted:30October2018DOI:10.1111/1365-2435.13241

E C O ‐ E V O L U T I O N A R Y D Y N A M I C S A C R O S S S C A L E S

Eco‐evolutionary feedbacks—Theoretical models and perspectives

Lynn Govaert1,2,3* | Emanuel A. Fronhofer4*  | Sébastien Lion5 | Christophe Eizaguirre6 | Dries Bonte7  | Martijn Egas8 | Andrew P. Hendry9  | Ayana De Brito Martins10 | Carlos J. Melián10 | Joost A. M. Raeymaekers11 | Irja I. Ratikainen12,13 | Bernt‐Erik Saether12 | Jennifer A. Schweitzer14 | Blake Matthews2

1LaboratoryofAquaticEcology,EvolutionandConservation,KULeuven,Leuven,Belgium;2DepartmentofAquaticEcology,Eawag:SwissFederalInstituteofAquaticScienceandTechnology,Dübendorf,Switzerland;3DepartmentofEvolutionaryBiologyandEnvironmentalStudies,UniversityofZurich,Zürich,Switzerland;4ISEM,CNRS,IRD,EPHE,UniversitédeMontpellier,Montpellier,France;5Centred'EcologieFonctionnelleetEvolutive,CNRS,IRD,EPHE,UniversitédeMontpellier,Montpellier,France;6QueenMaryUniversityofLondon,London,UK;7DepartmentofBiology,GhentUniversity,Ghent,Belgium;8InstituteforBiodiversityandEcosystemDynamics,UniversityofAmsterdam,Amsterdam,TheNetherlands;9RedpathMuseumandDepartmentofBiology,McGillUniversity,Montreal,Quebec,Canada;10FishEcologyandEvolutionDepartment,CenterforEcology,EvolutionandBiogeochemistry,Eawag:SwissFederalInstituteofAquaticScienceandTechnology,Dübendorf,Switzerland;11FacultyofBiosciencesandAquaculture,NordUniversity,Bodø,Norway;12DepartmentofBiology,CentreforBiodiversityDynamics,NorwegianUniversityofScienceandTechnology,Trondheim,Norway;13InstituteofBiodiversity,AnimalHealthandComparativeMedicine,UniversityofGlasgow,Glasgow,UKand14DepartmentofEcologyandEvolutionaryBiology,UniversityofTennessee,Knoxville,Tennessee

*Theseauthorscontributedequallytothiswork.

CorrespondenceEmanuelA.FronhoferEmail:[email protected]

HandlingEditor:CharlesFox

Abstract1. Theoreticalmodelspertainingtofeedbacksbetweenecologicalandevolutionaryprocesses areprevalent inmultiplebiological fields.An integrativeoverview iscurrentlylacking,duetolittlecrosstalkbetweenthefieldsandtheuseofdifferentmethodologicalapproaches.

2. Here,wereviewawiderangeofmodelsofeco-evolutionaryfeedbacksandhigh-lighttheirunderlyingassumptions.Wediscussmodelswherefeedbacksoccurbothwithinandbetweenhierarchicallevelsofecosystems,includingpopulations,com-munitiesandabioticenvironments,andconsiderfeedbacksacrossspatialscales.

3. Identifying the commonalities among feedbackmodels, and the underlying as-sumptions,helpsusbetterunderstandthemechanisticbasisofeco-evolutionaryfeedbacks.Eco-evolutionaryfeedbackscanbereadilymodelledbycouplingde-mographic and evolutionary formalisms.We provide an overview of these ap-proachesandsuggestfutureintegrativemodellingavenues.

4. Ouroverviewhighlightsthateco-evolutionaryfeedbackshavebeenincorporatedintheoreticalworkfornearlyacentury.Yet,thisworkdoesnotalwaysincludethenotionofrapidevolutionorconcurrentecologicalandevolutionarytimescales.We show the importance of density- and frequency-dependent selection forfeedbacks,aswellastheimportanceofdispersalasacentrallinkingtraitbetweenecologyandevolutioninaspatialcontext.

K E Y W O R D S

demography,eco-evolutionarydynamics,ecology,feedback,modelling,rapidevolution,theory

Page 2: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

2  |    Functional Ecology GOVAERT ET Al.

1  | INTRODUC TION

Feedbacksarerelevanttomanybiologicalsystemsandarecentraltoecologyandevolutionarybiology(Robertson,1991).Whileecologyaims tounderstand the interactionsbetween individualsand theirenvironment,evolutionreferstochangesinallelefrequenciesovertime.Inthepast,bothfieldshave,toalargeextent,beenstudiedinisolation.Evolutionaryecology(e.g.Roughgarden,1979)isanotableexception,where links between ecology and evolution are key toempiricalandtheoreticalresearch.

One of the pioneering studies on feedbacks between ecologyandevolutiondatesbacktoPimentel’sworkon“geneticfeedback”(Pimentel,1961).Inthisfeedback,frequenciesanddensitiesofdif-ferent genotypes in ahostpopulation shift theoverall populationdensity.Thischange indensitymodifiesselectiononthehostandconsequentlyshiftsgenotypefrequencies.Anotherearlyfeedbackconceptofgreatimportanceisdensity-dependentselection(Chitty,1967)wherethestrengthofselectionchangesduetochangingpop-ulation densities and vice versa (crowding; see also Clarke, 1972;Travis,Leips,&Rodd,2013).

Inrecentyears,therecognitionthatevolutioncanberapidandoccur on similar time scales as ecology (Hairston, Ellner, Geber,Yoshida,&Fox,2005;Hendry&Kinnison,1999)haspromptedre-search at the interfacebetween the twodisciplines (often termed“eco-evolutionary dynamics”; Hendry, 2017) and renewed theinterest in feedbacks between ecological and evolutionary pro-cesses[“eco-evolutionaryfeedbacks”(EEF);seeFigure1a;Ferrière,Dieckmann,&Couvet,2004;Pelletier,Garant,&Hendry,2009;Post&Palkovacs, 2009]. Eco-evolutionary feedbacks involve situationswhereanecologicalpropertyinfluencesevolutionarychange,whichthenfeedsbacktoanecologicalproperty,orviceversa.Classicalem-piricalexamplesincludethatpredation(ecologicalproperty)canleadto selection on defence traits in prey (evolutionary change)whichinturnfeedsbackonpredator–preydynamicsandshiftsthephaseof predator–preyoscillations (feedbackonecological property; re-viewedinHiltunen,Hairston,Hooker,Jones,&Ellner,2014).

Contemporary theory aboutEEFsbuildsonmanyof the samefundamentalideasestablishedbyPimentel(1961)andChitty(1967),andfeedbacksremaincentraltothedevelopmentoftheoryinevo-lutionary ecology (for recent overview see Lion, 2018; McPeek,2017).Suchfeedbackshavebeenfoundtogeneratespatialvariationinbioticinteractions(geographicmosaicofcoevolution;Thompson,2005),impactpopulationregulationandcommunitydynamics(e.g.,Abrams &Matsuda, 1997; Patel, Cortez, & Schreiber, 2018), andlead to species coexistence via stabilizingmechanisms (Kremer &Klausmeier, 2017), to name but a few examples. Besides theoret-icalwork, empirical and especially experimental tests of eco-evo-lutionary dynamics and feedbacks have increased recently (e.g.,Becks,Ellner,Jones,&Hairston,2010,2012;Brunner,Anaya-Rojas,Matthews,&Eizaguirre,2017;Schoener,2011;Turcotte,Reznick,&Hare,2011;Yoshida,Jones,Ellner,Fussmann,&Hairston,2003),andhavestronglycontributedtoourunderstandingonEEFs.

TheincreasingevidenceontheimportanceofEEFshasresultedin a series of existing literature reviews (e.g. Bailey& Schweitzer,2016;Fussmann,Loreau,&Abrams,2007;Hendry,2017;Pelletieretal.,2009;Post&Palkovacs,2009;Shefferson&Salguero-Gómez,2015; Van Nuland etal., 2016). These reviews, however, havebeenratherattheintersectionofempiricalandtheoreticalstudies(Fussmannetal.,2007),focusonparticularsystems(e.g.,plant–soilfeedbacks Bailey & Schweitzer, 2016; terHorst & Zee, 2016; VanNuland etal., 2016) or very broadly discuss eco-evolutionary dy-namics (e.g. Hendry, 2017). None of these overviews include thetheoretical literature in its full diversity, neither do they explicitlycomparedifferentmodellingframeworksforstudyingEEFs.

Here, we provide an overview of theoretical work that in-cludesEEFs(foracomprehensiveoverviewofempiricalworkseeHendry,2017)asanattempttoprovideaconceptualunificationthatfurthersourgeneralunderstandingofeco-evolutionaryfeed-back theory. While this review is focused on theoretical work,theinsightslearntarevaluablefortestingpredictionsempirically.Currently,therelevanttheoryvariesinmethodologicalapproaches(e.g., quantitative genetics and adaptivedynamics) andbetweenthematic subdisciplines (e.g., evolutionary rescue or suicide andnicheconstruction)withmostlysubtle,andattimessemantic,dis-tinctionsbetweenthem(Matthewsetal.,2014).Inanattempttobridgetheseboundaries,weorganizeournonexhaustiveoverviewaroundtwoaxesofbiologicalcomplexity:community(fromsingletomulti-speciesmodels)andspatialcomplexity(fromnonspatialtospatiallyexplicitmodels).Ourreviewfocusesspecificallyonfeed-backsanddiscussesEEFs inatheoreticalcontextacrossabroad

F I G U R E 1  Eco-evolutionaryfeedbacks(EEF).(a)Genericrepresentationoffeedbacksbetweenecology(greybox)andevolution(greenbox)implyingthattheeffectofanecologicalproperty(e.g.,demography)canbetracedtoevolutionarychange(e.g.,shiftinallelefrequencies;eco-to-evo)andbackagaintoanecologicalproperty(evo-to-eco)orviceversa.(b)Examplesofdemographic(ecological)andevolutionarymodellingformalismsthatcanbecoupledtoanalyseEEFs.Ofcourse,ODEsandIBMscanbeusedtomodelevolution,but,strictlyspeaking,theywillmakeuseofsomeoftheevolutionarymodellingframeworks,likeQGorgeneticalgorithms(GA),todoso.Theboxtypesandcolourswillbeusedthroughoutthetexttoimplyecologicalorevolutionaryaspects,respectively.Foradetailedexplanationofabbreviations,seeBox1

Ecology Evolution

species distributions,demography

interactions, etc.

distribution oftraits and/or

alleles

(a) Generic eco-evolutionary feedback patterns

Ecology Evolution

ODEs, difference equations,

matrix models,IPMs, IBMs, etc.

QG, game theory, AD, genetic algorithms

(b) Examples of modelling formalisms

Page 3: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  3Functional EcologyGOVAERT ET Al.

scaleofbiological levelswithastrongmethodologicalfocus.WesummarizeavailableformalismsusedtostudyEEFstheoretically,highlight their underlying assumptions and give an overview ofexisting theoreticalwork tohighlight researchgaps.WeuseoursynthesistoexpandthegenericfeedbackloopshowninFigure1aand to suggest a more mechanistic representation. Lastly, wemakesuggestionsforfuturedirectionsandwaystoovercomethebarriersthathavesofarpreventedsynthesisoftheoryinthisfield.

2  | FORMALISMS USED FOR MODELLING EEFS

Theoreticiansuseavarietyofdemographicmodelstostudythein-terplaybetweenecologyandevolution,includingclassicalordinarydifferentialequationmodels(ODEs,e.g.,Lotka–Volterraequations,for explanations and abbreviations of recurring terms see Box1),

structuredmodels(matrixmodels,physiologicallystructuredpopu-lationmodels,integralprojectionmodels)orstochasticagent-basedmodels.Byintroducinggeneticvariation(viastandinggeneticvari-ation and/ormutations) inoneor several populations, themodelscancaptureEEFs (Figure1b).Becausesuchmodelsarenotalwaysanalyticallytractable,variousformalisms,suchasadaptivedynamics(AD)andquantitativegenetics(QG),havebeendevelopedtofurtherour understanding of EEFs. Typically, these approaches takeEEFsintoaccount throughsimplifyingassumptionsonthetimescaleofecologicalandevolutionaryprocessesandonthemutationregime(reviewedinLion,2018).

Models usingAD rely on a separation of time scales betweenecologicalandevolutionarydynamics.Specifically,thesemodelsas-sume thatmutations are so rare that the ecological community isalwaysonitsattractor,sothattheevolutionarydynamicstaketheformofatemporalsequenceofallelesubstitutions (i.e.,mutation-limitedevolution).Thesuccessofamutantalleleisthenmeasured

BOX 1 Explanation of terms and abbreviations

Adaptive dynamics (AD):ADisamathematicalformalismthatprovidesadynamicalextensionofclassicaloptimizationapproachesandevolutionarygametheorytoincludedensityandfrequencydependence(Diekmann,2004;Waxman&Gavrilets,2005).Thismakeseco-evolutionaryfeedbackscentraltoAD.Dispersal:Dispersalisthemovementofindividualsawayfromtheirparentswithpotentialconsequencesforgeneflow(Clobertetal.,2012).Eco‐evolutionary feedback (EEF):Areciprocalinteractionbetweenanecologicalandevolutionaryprocesses(seeFigure1a).Theecologicalpropertyinfluencedbyevolutionarychangeneednotbethesameecologicalpropertythatledtotheevolutionarychange(narrowandbroadsensefeedbackssensuHendry,2017).Evolutionary rescue (ER) and suicide (ES):ERistheideathatapopulationcanavoidextinctionthroughrapidadaptation(Gonzalezetal.,2013).Bycontrast,ESistheprocessbywhichevolutiondrivesapopulationbeyonditsviabilityregion,eventuallycausingextinction(Ferriere,2000).Evolutionary game theory:Abranchofmathematicsthatstudiestheinteractionsbetweenindividualsinwhichthestrategyexertedbyanindividualhasapay-off thatdependsonboth the individual’s strategyandthestrategiesof theother individuals involved (McGill&Brown,2007).Genetic algorithm (GA):Atypeofoptimizationalgorithmusingtechniquesfromevolutionarybiology(i.e.,mutation,inheritance,selectionandrecombination)tofindanoptimizedsolutiontoaproblem(e.g.,Fraser,1957).Individual‐based model (IBM):IBM(alsoagent-basedmodel,ABMs)arebottom-upmodelsinwhicha(meta)populationor(meta)communityismodelledasanumberofdiscreteinteractingindividuals,inwhicheachindividualischaracterizedbyasetofstatevariables(location,physiologicalorbehaviouraltraits).Theinteractionsbetweenindividualsresultin(meta)populationand(meta)communityor(meta)foodwebdynamics(DeAngelis&Mooij,2005;Grimm,1999).Integral projection model (IPM):IPMsdescribethedynamicsofapopulationbyprojectingitssizeortraitdistributionthroughtimeusingakerneldistribution that connects individual-levelvital rates suchas survival, reproductionanddevelopment topopulation-levelpro-cesses.IPMscanbecoupledwithADorQGapproaches(Rees&Ellner,2016).Lotka‐Volterra model (LV):TheLVmodel(namedafterAlfredLotkaandVitoVolterra)consistsofODEsdescribingpredatorandpreydy-namics.Modificationsofthebasicmodelinclude,forexample,theRosenzweig-MacArthurmodel.Matrix population model:Formalizesthelifecycleofapopulationinamatrixusingeitherdiscretelifestages(classicalmatrixpopulationmodels;Caswell,2006)oracontinuoustraitsuchasbodysize(see“integralprojectionmodel”above).Metapopulation and metacommunity:Ametapopulationsensu lato isaspatiallystructuredpopulation,connectedbydispersal (Hanski,1999;Harrison&Hastings,1996).Similarly,ametacommunityisaspatiallystructuredcommunity,connectedbydispersal(Leiboldetal.,2004).Quantitative genetics (QG):QGstudiesthegeneticbasisofphenotypicvariation,withafocusonthedynamicsofcontinuoustraitdistribu-tions(Lynch&Walsh,1998).

Page 4: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

4  |    Functional Ecology GOVAERT ET Al.

byitsinvasionfitness(Geritz,Kisdi,Meszena,&Metz,1998;Metz,Nisbet,&Geritz,1992).Theseparationoftimescalesbetweenecol-ogy and evolution, however, does notmean that there is no EEF.The feedback ismaterialized by the fact that the invasion fitnessofamutantalleledependsontheecologicalconditionscreatedbythe residentcommunity. In fact, theconceptofa “feedback loop”between ecology and evolution has been central in the develop-mentofAD(Ferrière&Legendre,2012).Nevertheless,thefocusonecologicalattractorsmaybea limitation.RecentworkbyChesson(2017)suggeststhatthereplacementofecologicalattractorswithtime-dependent environmental functions towhich the populationconvergesmayrepresentawayforward.

Quantitativegeneticsmodels,bycontrast,startfromadifferentperspectiveandexplicitlyconsiderevolutionresultingfromexistinggeneticvariation.Foragivenquantitativetrait,thesemodelstrackthedynamicsofdifferentmomentsofthetraitdistributionsthatarecentraltoeco-evolutionarydynamics(mean,variance,etc.;Chevin,Cotto,&Ashander,2017).Often,additionalassumptionshavetobemade,toallowforsimplifications.ManyQGmodelsassumethatthetraitdistributionisGaussianandtightlyclusteredaroundthemean(smallvarianceorweakselectionapproximation).Inthatcase,itbe-comespossibletoapproximatetheecologicaldynamicsofthefocalpopulationasifall individualshadthemeantraitvalue,andtoun-derstand thechange inmean trait in relation toa selectiongradi-ent,where the selectiongradient itselfdependson theecologicaldynamics(e.g.,Abrams&Matsuda,1997;Lion,2018;Luo&Koelle,2013).Thisallowsthecouplingofecologyandevolution,similarlytoAD,withthedifferencethatecologicaldynamicsdonothavetobeatequilibrium(noseparationoftimescales;seeLande,2007;Lande,Engen,&Saether,2009,fortheimpactofenvironmentalvariation).Therefore, QG models can focus on short-term dynamics, whichmakes them potentially more applicable to experiments or fieldstudieswhererapidevolutionisakeyprocess.

Onthedemographic (ecological)side,ODEs,matrixpopulationmodels(e.g.,integralprojectionmodels—IPMs)andindividual-basedmodels (IBMs) have been used to study population dynamics, buthavealsobeenusedtostudysimultaneouschangeinecological(e.g.,populationsize)andevolutionaryparameters(e.g.,strengthofselec-tion),withoutexplicitlyusingthetermEEF(seee.g.,Caswell,2006).However, ODEs and matrix population models can be combinedwith AD and QG approaches to investigate EEFs (Rees & Ellner,2016). Individual-basedmodelsmay rely on genetic algorithms tocaptureevolutionarydynamics(Fraser,1957).Inaddition,IBMslendthemselvesveryeasilytotheincorporationofcomplexitiessuchasstochasticity, spatial structure and kin competition (e.g. Poethke,Pfenning,&Hovestadt, 2007),which are often difficult to handleusinganalyticalmodels.

Whileallof theseapproachescanbeused toanswera similarquestion,thereareoftenbarrierstointegration,orstemming,forex-ample,fromthespecificvocabularyofthefield.Nevertheless,therehasbeensomerecentprogresstowardssynthesis(Abrams,Harada,&Matsuda,1993;Day,2005;Day&Gandon,2007;Lion,2018).Forexample,ithasbeenshownthatasadditivegeneticvarianceinQG

models becomes very small, resultswill converge to those of ADmodels,whichprovidesadirectlinkbetweenthesetwomethodol-ogies (e.g.,Kremer&Klausmeier,2013).Asanotherexample,Lion(2018)suggestedconsideringtheorganism–environmentfeedbackascentral toeco-evolutionarymodels. In this formalism, theenvi-ronmentalvectorcapturesbothfocalpopulationdensities,aswellasexternalvariablessuchasabioticenvironments,andresources.

Beyondthescopeofthisreviewarecomplexadaptivesystemsmodels such as Bruggeman and Kooijman (2007) or Leibold andNorberg (2004), to name but two examples. These models allowfordynamicssimilartotraitevolutionandsimultaneouslyconsiderlargenumbersofspecieswithphenotypesfinelyspacedalongoneormoretraitaxes.WenextprovideageneraloverviewonmodelsincludingEEFsandtheirresultsstartingfrompopulationstocommu-nitiestoendwithecosystemsandfoodwebs.

3  | EEFS WITHIN POPUL ATIONS

ManytheoreticalstudieshaveanalysedEEFswithinasinglepopu-lation in a temporal or spatial setting. In single-species nonspatialsettings, EEFs areusually consideredbetween changes inpopula-tionsizeandchangesinheritabletraits.Inaspatialsetting,EEFscanoccurbetweenlocalpopulationsizeandlocaltraitvalues,butalsoamongpatchesbetweenregional(meta)populationsizeandlocalorregionaltraitvalues.Inaddition,landscapestructure(topology,con-nectivity)mightinfluencelocalEEFs,butalsoinducefeedbacksonaregionalscale.Thisisbecausedispersal(demography)andgeneflow(populationgenetics)areintrinsicallylinked.

3.1 | Feedbacks in single populations

Feedbacksovertimecanbeintrinsictothepopulation,whenitoc-cursbetweenpopulationdensityandtraitvalues,orextrinsic,whenitoccursbetweentheavailabilityofresourcesandtraitvalues.Forexample, a quantitative trait subject to density-dependent or fre-quency-dependentselection (eco-to-evo)can influencepopulationgrowth rate (evo-to-eco; Engen, Lande, & Sӕther, 2013; Lande,2007;Travisetal., 2013).Density-or frequency-dependent selec-tionimpliesthatanindividual’sfitnessisnotonlydeterminedbyitstraitvalue,butalsobythepopulationdensityorbytheproportionofcertaingenotypes (Clarke,1972;Travisetal.,2013). Inthecaseofdensity-dependentselection,changingpopulationdensitiesshifttheselectionpressurefavouringdifferentgenotypesbecauseofdif-ferentialcompetitiveability. In turn,changingcompetitiveabilitiescreate varying ecological conditions leading to changes in density(Engenetal.,2013;Lande,2007;MacArthur,1962).

Lively (2012) used a one-locus two-allele genetic system (QGwith two types) to illustrate a feedback betweenpopulation den-sity and allele frequency change assuming density-dependent se-lection (Figure2a). Similarly, Lande (2007) and Engen etal. (2013)usedQGmodelslinkingtheevolutionofaquantitativetraittopop-ulationgrowth,strengthofdensitydependenceandenvironmental

Page 5: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  5Functional EcologyGOVAERT ET Al.

stochasticity.Theseauthorsfoundthatinaconstantenvironment,evolutionwillmaximizemean fitness andmean relative fitness inthepopulationwhichmaychangewhenpopulationsizes fluctuate(Sӕther&Engen,2015).Technically, theevolutionary responseofthe population due to a changing environment in thesemodels isdescribed using the phenotypic selection differential (accountingforindividualsurvivalandfecundity,butnotinheritance)orintermsoftheselectiongradient(Landeetal.,2009;Leon&Charlesworth,1978).

Theassumptionoffrequency-dependentselectionisparticularlyrelevantinthecontextofsexualselectionandmatechoice(Alonzo&Sinervo,2001).Evolutionarygametheorycanbeusedtomodelapopulationconsistingoffemaleandmalemorphswherefemalematepreferencedependsonthetotalpopulationsize(density-dependentselection),butalsoonfemalemorphfrequency(frequency-depen-dentselection;Figure2b).ThisleadstoanEEFbetweenpopulationsizeandmorphfrequenciesviadensity-andfrequency-dependentselection(eco-to-evo)andviafitnessdifferencesinthemorphs(evo-to-eco;reviewedinSmallegange,Rhebergen,VanGorkum,Vink,&Egas, 2018). Very similarmechanisms have been discussed in thecontext of the evolution of cooperation (e.g., Gokhale & Hauert,2016;Lehtonen&Kokko,2012).Forexample,ecologicalconditions,suchasresourcelimitationandvariability,mayselectfortheevolu-tionofcooperation (eco-to-evo),whichcanthenfeedbackonde-mography leadingto increasedpopulationsizes (“supersaturation,”

Fronhofer, Liebig,Mitesser, & Poethke, 2018; Fronhofer, Pasurka,Mitesser,&Poethke,2011).

Finally, a classical EEF over time is often termed evolutionaryrescue(ER,seeBox1;Gomulkiewicz&Holt,1995;Gonzalez,Ronce,Ferriere,&Hochberg,2013;Lynch,1993).Evolutionaryrescuemod-els haveeither used aQGapproach, focusingon thepopulation’scapacitytotrackgraduallychangingoptimaintime(Burger&Lynch,1995;Lande&Shannon,1996)orspace(Pease,Lande,&Bull,1989;Polechová, Barton, & Marion, 2009; Uecker, Otto, & Hermisson,2014) or a singlemutation approach inwhich a population is ex-posed toa suddensevereenvironmental change (Gomulkiewicz&Holt,1995;Orr&Unckless,2014;Uecker,2017).Interestingly,whileERleadstopopulationpersistence,adaptiveevolutionmightalsore-sultinevolutionarytrappingorsuicide(ES,Ferriere,2000;Parvinen&Dieckmann,2013).Inthelatter,traitchangedrasticallydegradespopulation viability leading to extinction (Engen & Sӕther, 2017;Ferrière&Legendre,2012)becauseselectionactingattheindivid-ualleveldoesnotnecessarilyoptimizepopulation-levelproperties.WhethertheresultisERorES,thesemodelsdemonstratethatEEFscanbeofapplied relevance toconservation, forexample. In sum-mary,feedbacksovertimeareusuallymediatedbyintrinsically(den-sity-/frequency-dependentselection)orextrinsically(environment)changingselectionpressures.Theconsequencesofthesefeedbacksmaybepositive (e.g., increaseddensitiesandsurvival)ornegative(ES)atthepopulationlevel.

3.2 | Feedbacks in spatially structured populations

SpatialmodelsallowforEEFsbetweenlocaldemographyormetap-opulationconditionsandanevolvingtrait.Thefeedbackcanbemod-ifiedbyexternalpropertiessuchaspatchdynamics(colonizationandextinctionrates;Hanski&Mononen,2011)or landscapestructure(Fronhofer&Altermatt,2017;Kubisch,Winter,&Fronhofer,2016).Inmodelswithdiscretehabitatpatches,dispersal isacentral traitconnecting local patches and can have important effects on bothecological (Clobert,Baguette,Benton,&Bullock,2012)andevolu-tionary(e.g.,canlimitorfavourlocaladaptation;Lenormand,2002;Nosil, Funk,&Ortitz-Barrientos, 2009; Räsänen&Hendry, 2008)processes.Theevolutionofdispersal likely is themost frequentlystudiedexampleofanEEFinfragmentedlandscapes(Legrandetal.,2017).

In a spatial model without dispersal evolution, GomulkiewiczandHolt(1995)showthatERcanbestronglyhamperedbystochas-ticity, for example, as a consequence of low population sizes (seeGomulkiewicz,Holt,&Barfield,1999;foranotherexampleofspatialER). Interestingly, theprobability of rescue canbe a nonmonotonicfunctionofmigrationrates(Ueckeretal.,2014).Ifdispersalisallowedtoevolve(Ronce,2007),itmaybemodelledasadiscretetraitwithdis-persingandresidentgenotypes(e.g.,Hanski&Mononen,2011),asaquantitativetrait(Hanski,2011),orevenasanevolvingreactionnorm(Poethke &Hovestadt, 2002; Travis &Dytham, 1999; for an over-viewonthegeneticsofdispersalandhowdispersal is incorporatedintomodels,seeSaastamoinenetal.,2018).Forexample,combining

F I G U R E 2  Examplesofstudiesinwhichfeedbacksoccurinasingle-speciesnonspatialsetting.(a)InLandeetal.(2009)andLively(2012)population,densitydeterminestheselectionpressure,resultinginevolutionofsomequantitativetrait(Landeetal.,2009)orshiftsindiscretegenotypefrequencies(Lively,2012).(b)InAlonzoandSinervo(2001)notonlypopulationdensitybutalsothefrequencyofmorphsdeterminematechoice,whichinturndeterminestheoutcomeofmorphfrequenciesinthenextgenerationinfluencingthetraitofmatechoiceagain

PoMorph frequency

Mate choice

Population density

Trait evolutionGenotype frequencies

Density-dependent selection

Competition/defense (trade-o�)

(a)

(b)

Pay-off matrix(rock-paper-siccor)

Density- andfrequency-dependent

Page 6: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

6  |    Functional Ecology GOVAERT ET Al.

stochasticpatchoccupancymodelswithdescriptionofmeanpheno-typicchangesinlocalpopulations,HanskiandMononen(2011)stud-iedanEEFbetweenpatchdynamics(colonizationandextinction)andthefrequencyofadispersergenotype(fordetailsseeFigure3a).

In spatial models, EEFs can link processes at different spatialscales.Forinstance,Poethke,Dytham,andHovestadt(2011)showthat theselective increase inpatchsize, forexample,asaconser-vationmeasure,canselectagainstdispersal(eco-to-evo)whichde-creasesre-colonizationprobabilitiesandcanleadtoES(evo-to-eco).Evolution can also rescue populations from extinction which willdepend on the rate of environmental change and landscape set-tings: ERmay be foundwhen environmental changes are not toofast (Schiffers,Bourne,Lavergne,Thuiller,&Travis,2013),but thecontraryhasalsobeenfound(Boeye,Travis,Stoks,&Bonte,2013).Similarly, in a range expansion context, Burton, Pillips, and Travis(2010)andFronhoferandAltermatt(2015)showedthattheecolog-icalprocessofarangeexpansioncanselectforincreaseddispersalatrangefronts(Travis&Dytham,2002)andmayfeedbackonthedistributionofpopulationdensitiesacrosstherangevialife-historytrade-offs.The importanceof landscape structure forEEFs is laidout inFronhoferandAltermatt (2017) (Figure3b).Taken together,spatialmodelsmayconsider local adaptation toabiotic conditionsasaheritabletraitandfixdispersalormayconsiderdispersalasanevolvingtrait.Altogether,thestudiesshowthatdispersalisanexcel-lentcandidatetolinkecology(demographyfromasinglepopulationormetapopulation)andevolution,makingdispersalcentraltoEEFs.

4  | EEFS INVOLVING T WO SPECIES

Inmulti-speciessystems,EEFscanbemediatedbyintra-andinter-specific densities that affect fitness and trait distributions (Travisetal.,2013).Inthefollowing,weconsiderfourmajorcategoriesoftwo-species interactions: interspecific competition, predator–prey,parasite–hostandmutualisticinteractions.

4.1 | Interspecific competition

Interspecific competition is a reciprocal interaction for a sharedlimiting resource (Dhondt,1989), suchas food. In this interaction,the competing species canevolvedifferent niches inorder to co-exist (Abrams,1986;Brown&Wilson,1956;Taper&Case,1992).Many studies have shown that competition-induced selection canresultinadaptivedivergencethroughecologicalcharacterdisplace-ment (Brown&Wilson,1956;Schluter,2000;Slatkin,1980;Taper&Case, 1992).However, other studies have shown that competi-tion could also lead to functional convergenceof the competitors(Abrams,1990; terHorst,Miller,&Powell,2010). In thesemodels,EEFsmay occur because competing species exert selection pres-sures that result in trait evolution (eco-to-evo) that might alterselection pressures on both species (evo-to-eco; e.g., Vasseur,Amarasekare,Rudolf,&Levine,2011;Figure4a).TheearliermodelsofcharacterdisplacementassumefixedvarianceandoftenassumeGaussianshapesforthespecies’characterdistribution(e.g.,Slatkin,1980).Recently,SasakiandDieckmann(2011)suggestedtheoligo-morphicapproximationasawaytodescribetheQGofanasexuallyreproducingpopulationthatconsistsofmultiplemorphs.SasakiandDieckmann(2011)thenusedthisapproachtogainamoredetailedunderstandingon thedynamicsofevolutionarybranching ina re-sourcecompetitionmodelandshowed,amongotheraspects,howtoobtainthresholdconditionsforevolutionarybranchingandhowmutationsaffecttheseconditions.

Models on interspecific competition include, for example,DieckmannandDoebeli(1999).ThisstudyusedanIBM,inwhichtheevolving trait determines the carrying capacity (competition), andinwhich individualssurviveanddieviadensityandfrequencyde-pendencegivingrisetoafeedbackbetweendensityandtraitevolu-tion,resultinginspeciationviaevolutionarybranching.Theauthorsshowedthatevolutionofassortativematingcanleadtoreproductiveisolation,resultinginincreaseddiversityandthatnonrandommatingisaprerequisiteforevolutionarybranching(seealsoThibert-Plante&Hendry,2009).Inasimilarmodel,Aguilée,Claessen,andLambert(2013)foundthatlandscapestructurehighlyinfluencestheoutcomeofdiversityresultingfromunderlyingdynamicsofcompetitionandassortativemating.ThelatterstudyusedanIBMassumingdensity-dependentresourcecompetitionandstrongercompetitionbetweenindividualswithsimilartraitvalues, inducingfrequency-dependentselectionandconsideredtraitslinkedtoresourceutilizationandtomatechoice.Last,amodelbyterHorstetal.(2010)foundthatevo-lutionary convergence could occur in amulti-speciesmodelwhenless resources thanspecieswerepresentandwhenthe intra-and

F I G U R E 3  Examplesofstudieswithspatialfeedbacks.(a)StudybyHanski(2011)andHanskiandMononen(2011)wherepatchdynamicsdrivenbycolonizationandextinctionmightinfluencedisperserfrequency(Hanski&Mononen,2011)orshiftsmeandispersalrate(Hanski,2011),whichinturninfluencespatchdynamics.(b)StudybyFronhoferandAltermatt(2017)inwhichlandscapetopologyinfluencesdispersalevolution,whichinturninfluencescolonizationprobabilitiesandmetapopulationdynamics(occupancy,turnover,geneticstructure,globalextinctionrisk)

(a)

(b)

Page 7: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  7Functional EcologyGOVAERT ET Al.

interspecific competition coefficients were equal. In this model,the rate of competitive exclusion slows down as species becomemoresimilartooneanother(evo-to-eco),givingspeciesmoretimetoevolve(eco-to-evo).Insummary,prominentexamplesofEEFsintwo-speciescompetitivesystems focusoncharacterdisplacementandpotentiallyspeciation.WhileanalyticalmodelsusingODEandtheADframeworkarewellestablished(seee.g.,Kisdi,1999),studiesontwo-speciesinteractionsoftenmakeuseofIBMscombinedwithGAtoincludearelativelyhighlevelofbiologicalcomplexity.

4.2 | Predator–prey interactions

In a predator–prey interaction, one species acts as a preda-tor feeding on the other species serving as prey. EEFs in

predator–preysystemsimplythatpredatordensitiesmayinducetraitevolution,forexample,inpreydefence(eco-to-evo)result-ing inconsequentshifts inpreyandpredatordensities (evo-to-eco;Figure4b).Manystudieshavefoundthatrapidevolutioninpreydefenceduetoshiftingpredatorabundancesresultsinan-tiphasecyclesratherthan1/4-lagcyclespredictedbynon-evo-lutionarymodels(Becksetal.,2010;Yoshidaetal.,2003,2007).Additionally,feedbackscanstabilizeordestabilizepredator–preydynamics depending on genetic variation and trade-off shapes(Abrams,2000;Abrams&Matsuda,1997;Cortez,2016;Cortez&Ellner,2010).

Predator–prey dynamics have been extensively studied usingmodelsoftraitevolutionoftheprey(e.g.Abrams&Matsuda,1997;Cortez,2016;McPeek,2017),thepredator(Cortez&Ellner,2010),or both (e.g. Cortez &Weitz, 2014; van Velzen & Gaedke, 2017;Figure4b). Inall three instances,EEFsweremodelledusingeitherseparate equations for the ecological and evolutionary dynamics(e.g. Abrams &Matsuda, 1997) or QG recursion equations or anapproximationofthose (vanVelzen&Gaedke,2017),usinganADapproach(Marrow,Dieckmann,&Law,1996)orbyusingmulticlonalLV equations (which are identical to “ecological selection”modelsCortez&Weitz,2014;Ellner&Becks,2011;Haafke,AbouChakra,&Becks,2016;Jones&Ellner,2007;Yamamichi,Yoshida,&Sasaki,2011).Includinglife-historytrade-offsbetweendefenceandfecun-ditymayleadtorecurrentEEFs(Huang,Traulsen,Werner,Hiltunen,&Becks,2017;Meyer,Ellner,Hairston,Jones,&Yoshida,2006).

Phenotypicplasticityhasbeenfoundtoplayanimportantrolein predator–prey EEFs and has been incorporated for exampleby Yamamichi etal. (2011),who found that plasticity in prey de-fencepromotesstablepopulationdynamicsmorethanrapidevo-lutionary responses, although plasticitywas not advantageous in

F I G U R E 4  Examplesofstudiesinwhichfeedbacksoccurintwo-speciessettings.(a)StudybyVasseuretal.(2011)inwhichthecompetitioncoefficientsdeterminingthestrengthofintra-andinterspecificcompetitionaremodelledinfunctionofanevolvabletrait(growthordefencetrait)underdensity-andfrequency-dependentcompetition.(b)GeneralfigureonpossibleEEFsinpredator–preydynamics(detailedinCortez&Weitz,2014).Generally,atrade-offbetweengrowthandpredatordefenceisassumedinthepreypopulation,andatrade-offbetweenmortalityandoffenceisassumedinthepredatorpopulation.Densityofthepredatorandpreycanbothinfluencetraitevolutioninthepredatorandpreypopulation,whichduetothepreviouslydescribedtrade-off,determinespredatorandpreydensity.(c)Generalfigureonpossiblefeedbacksinhost–parasitedynamics(seeLuo&Koelle,2013).Inamodelofvirulenceevolution,densityofsusceptiblehostsdeterminesthedegreeofvirulencewhichfeedsbacktochangethedensityofsusceptiblehosts(stripedarrow).Inamodelonhostresistance,densityoftheinfectedhostsdeterminestheevolutionofhostresistance(dashedarrow),whichinturndeterminesthedensityofbothsusceptibleandinfectedhosts.(d)Generalrepresentationofpossiblefeedbacksinmutualisticinteractions.Changesintheecologicalinteractionsbetweenspeciesdeterminetheevolutionofamutualistictrait,which,inturn,canchangetheecologicalinteractionsbetweenspecies

Density- and frequency-dependent

Density- and frequency-dependent birth and death rates

(a)Densityspecies 1

Trait

Density species 2

coefficients

Densitypredator

Predator trait

Density prey

Prey trait

(b)

(c)

hosts

VirulenceHost resistance

Growth/defensetrade-off

Survival/offensetrade-off

Density infected hosts

(d)

Densityspecies 1

Density species 2

Page 8: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

8  |    Functional Ecology GOVAERT ET Al.

stableenvironments.Theevolutionofplasticityhasbeenstudiedby Fischer etal. (2014), who extended an LVmodel allowing forvariationinplasticityamongmultiplegenotypesofprey.Theinclu-sion of such variation inmodels improved their ability to explainpredator–prey dynamics.Overall, predator—prey EEFs are a clas-sicalexampleof feedbacks involvingphaseshiftsand impactsonstability.TheseeffectsareclassicallymodelledwithODEs.Recentwork highlights the importance of incorporating both effects ofgenetic diversity and phenotypic plasticity to explain communitydynamics(Kovach-Orr&Fussmann,2013;Yamamichietal.,2011).

4.3 | Host–parasite interactions

In a host–parasite interaction, one of the species lives at the ex-penseoftheotherspecies.Similartopredators,parasitescan im-posestrongselectionpressuresontheirhosts,forexampleresultingin theevolutionofdefences that can in turn impose selectiononparasite traits. This process can lead to complex co-evolutionarydynamics inspatialandnonspatialsettings.Host–parasite interac-tions areoften characterizedbyoverlapping time scalesbetweenepidemiologicalandevolutionaryprocessesowingtotherapidevo-lution of those systems. Yet, evenwhen evolution is slower thanthespreadofdisease,selectioninhost–parasitesystemsischarac-terizedbystrongdensity-dependentfeedbacks,wherechanges indensitiesaffectselectionpressuresontransmission,virulenceandotherparasitetraits(eco-to-evo),andtheresultingtraitchangesinturnaltertheecologicaldynamics(evo-to-eco;Luo&Koelle,2013;Figure4c).

The studyofvirulenceevolution inparasites andpathogens isakeytopicinthetheoreticalliteratureinvolvingEEFs.TheseminalworkofAndersonandMay(1982)showedthatpathogenevolutionis shaped by the epidemiological dynamics of infectious diseasesthrough the density of susceptible hosts. Since then, a large lit-eraturehasbeendevoted tounderstanding theeffectofEEFsontheevolutionofparasitevirulenceandhost resistance (e.g.Boots& Haraguchi, 1999; Dieckmann,Metz, Sabelis, & Sigmund, 2002;Frickel, Sieber, &Becks, 2016; Lenski&May, 1994; Lion&Metz,2018; Van Baalen, 1998).Mostmodels of host–parasite EEFs useclassicalepidemiologicalmodels(compartmentmodelsthatincludesusceptible,infectedandpotentiallyrecoveredindividuals;SIRmod-els)todescribethechangesindensityorfrequencyofsusceptibleandinfectedhosts.TheseepidemiologicalmodelsarethencoupledwithAD (Dieckmannetal.,2002;Lion&Metz,2018)orQG (e.g.,Day&Gandon,2007;Day&Proulx,2004)approaches.

InthewakeofAndersonandMay(1982)’sseminalwork,manystudieshavefocusedontheevolutionofpathogentraits,undertheassumptionthathostevolutionismuchslowerandcanbeneglected.ThishasledtoagoodunderstandingofhowEEFsaffectpathogenevolution.Akey insight is that,even if thehost isassumednot toevolve,thetimescalesbetweenecologyandevolutionmayeitherbedecoupled[e.g.,thepathogenevolveswhilethepopulationisatanendemicequilibrium,seee.g.,Dieckmannetal.(2002);LionandMetz(2018)forareviewofADapproaches]oroverlap(e.g.,when

thepathogenevolvesduringanepidemic,seee.g.,Day&Gandon,2007;Day&Proulx,2004foraQGformalism).Whatgovernsthedifferenceintimescalesbetweenepidemiologyandpathogenevo-lutionwillthenbetheamountofstandinggeneticvariationorthemutationrate.

More generally, coevolution between hosts and parasiteswith overlapping generation times has been studied (Best etal.,2010;Eizaguirre,Lenz,Traulsen,&Milinski,2009;Nuismer,Otto,&Blanquart,2008),inparticularinthelocaladaptationliterature(Nuismeretal.,2008),butoftenundertherestrictiveassumptionoffixeddemography,whichsetsstronglimitstothetypesofEEFsthat are possible. In contrast, other studies of coevolution havedemonstratedhowthedimensionoftheenvironmentplaysacrit-icalroleingoverningevolutionarybranchinganddiversificationinboththehostandthepathogen(Bestetal.,2010).However, thestudy of EEFs in co-evolutionary host—parasite system remainsunderdeveloped.Interestingly,thosesystemsappeartobepartic-ularly amenable to experiments and should allow researchers tofurther tease apart theunderlyingeffectsofEEFs.For example,Brunneretal.(2017)demonstratedthatthesolepresenceofafishparasite inanexperimentalecosystemalterstheabioticenviron-mentofthehostintermsofnutrientcontentordissolvedoxygen.Thesealteredenvironmentswereshowntoimposeselectiononasubsequentgenerationofhosts,henceevidencingthatmacropar-asitescanmediateeco-evolutionaryfeedbacksbetweenfishandtheirenvironment.

Host–parasite interactions have also played a crucial roletowardsunderstandingspatialEEFs (e.g.,Boots&Sasaki,1999;Boots, Hudson, & Sasaki, 2004; reviewed in Lion & Gandon,2015). These studies have often modelled space as a regularnetworkofsites, inwhicheachsite iseitheremptyorcontainsa single host individual, which can be either susceptible or in-fected.Suchmodelscaneasilybeanalysedusing IBMs,butan-alytical insight is alsopossible to someextent, usingeitherADorQG(Lion&Gandon,2016).Duetotheinherentcomplexityofspatial models, however, we only have a partial understandingofhowthe feedbackbetweenspatialepidemiologicaldynamicsandtheevolutionofhostandparasitetraitsunfoldsinmorere-alistic host—parasite interactions (but see Nuismer, Thompson,& Gomulkiewicz, 2000, 2003). In summary, the host—parasiteliteraturehasa longtraditionofstudyingEEFs.Methodologicalapproaches differ depending on the level of complexity, fromsimpleODEstoIBMs.

4.4 | Mutualistic interactions

Amutualisticinteractionimpliesthattheinteractionisbeneficialforbothpartnersinvolved(e.g.,plant–pollinatororhost–symbiontinter-action).EEFsinthecontextofmutualismsareexpectedtostronglyimpacttheco-evolutionaryprocessbetweenmutualistsandexploit-ers(eco-to-evo)whichinturnshapestheecologicaldynamicsofthesystem (evo-to-eco; Figure4d; Doebeli & Knowlton, 1998; Jones,Ferriere,&Bronstein,2009).

Page 9: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  9Functional EcologyGOVAERT ET Al.

Eco-evolutionaryfeedbackswerefoundtoplayan importantroleindeterminingphenotypicandpopulationoutcomesinanADmodelonthecoevolutionofmutualistsandexploiterswhenlong-termcoexistenceofthespecieswaspossible(Jonesetal.,2009).In themodel by Jones etal. (2009), birth rates of themutualistandexploiterwereassumedtoevolveanddetermine thenatureof the mutualistic interaction. Ferrière, Bronstein, Rinaldi, Law,andGauduchon (2002) constructed amathematicalmodel com-biningsimpleLotka–Volterraequationsdescribing theecologicalmutualisticinteractionsbetweenthetwospecies,withdifferentialequationsdescribing theevolutionarydynamicsof themutualis-tictraits.Theseevolutionarydynamicsfollowthefitnessgradientshapedbytheunderlyingecologicaldynamics(eco-to-evo),whichinturndeterminethebenefitofthemutualistic interaction(evo-to-eco;Figure4d).

Fewerstudieshaveinvestigatedtheeffectofspatialheterogene-ityonmutualisticinteractions,butthosethathaveshowthatspatialheterogeneitycanleadtolong-termpersistenceofmutualism(e.g.,Doebeli&Knowlton,1998).Overall,mutualistic interactions inaneco-evolutionarycontexthavebeen studied less compared to theotherthreespeciesinteractiontypesdiscussedearlier.Nevertheless,studieshave shown thatEEFsmayplay an important role for thistypeofinteraction.

5  | EEFS IN A COMMUNIT Y AND ECOSYSTEM CONTE X T

The increasing interest in more complex ecological settings hasresultedinarapidgrowthofmodelsfocusingoncommunitiesandecosystemsthatcouldsimultaneouslyincorporateevolutionarydy-namics(Brännströmetal.,2012).Suchmodelsextendpreviousworkto include niche construction, plant–soil feedbacks, multi-speciescommunitiesandfoodwebs.

5.1 | Feedbacks between organisms and abiotic environments

Eco-evolutionary feedbacks with the environment have beenstudied in the context of niche construction (Kylafis & Loreau,2011; Lehmann, 2008; Odling-Smee, Odling-Smee, Laland,Feldman,&Feldman,2003),asinplant–soilfeedbacks,forexam-ple (Schweitzer etal., 2014;Wareetal., 2018;Figure5a).Gametheoryhasbeenusedtoinvestigateselectiononnicheconstruct-ingphenotypes(Lehmann,2008)wherethefeedbackariseswhenindividualsaffecttheirenvironmentbyreproducing(evo-to-eco),hencealteringtheselectionpressureonthepopulation (eco-to-evo). In plant–soil systems, plantsmight adaptively regulate soilfertility, resulting in positive, self-sustaining nutrient feedbacksthat influenceevolution.Forexample, increasingthedirectben-efitofsoilnutrientconditioningtoplantshasbeenpredictedtoincrease selection for higher values of soil conditioning traits(Kylafis & Loreau, 2008). Implicit in this model is a genetically

based plant trait that links plants with their soils. Subsequentmodelshave shown that thesegeneticallybasedplant–soil linkscan result in EEFs depending on thematchwith the soil gradi-entandthegeneticvariationpresentintheenvironment—alteringplanttrait(Schweitzeretal.,2014).

F I G U R E 5  Examplesofstudiesinwhichfeedbacksoccurbetweenabioticandbioticcomponentsorinamulti-speciessetting.(a)GeneralfigureofEEFsinnicheconstruction(Kylafis&Loreau,2011;Lehmann,2008)andplant–soilfeedbacks(Schweitzeretal.,2014).Innicheconstruction,theabioticenvironmentdeterminestheevolutionofatraitthatmodifiesthisabioticenvironment.Similarly,inaplant–soilsystem,aplanttraitcanmodifythesoil,whichdrivesevolutionofplanttraits.(b)StudybyMartínetal.(2016)inwhichtraitvaluesandspatiallocationsofspeciesdeterminecompetition,changinglocalselectionpressures,resultinginshiftinglocalandglobaltraitdistributionsandcommunitydiversity.(c)StudybyItoandIkegami(2006),inwhicheachspecieshasaseparatepreyandpredatorstrategywhichresultsinclustersoftrophicspeciesarisingfromchanginginteractionsbetweenspecies,whichinturncontinuouslychangetheposition,shapeandsizeofoccupiedareasinphenotypicspaceandchangetrophicinteractionsresultinginfurtherphenotypicevolutionandeventuallyevolutionarybranchingandtheemergenceoffoodwebstructure

(b)Community diversity

Trait species i

Physicain space

Environ(a)

Soil (community) property

Plant trait

(c)

Prey, predator strategy

Evo branching

Food web structure

Page 10: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

10  |    Functional Ecology GOVAERT ET Al.

In plant–soil systems, evolutionary change in plant traits caninfluence ecological dynamics of soilmicrobes (evo-to-eco)whichinturncanchangeselectionpressuresonplanttraits (eco-to-evo).ThiscanbeinvestigatedusingIBMs(Schweitzeretal.,2014)orbyusinganextendedversionofclassicalresourcecompetitionmodels(Eppinga,Kaproth,Collins,&Molofsky,2011).Inthisspecificmodel,thedecompositionoflitterreleasesnutrientsthatcanbetakenupby the plants influencing competitive ability of the plant (eco-to-evo),resultingindifferentplantgenotypesthatmightgrowbetter.Thechangeinthegeneticcompositionoftheplantpopulationcaninturninfluencethelitterpool(evo-to-eco).

In analogy to negative niche construction (Odling-Smee etal.,2003), the spatial structureof localnegative feedbackscan resultinchangesinlocaldiversity(e.g.,Loeuille&Leibold,2014).Theen-vironmentbecomeslesssuitableforthespeciesoccupyingit(evo-to-eco),whichinducesachangeinselectionpressureonthespeciesto evolve towards amorematching trait–environment value (eco-to-evo).Overall,plant–soilinteractionsaregoodexamplesofnicheconstructionwherebyEEFscanbothbemodelledandobservedinnature.Themethodsemployedrangefromformalmathematicalap-proachestoIBMs.

5.2 | Feedbacks within communities

Theoretical studies on EEFs in multi-species communities can in-crease our understanding of biodiversity (Patel etal., 2018). Eco-evolutionary analyses have led to new insights into coexistencetheory, themaintenance of diversity, aswell as the structure andstability of communities (Kremer & Klausmeier, 2017; Patel etal.,2018). Moreover, studies have found that evolution might main-tain (Martín,Hidalgo,deCasas,&Muñoz,2016), increase (e.g. viaspeciation or ER Dieckmann & Doebeli, 1999; Gomulkiewicz &Holt, 1995; Rosenzweig, 1978) or decrease (Gyllenberg, Parvinen,&Dieckmann,2002;Kremer&Klausmeier,2013;Norberg,Urban,Vellend,Klausmeier,&Loeuille,2012)phenotypic,speciesandfunc-tionaldiversity.

Forexample,Martínetal. (2016) show thatEEFscanmaintainphenotypicdiversity.Theauthorscombineniche-basedapproacheswithneutraltheoryinaspatiallystructuredIBMwhereeachindivid-ualhasalocationinspaceandisconstrainedbyaspecifictrade-offbetweenresourceexploitationandcompetition.Similarindividualsexperience higher competition resulting in frequency-dependentselection.Competitiononly takesplacebetweenneighbouring in-dividuals,changing localselectionpressures,whichresults in localevolutionary shifts in phenotypic traits (eco-to-evo) that shift theglobal phenotypic trait distribution and influence species differ-entiation and thus community diversity (evo-to-eco; Figure5b).Bycontrast,Norbergetal. (2012)foundthattheeco-evolutionaryprocessesinducedbyclimatechangecontinuedtogeneratespeciesextinctions longafter the climatehad stabilizedand thus resultedinfurtherdiversityloss.Theseauthorsusedaspatiallyexpliciteco-evolutionarymodelbasedonpartialdifferentialequationstopredictspecies responses to climate change in amulti-species context in

whichtheyallowedgeneticvariationanddispersal to jointly influ-enceecological (competitionandspeciessorting)andevolutionary(adaptation)processes.Thefindingsofbothstudiesdiscussedabovecaneasilybeunderstoodinthelightofmoderncoexistencetheory(reviewedinChesson,2000)astheyrelatetostabilizing(concentrat-ing intraspecific interaction by dispersal limitation) and equalizingmechanisms(sorting).Insummary,EEFsincommunitiesemerge,be-causespecies’traitsmayaffectthecommunityand,viceversa,thecommunitycontextmayaffecttraitevolution(terHorstetal.,2018).Interestingly,fitnessmaynotonlydependondensities,butalsoontotalcommunitybiomass,totalproductivityorevenonspeciesrich-ness.Consequencesofevolutionary changecanbeunderstood inthelightofmoderncoexistencetheory.

5.3 | Feedbacks in food webs

Evolutionarydynamicshavebeensuggestedtodeterminefoodwebstructure(Rossberg,Matsuda,Amemiya,&Itoh,2006).Hence,therehasbeenanupsurgeinstudiesincludingevolutionarydynamicsintofoodwebmodels, by allowing a recurrent addition of new speciesormorphsintothefoodweb,basedonthetheoryofself-organizedcriticality (Allhoff&Drossel, 2013; Bak, Tang,&Wiesenfeld, 1987;Bolchoun,Drossel,&Allhoff,2017;Caldarelli,Higgs,&McKane,1998;Drossel,Higgs,&McKane,2001;Rossbergetal.,2006).Theseevolu-tionaryfoodwebmodelsoftendependonatraitthatshapesthebioticinteractionswhichdeterminethefoodwebstructure.Foodwebstruc-tureselectsthespeciesthatremaininthesystem(eco-to-evo),whichinturnaltersthephenotypictraitdistributioninthesystemonwhichmutationscanoccurtocreatenewspeciesormorphs.Theadditionofanewspeciesormorphchangesthepresentspeciesinteractions(evo-to-eco),hencechangingthefoodwebstructure(Bolchounetal.,2017).Thisinterplaybetweenpopulationdynamicsandmorphevolu-tiondeterminestheEEFandshapesthestructureof thefoodweb.SimilartotheADframework,itisassumedthatecologicaldynamicsoccurfastandreach(quasi)equilibrium,whileevolutionarydynamicsoccuronamuchslowertimescale(Allhoff&Drossel,2013;Guill&Drossel, 2008). Studies including both ecological and evolutionaryprocessesinfoodwebmodelsshowthatthiscanleadtonewinsightsintofoodwebdynamicsasopposedtomodelsthatonlyincludefixedecologicaldynamics(Bolchounetal.,2017).

Moststudiesonfoodwebmodelsfocusonspeciation–extinc-tiondynamicswithspeciesbeingtheunitofthemodel,whilefewerstudies have investigated how the evolution of traits results infoodwebformation(Ito&Ikegami,2006;Takahashi,Brännström,Mazzucco,Yamauchi,&Dieckmann,2013).Both Itoand Ikegami(2006)andTakahashietal. (2013)havemodelledthebuildupofafoodwebthroughevolutionarydynamicsbyattributingtoeachindividual or phenotype a prey and predator trait (resource orvulnerability, respectively,utilizationorforaging). Individualsareassumedtoreproduceasexually,andoffspringmaydifferslightlybecauseofsmallrandommutations.ItoandIkegami(2006)showthatisolatedphenotypicclustersofspeciesandtheemergenceofhigher trophic levelsariseduetochanging interactionsbetween

Page 11: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  11Functional EcologyGOVAERT ET Al.

species(eco-to-evo),whichinturncontinuouslychangestheposi-tion,shapeandsizeofoccupiedareasinphenotypicspace.Thesechanges,inturn,altertrophicinteractions(evo-to-eco)resultinginfurtherphenotypicevolutionandeventuallyevolutionarybranch-ing (Figure5c).Takahashietal. (2013)usedan IBMtoshowthatinitial phenotypic divergence in the foraging trait relaxes inter-ferencecompetition(eco-to-evo),whichresultsintheemergenceofspeciesclusters.Theresultingchanges inspecies interactions(trophic levels; evo-to-eco)mediate further divergence in forag-ing traits and predator vulnerability (eco-to-evo). A study by deAndreazzi,Guimarães,andMelián(2018)explicitlyevaluatedtheeffects of network structure on eco-evolutionary dynamics forlong-term ecological network stability, by using different antag-onisticspeciesnetworks in theirsimulations.Populationdynam-icsweremodelledtodependonthephenotypictrait,whilemeantraitevolutiondependedontheenvironmentandtheantagonisticspecies interactions. The authors showed that EEFs resulted inspecific patternsof specializationwhich led to increases in spe-ciesmeanabundancesand todecreases in temporalvariation inabundances.

The effects of spatial dynamics on foodweb structure havealso been studied. For example, Loeuille and Leibold (2008),combined a simple foodweb structure (specialist and generalistherbivorespeciesfeedingontwoplantswhichinturnfeedonnu-trientresources),witha12-patchmetacommunitytoevaluatetheinteractionsbetweenevolutionaryadaptationandcommunityas-semblydynamicsasafunctionofdispersal.Thetwoplantspecieshadquantitativeandqualitativedefencetraitsthatwereheritable,uponoccurrenceofsmallmutationsbetweeneachtimesteps.Theauthors found that theoccurrenceofdispersalbetweenpatchesledtotheevolutionofdistinctmorphsoftheplantspecies(eco-to-evo),whichinfluencedthetrophicandfoodwebstructureinlocalpatches(evo-to-eco).

Overall,whileevolutionaryfoodwebmodelshaveallelementspresent forEEFstooccur,anexplicitanalysisof thesefeedbacksremains rare.This isprobablydue to themainassumptionof theseparationoftimescalesofecologyandevolution,withmutationbeingconsideredequivalenttospeciation(Takahashietal.,2013),and traits remaining constantwithin species. Exceptions exist ofcourse,suchasthefoodwebmodelusedbyLoeuilleandLeibold(2008). However, especially meta-food web models are scarce(Urbanetal., 2008). Evolutionary foodwebmodelshavepromis-ing features thatmay result inabetterunderstandingofEEFs inmore complex (natural) scenarios and likely representoneof thecurrent major challenges in eco-evolutionary modelling (Meliánetal.,2018).

6  | SYNTHESIS AND CONCLUSIONS

Throughoutthisoverview,wefoundthatEEFshavebeenincorpo-ratedintotheoreticalmodelsacrossawiderangeofdifferentlevelsof biological organization. The relevanceof theEEFmaynotonly

dependonthebiologicalsystem,butalsoonthespecifictraitsused:Differenteffectsmaybefounddependingonwhetherthetraitisin-fluencedbytheecologicalpropertyornot(e.g.,density-dependentversusdensity-independenttraits).Notsurprisingly,includingEEFsintheoreticalmodelssignificantlychangesourviewofwell-knownpatternsemergingfrompureecologicalorpureevolutionarymodels(e.g.,Dieckmann&Metz,2006;Poethkeetal.,2011).Morespecifi-cally,wehaveidentifiedmodelsthatincludeEEFs,whoseunderly-ingformalismsfallintoafewcategories(Figure1b).Inprinciple,anymodellingframeworkthatcouplesecologicaldynamics (e.g.,ODEsandIBMs)withanevolutionarymodel(e.g.,QG,ADorGA)canbeuseful for studying feedbacks. Studiesmodelling intertwinedeco-logicalandevolutionarydynamicsmostoftendifferintheirassump-tionofthetimescaleatwhichecologicalandevolutionaryprocessesoccur.Studiesassumingcontemporaryecologicalandevolutionarydynamicsoften coupleODEswithQGoruse IBMs,while studiesassumingevolutiontooccurwhenecologicaldynamicsareatequi-librium couple demographic models with AD to make analogousassumptions.

6.1 | Conclusions to date

BasedonournonexhaustiveoverviewoftheoreticalworkonEEFs,afewgeneralconclusionsemerge:First,EEFmodelsexplicitlyincludeecologicaldynamics in theanalysesofevolutionaryprocessesandviceversa.Density-dependentselectionandfrequency-dependentselection are often key ingredients for EEFs. Inmany cases, den-sitydependency and frequencydependency, aswell as ecologicalstochasticity, are not a priori assumptions, but emerge from eco-logicalsettingsandtraitcorrelations,forexample.Second,EEFsarenotnewtoevolutionaryecologytheory—theyaredeeplyrootedinthetheoryofmanysubdisciplines.Forinstance,thepredator–preyandhost–parasite literature, speciation literatureandevolutionarybranching, character displacement, andmetapopulationmodellingornicheconstructiontheorynaturallyincorporateEEFs.Strikingly,while the fieldof (meta)communityecology is rathernew (Leiboldetal.,2004),EEFsseemtohavebeenincludedin(meta)communityecologyvery rapidly, culminating in the recognition that thebasicdriversofevolutionandcommunityecologyareanalogous(Vellend,2010). Third, in a spatial setting, dispersal is a primary candidateforsuccessfuleco-evolutionary linkages,becausedispersal isbothan ecological process impacting densities and, at the same time,mediatesevolutionviageneflow. Inaddition, it is itselfsubject toevolution (Ronce, 2007). Movement can be similarly important(Hillaert,Vandegehuchte,Hovestadt,&Bonte,2018).Fourth,EEFsdonotnecessarilyrequirerapidorcontemporaryevolution(Post&Palkovacs,2009).Ofcourse,contemporaryevolutionhassparkedalotof interest inEEFs (Hendry,2017),butfeedbacksarealsopos-sibleoverlongertimescales(e.g.,asshowninADmodels).Fifth,ourshort overview of the eco-evolutionary modelling toolbox clearlyhighlightsthatthemaincharacterofaneco-evolutionarymodel isthecombinationofdemographicandevolutionarymodels, regard-lessoftheconcreteformalism.

Page 12: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

12  |    Functional Ecology GOVAERT ET Al.

Becausedifferentformalismsoriginatefromdifferentfields,theyoftenrelyondifferingassumptions.Forinstance,thetimescalesonwhichprocessesoccurandthesourcesofgeneticvariationareim-portantconsiderationsofthedifferentmodellingformalisms(Lande,2007;Sӕther&Engen,2015).Thishasmadesomeformalismsmorefocussedonanalysingevolutionaryendpointandlong-termdynam-ics (AD),while others have focused on short-term dynamics fromonegenerationtothenext(QG).However,inbothformalisms,incor-poratingEEFsisfeasible.Theseparationoftimescalesalsomeansthattheformofthefeedbackmaychangewhenwemovefromonedynamicalregimetotheother,whichhasbeenwellstudiedinhost–parasitemodels(Day&Gandon,2007;Gandon&Day,2009;Lenski&May,1994;Lion,2018).However,most interestprobably lies inpredicting themid-termdynamics of anEEF system.To approachthisproperly,animportantissueforfuturetheoreticalworkwillbetodevelopmechanisticmodelsforthedynamicsofphenotypicandgenotypic variation in populations evolving at this mid-term timescaleof tens tohundredsofgenerations (seeFigure6 foran indi-vidual-basedperspective). Thiswould reveal for instancewhetherEEFs are time-dependent andhow common they are expected tobe.However,tocouplethesemodelstonaturalsystems,oneneedstomeasureheritabilityandgenetic(co)variancesoftraitswhichcanbechallenging.

Our review also underlines the pervasive nature of EEFs. Itseemsatbestdifficulttodesignamodelthatincludesecologyandevolutionwithout anEEF (see alsoHendry, 2017; chapter 1 for adiscussion).However,itispossiblethatsometraitshavelittleeffecton the ecological dynamics, or that some ecological variableswillhavelittleeffectontheevolutionarydynamics.Forinstance,inadis-crete-timemodel,ifabsolutefitnessisproportionaltoafunctionofdensity,sayWi(t)=bi f(Nt),thenrelativefitnesswillnotdependonNt,sowecansaythatEEFsdonotmatterforevolutioninthisspecificcase.Inmodelswhereanoptimizationprincipleholds(sensuMetz,Mylius,&Diekmann,2008),wealsohaveverysimpleecologicalandevolutionary dynamics: The focal trait average steadily increases

andresourcedensitydecreasesuntilamaximum(resp.minimum)isreached.SuchsimplisticEEFshavebeentermedfrequencyindepen-denceinthebroadsensebyMetzandGeritz(2016).Overall,recentmodelshavebecomemoreelaborate.However,increasedcomplex-ityandrealismoftentradesoffwithtractability.Asaconsequence,thesestudiesmustprovideadditionalteststhateitherinvolvemod-elswherethepresumedfeedbackisabsentorprovideasimplifiedanalyticalmodel(e.g.,Branco,Egas,Elser,&Huisman,2018;Kubischetal.,2016,forexamplesinvolvingIBMs).

6.2 | The way forward

Thechallengetodayconsistsinpursuingnew,moreintegrativeandmechanisticmodellingavenueswhichhavethepotentialtoincludedifferent aspects of realism, such as genotype–phenotype map-ping,plasticityaswellaspopulationandspatialstructure(Figure6)andpredictsmid-termdynamicsofEEFsasoutlinedabove.Currenttheory has greatly increasedour understanding of EEFs (McPeek,2017), but these feedbacks have been primarily explored withinhierarchical levels of ecosystem organization, be they spatial ortemporalhierarchies,andhaveoften involvedonlysingleorafewindependentlyevolvingtraits.Whilethepresenceofahierarchicalorganizationofecosystemsiswellestablished(Meliánetal.,2018),itisanongoingchallengetoidentifytherelevanthierarchicallevelsandtheirinterdependenciestounderstandEEFs.

Currently,theleadinggraphicalmodeladoptsanimplicithierar-chywithfeedbacksbetweenlevelsfromgenes,totraits,topopula-tions, to communities and toecosystemprocesses (Hendry,2017;see also Figure1a for a simplification).Making such a conceptualmodelmoremechanistic requires understanding how interactionsat one scale (gene regulatory networks or complex traits) affectprocessesatdifferentscales(trait-dependentspeciesinteractions).OnesuchmodellingattemptbyMeliánetal.(2018)linksecologicalandevolutionarynetworksinameta-ecosystemmodel,takingintoaccountdemography, traitevolution,geneflowandtheecological

F I G U R E 6  MechanisticunderpinningsofEEFs.Ecologicaldynamics(left)aredrivenbyindividual-levelproperties(birth,death,dispersal).Interactionsbetweenindividualsofthesameordifferentspecies(bioticinteractions)impacttheseproperties,whichmayleadtodensitydependence,forexample.Individualsinteractwiththeabioticenvironmentandviceversa.Importantly,theseecologicalsettingswillimpactselection,driftandmigration(eco-to-evo).Evolutionisgovernedbytheinteractionbetweentheseprocesses,geneticconstraintsandmutations.Theresultingphenotypeissubsequentlydeterminedbythegenotype–phenotypemap.Ultimately,thephenotypewillimpactecology(evo-to-eco)bychangingbirths,death,dispersalandtheabioticenvironment.Plasticity(dashedlines)maymodulatethephenotypeand,hence,thedualeffectsoftheorganismonbioticandabioticenvironments

Genetic changeand map to phenotype

Abiotic environment

Selection, drift,

gene flow

Phenotype

Mutation

Birth, death, dispersal

Bioticinteractions

Plasticity

otypeotypeIndividual i

Page 13: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  13Functional EcologyGOVAERT ET Al.

dynamicsofnaturalselection.Suchprocess-basedmodelscanyieldnewinsightsintothemechanisticbasisofEEFsinmorecomplexnat-uralscenarios.Someofthemost importantprocessesaresumma-rizedinFigure6whichexpandstheconceptualmodelpresentedinFigure1atoamoremechanisticlevel.Withthisrepresentation,wepropose that feedbacksarebestconceptualizedasemerging fromindividual-levelinteractions(seealsoRueffler,Egas,&Metz,2006),withdispersalandinteractionswiththeabioticenvironmentleadingtotheemergenceoftherelevanthierarchicalcomplexity.

Besides theoretical advances, connecting theory to controlledlaboratoryor field experimentsmore tightlywill allow for the ex-perimentalassessmentoftheoreticalpredictionsaboutfeedbacks.For example, using rotifer–algae chemostats, Yoshida etal. (2003)experimentally tested predictions of a theoretical predator–preymodel thatallowed forpreyevolution.Thisexperimentconfirmedtheantiphaseoscillationspredictedfromtheorywhenpreyevolvesdefencestrategies.Whilesuchprominentexamplesoftheintegra-tionoftheoryandempiricaldataonEEFsexist (seeamongothersalso, Becks etal., 2012; Bonte&Bafort, 2018;DeMeester etal.,2018;Fischeretal.,2014;Fronhofer&Altermatt,2015;Huangetal.,2017; Litchman, Klausmeier, & Yoshiyama, 2009; Metcalf etal.,2008;Thomas,Kremer,Klausmeier,&Litchman,2012;VanNuland,Ware,Bailey,&Schweitzer,2018)breadthof the theoreticalworkhighlightedhere,thecouplingofempiricaldatafromnaturalandex-perimentalsettings,withtheoreticalmodels,needstobedeepened.Thisgapbetween theoryandempiricalworkmay, inpart,beduetodifferencesintechnicaljargonthatimpedeeffectivecommunica-tionbetweentheoreticiansandempiricistsaswellasmodellingspe-cializationsamongtheoreticianswhichimpedesynthesisoratleastslowdown progress. Isolation among subdisciplines and methodsleadstoconfusion,reducedinferenceandwillnotadvancethefield.Inthelattercase,effortssuchasthoseofQueller(2017)andLion(2018)atunifyingtheoreticalfieldsareurgentlyneeded.ToadvancetheoryonEEFs,weheresuggestthattakingamechanisticapproachfocusedon individual-level traits (Rueffleretal.,2006)asoutlinedin Figure6 can be productive for developing novel and synthetictheory.Keyingredientstosuchanindividual-levelapproacharethedescriptionoffocalorganismsintermsofindividualproperties(age,ecologically important traits, life-history parameters) and linkingthesetodemographicprocesses(seealsoTravisetal.,2014).Mostimportantly,scientistsneedtolearntoappreciatethestrengthsoftheirrespectiveapproaches,betheytheoretical,experimentallab-oratory-basedorcomparative,andnotfocusontheweaknessestodiscardpossibleavenuesofcollaborationandprogress.

Clearly, bridging between theory and empirical data is moredifficultwhenstudyingecologyandevolutioninthewild(Hendry,2018) and ecological pleiotropy may even cancel out EEFs(DeLong,2017).However,theoreticalmodelsarethebestavenuetoformulatehypothesesandgeneratetestablepredictionswhichstrengthen inference.Wesuggest thata three-wayapproach, in-tegrating theory, laboratory-based experiments and comparativedata from natural communities will enhance our understandingonhowprevalentEEFsare innature.Thisknowledgewillalsobe

criticalforcommunicatingtheimportanceofEEFstopolicymakers.Inthiscontext,itiscentraltoknowhowfeedbacksaffectbiodiver-sitydynamics,whether theevolutionof resistancemaybe fasterwithorwithoutfeedbacks,orwhetherpopulationsizecanbebet-ter controlledbymodifying certain componentsof feedbacks, toname but a few examples. Understanding the dynamical conse-quencesofEEFismoreimportantthaneverinarapidlychangingworld.

ACKNOWLEDG EMENTS

Theauthorswouldliketothanktheeditorsofthespecialissueforbringingustogetherandtwoanonymousrefereesforveryhelpfulcomments. This is publication ISEM-2018-232 of the Institut desSciencesdel’Evolution—Montpellier.

AUTHORS' CONTRIBUTIONS

L.G., E.A.F. and B.M. conceived the study and drafted themanu-script.L.G.andE.A.F.ledthestudy.Allauthorsperformedliteraturesearchandanalysisandcontributedtorevisions.

DATA ACCE SSIBILIT Y

Allpapersusedforthisreviewarecitedinthetext.

ORCID

Emanuel A. Fronhofer http://orcid.org/0000-0002-2219-784X

Dries Bonte http://orcid.org/0000-0002-3320-7505

Andrew P. Hendry http://orcid.org/0000-0002-4807-6667

R E FE R E N C E S

Abrams, P. A. (1986). Character displacement and niche shiftanalyzed using consumer-resource models of competi-tion. Theoretical Population Biology, 29, 107–160. https://doi.org/10.1016/0040-5809(86)90007-9

Abrams,P.A.(1990).Ecologicalvs.evolutionaryconsequencesofcom-petition.Oikos,57,147–151.

Abrams,P.A.(2000).Theevolutionofpredator-preyinteractions:Theoryand evidence. Annual Review of Ecology Evolution and Systematics,31,79–105.https://doi.org/10.1146/annurev.ecolsys.31.1.79

Abrams,P.A.,Harada,Y.,&Matsuda,H.(1993).Ontherelationshipbe-tweenquantitativegeneticandESSmodels.Evolution,47,982–985.https://doi.org/10.1111/j.1558-5646.1993.tb01254.x

Abrams, P. A., & Matsuda, H. (1997). Prey adaptation as a causeof Predator-Prey cycles. Evolution, 51, 1742–1750. https://doi.org/10.1111/j.1558-5646.1997.tb05098.x

Aguilée, R., Claessen, D., & Lambert, A. (2013). Adaptive radiationdrivenbytheinterplayofeco-evolutionaryandlandscapedynamics.Evolution,67,1291–1306.

Allhoff,K.T.,&Drossel,B.(2013).Whendoevolutionaryfoodwebmod-elsgeneratecomplexnetworks?Journal of Theoretical Biology,334,122–129.https://doi.org/10.1016/j.jtbi.2013.06.008

Alonzo, S. H., & Sinervo, B. (2001). Mate choice games, context-de-pendentgoodgenes,andgeneticcyclesintheside-blotchedlizard,

Page 14: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

14  |    Functional Ecology GOVAERT ET Al.

Uta stansburiana. Behavioral Ecology and Sociobiology,49, 176–186.https://doi.org/10.1007/s002650000265

Anderson, R. M., & May, R. (1982). Coevolution of hosts and par-asites. Parasitology, 85, 411–426. https://doi.org/10.1017/S0031182000055360

Bailey,J.K.,&Schweitzer,J.A.(2016).Theriseofplant–soilfeedbackinecology andevolution.Functional Ecology,30, 1030–1031.https://doi.org/10.1111/1365-2435.12691

Bak,P.,Tang,C.,&Wiesenfeld,K. (1987).Self-organizedcriticality:Anexplanationofthe1/fnoise.Physical Review Letters,59,381.https://doi.org/10.1103/PhysRevLett.59.381

Becks,L.,Ellner,S.P.,Jones,L.E.,&Hairston,N.G.Jr(2010).Reductionofadaptivegeneticdiversityradicallyalterseco-evolutionarycom-munitydynamics.Ecology Letters,13,989–997.

Becks,L.,Ellner,S.P., Jones,L.E.,&Hairston,N.G. (2012).Thefunc-tionalgenomicsofaneco-evolutionaryfeedbackloop:Linkinggeneexpression,traitevolution,andcommunitydynamics.Ecology Letters,15,492–501.https://doi.org/10.1111/j.1461-0248.2012.01763.x

Best,A.,White,A.,Kisdi,E.,Antonovics,J.,Brockhurst,M.,&Boots,M.(2010). The evolution of host-parasite range. American Naturalist,176,63–71.https://doi.org/10.1086/653002

Boeye,J.,Travis,J.M.J.,Stoks,R.,&Bonte,D. (2013).Morerapidcli-mate change promotes evolutionary rescue through selection forincreaseddispersaldistance.Evolutionary Applications,6,353–364.https://doi.org/10.1111/eva.12004

Bolchoun, L.,Drossel,B.,&Allhoff,K.T. (2017). Spatial topologiesaf-fect local foodweb structure and diversity in evolutionarymeta-communities. Scientific Reports, 7, 1818. https://doi.org/10.1038/s41598-017-01921-y

Bonte,D.,&Bafort,Q.(2018)Theimportanceandadaptivevalueoflifehistory evolution for metapopulation dynamics. Journal of Animal Ecology.https://doi.org/10.1101/179234

Boots,M.,&Haraguchi,Y.(1999).Theevolutionofcostlyresistanceinhost-parasitesystems.American Naturalist,153,359–370.

Boots,M.,Hudson,P.,&Sasaki,A.(2004).Largeshiftsinpathogenvir-ulence relate tohost population structure.Science,303, 842–844.https://doi.org/10.1126/science.1088542

Boots,M.,&Sasaki,A. (1999). “Smallworlds”andtheevolutionofvir-ulence:Infectionoccurslocallyandatadistance.Proceedings of the Royal Society. B, Biological Sciences, 266, 1933–1938. https://doi.org/10.1098/rspb.1999.0869

Branco, P., Egas, M., Elser, J. J., & Huisman, J. (2018). Eco-evolution-arydynamicsofecologicalstoichiometry inplanktoncommunities.American Naturalist,192,E1–E20.https://doi.org/10.1086/697472

Brännström,A.,Johansson,J.,Loeuille,N.,Kristensen,N.,Troost,T.A.,Lambers, R.H.R.,&Dieckmann,U. (2012).Modelling the ecologyandevolutionofcommunities:Areviewofpastachievements,cur-rentefforts,andfuturepromises.Evolutionary Ecology Research,14,601–625.

Brown,W.L.,&Wilson,E.O.(1956).Characterdisplacement.Systematic Zoology,5,49–64.https://doi.org/10.2307/2411924

Bruggeman,J.,&Kooijman,S.A.L.M.(2007).Abiodiversity-inspiredap-proachtoaquaticecosystemmodeling.Limnology and Oceanography,52,1533–1544.https://doi.org/10.4319/lo.2007.52.4.1533

Brunner,F.S.,Anaya-Rojas,J.M.,Matthews,B.,&Eizaguirre,C.(2017).Experimental evidence that parasites drive eco-evolutionary feed-backs.Proceedings of the National Academy of Sciences of the United States of America, 114, 3678–3683. https://doi.org/10.1073/pnas.1619147114

Burger,R.,& Lynch,M. (1995). Evolution andextinction in a changingenvironment:Aquantitative-geneticanalysis.Evolution,49,151–163.https://doi.org/10.1111/j.1558-5646.1995.tb05967.x

Burton,O.J.,Pillips,B.L.,&Travis, J.M.J. (2010).Trade-offsandtheevolutionoflife-historiesduringrangeexpansion.Ecology Letters,13,1210–1220.https://doi.org/10.1111/j.1461-0248.2010.01505.x

Caldarelli,G.,Higgs,P.G.,&McKane,A. J. (1998).Modellingcoevolu-tioninmultispeciescommunities.Journal of Theoretical Biology,193,345–358.https://doi.org/10.1006/jtbi.1998.0706

Caswell,H.(2006)Matrix Population Models,(2ndedn)Oxford,UK:OxfordUniversity Press Inc. https://doi.org/10.1002/9780470057339.vam006m

Chesson, P. (2000). Mechanisms of maintenance of species diversity.Annual Review of Ecology and Systematics,31,343–366.https://doi.org/10.1146/annurev.ecolsys.31.1.343

Chesson, P. (2017). AEDT: A new concept for ecological dynamics inthe ever-changing world. PLoS Biology, 15, e2002634. https://doi.org/10.1371/journal.pbio.2002634

Chevin,L.M.,Cotto,O.,&Ashander,J.(2017).Stochasticevolutionarydemography under a fluctuating optimum phenotype. American Naturalist,190,786–802.https://doi.org/10.1086/694121

Chitty,D.(1967).Thenaturalselectionofself-regulatorybehaviourinan-imalpopulations.The Proceedings of the Ecological Society of Australia,2,51–78.

Clarke,B.(1972).Density-dependentselection.American Naturalist,106,1–13.https://doi.org/10.1086/282747

Clobert,J.,Baguette,M.,Benton,T.G.,&Bullock,J.M.(2012).Dispersal ecology and evolution.Oxford,UK:OxfordUniversityPress.https://doi.org/10.1093/acprof:oso/9780199608898.001.0001

Cortez,M.H.(2016).HowthemagnitudeofpreygeneticvariationaltersPredator-PreyEco-Evolutionarydynamics.American Naturalist,188,329–341.https://doi.org/10.1086/687393

Cortez,M.H.,&Ellner,S.P.(2010).Understandingrapidevolutioninpreda-tor-preyinteractionsusingthetheoryoffast-slowdynamicalsystems.American Naturalist,176,E109–E127.https://doi.org/10.1086/656485

Cortez,M.H.,&Weitz,J.S.(2014).Coevolutioncanreversepredator-preycycles.Proceedings of the National Academy of Sciences of the United States of America,111,7486–7491.https://doi.org/10.1073/pnas.1317693111

Day,T.(2005).Modellingtheecologicalcontextofevolutionarychange:Déjàvuorsomethingnew?InB.Beisner(Ed.),Ecological paradigms lost: Routes of theory change(pp.273–309).NewYork,NY:ElsevierAcademicPress.

Day, T., & Gandon, S. (2007). Applying population-genetic models intheoreticalevolutionaryepidemiology.Ecology Letters,10,876–888.https://doi.org/10.1111/j.1461-0248.2007.01091.x

Day,T.,&Proulx,S.R.(2004).Ageneraltheoryfortheevolutionarydy-namicsofvirulence.American Naturalist,163,E40–E63.https://doi.org/10.1086/382548

deAndreazzi,C.S.,Guimarães,P.R.,&Melián,C.J.(2018).Eco-evolution-ary feedbackspromote fluctuating selectionand long-termstabilityofantagonisticnetworks.Proceedings of the Royal Society. B, Biological Sciences,285,20172596.https://doi.org/10.1098/rspb.2017.2596

De Meester, L., Brans, K., Govaert, L., Souffreau, C., Mukherjee, S.,Korzeniowski,K.,…Urban,M.(2018)Thechallengingcomplexityofanalyzingeco-evolutionarydynamicsinnature.Functional Ecology.

DeAngelis,D.L.,&Mooij,W.M. (2005). Individual-basedmodelingofecological and evolutionary processes. Annual Review of Ecology Evolution and Systematics,36,147–168.https://doi.org/10.1146/an-nurev.ecolsys.36.102003.152644

DeLong,J.P.(2017).Ecologicalpleiotropysuppressesthedynamicfeed-backgeneratedbyarapidlychangingtrait.American Naturalist,189,592–597.https://doi.org/10.1086/691100

Dhondt,A.A.(1989).Ecologicalandevolutionaryeffectsofinterspecificcompetitionintits.The Wilson Bulletin,101,198–216.

Dieckmann,U.,&Doebeli,M.(1999).Ontheoriginofspeciesbysympat-ricspeciation.Nature,400,354–357.https://doi.org/10.1038/22521

Dieckmann, U., & Metz, J. A. J. (2006). Surprising evolutionary pre-dictions from enhanced ecological realism. Theoretical Population Biology,69,263–281.https://doi.org/10.1016/j.tpb.2005.12.001

Dieckmann,U.,Metz,J.A.J.,Sabelis,M.W.,&Sigmund,K.(Eds.)(2002).Adaptive dynamics of infectious diseases. In pursuit of virulence manage‐ment.Cambridge,UK:CambridgeUniversityPress.

Page 15: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  15Functional EcologyGOVAERT ET Al.

Diekmann, O. (2004). A beginner's guide to adaptive dynamics.Mathematical Modelling Of Population Dynamics—Banach Center Publications,63,47–86.

Doebeli,M.,&Knowlton,N.(1998).Theevolutionofinterspecificmutual-isms.Proceedings of the National Academy of Sciences of the United States of America,95,8676–8680.https://doi.org/10.1073/pnas.95.15.8676

Drossel,B.,Higgs,P.G.,&McKane,A.J.(2001).Theinfluenceofpred-ator–preypopulationdynamicson the long-termevolutionof foodwebstructure.Journal of Theoretical Biology,208,91–107.https://doi.org/10.1006/jtbi.2000.2203

Eizaguirre,C.,Lenz,T.L.,Traulsen,A.,&Milinski,M.(2009).Speciationaccelerated and stabilized by pleiotropic major histocompatibil-ity complex immunogenes. Ecology Letters, 12, 5–12. https://doi.org/10.1111/j.1461-0248.2008.01247.x

Ellner,S.,&Becks,L.(2011).Rapidpreyevolutionandthedynamicsoftwo-predatorfoodwebs.Theoretical Ecology,4,133–152.https://doi.org/10.1007/s12080-010-0096-7

Engen,S.,Lande,R.,&Sӕther,B.E.(2013).Aquantitativegeneticmodelof r and kselectioninafluctuatingpopulation.American Naturalist,181,725–736.https://doi.org/10.1086/670257

Engen,S.,&Sӕther,B.E.(2017).r and kselectioninfluctuatingpop-ulationsisdeterminedbytheevolutionarytrade-offbetweentwofitnessmeasures:Growth rate and lifetime reproductive success.Evolution,71,167–173.https://doi.org/10.1111/evo.13104

Eppinga,M.B.,Kaproth,M.A.,Collins,A.R.,&Molofsky,J.(2011).Litterfeedbacks,evolutionarychangeandexoticplantinvasion.Journal of Ecology,99,503–514.

Ferriere,R.(2000).Adaptive responses to environmental threats: Evolutionary suicide, insurance, and rescue. (Options Spring 2000), (pp. 12–16).Laxenburg,Austria:InternationalInstituteforAppliedSystemsAnalysis.

Ferrière,R.,Bronstein,J.L.,Rinaldi,S.,Law,R.,&Gauduchon,M.(2002).Cheating and the evolutionary stability ofmutualisms.Proceedings of the Royal Society. B, Biological Sciences,269,773–780.https://doi.org/10.1098/rspb.2001.1900

Ferrière, R., Dieckmann, U., & Couvet, D. (2004). Evolutionary conser‐vation biology,Vol.4.Cambridge,UK:CambridgeUniversityPress.https://doi.org/10.1017/CBO9780511542022

Ferrière,R.,&Legendre,S.(2012).Eco-evolutionaryfeedbacks,adaptivedynamicsandevolutionaryrescuetheory.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368,20120081.https://doi.org/10.1098/rstb.2012.0081

Fischer,B.B.,Kwiatkowski,M.,Ackermann,M.,Krismer,J.,Roffler,S.,Suter,M.J.F.,…Matthews,B. (2014).Phenotypicplasticity influ-ences the eco-evolutionary dynamics of a predator-prey system.Ecology,95,3080–3092.https://doi.org/10.1890/14-0116.1

Fraser,A.S. (1957).Simulationofgeneticsystemsbyautomaticdigitalcomputers. Australian Journal of Biological Sciences, 10, 484–491.https://doi.org/10.1071/BI9570484

Frickel,J.,Sieber,M.,&Becks,L.(2016).Eco-evolutionarydynamicsinacoevolvinghost-virussystem.Ecology Letters,19,450–459.https://doi.org/10.1111/ele.12580

Fronhofer, E. A., & Altermatt, F. (2015). Eco-evolutionary feedbacksduring experimental range expansions. Nature Communications, 6,6844.https://doi.org/10.1038/ncomms7844

Fronhofer,E.A.,&Altermatt,F.(2017).Classicalmetapopulationdynam-icsandeco-evolutionaryfeedbacksindendriticnetworks.Ecography,40,1455–1466.https://doi.org/10.1111/ecog.02761

Fronhofer,E.A.,Liebig,J.,Mitesser,O.,&Poethke,H.J.(2018)Eusocialityoutcompetesegalitarianandsolitarystrategieswhenresourcesarelimitedandreproductioniscostly.Ecology and Evolution,https://doi.org/10.1002/ece3.4737

Fronhofer, E. A., Pasurka, H., Mitesser, O., & Poethke, H. J. (2011).Scarce resources, risk-sensitivity and egalitarian resource sharing.Evolutionary Ecology Research,13,253–267.

Fussmann,G.F.,Loreau,M.,&Abrams,P.A.(2007).Eco-evolutionarydynamicsof communities andecosystems.Functional Ecology,21,465–477.https://doi.org/10.1111/j.1365-2435.2007.01275.x

Gandon, S., & Day, T. (2009). Evolutionary epidemiology and thedynamics of adaptation. Evolution, 63, 826–838. https://doi.org/10.1111/j.1558-5646.2009.00609.x

Geritz,S.A.H.,Kisdi,E.,Meszena,G.,&Metz,J.A.J.(1998).Evolutionarilysingular strategies and the adaptive growth and branching of theevolutionary tree. Evolutionary Ecology, 12, 35–57. https://doi.org/10.1023/A:1006554906681

Gokhale,C. S.,&Hauert,C. (2016). Eco-evolutionarydynamicsof so-cialdilemmas.Theoretical Population Biology,111,28–42.https://doi.org/10.1016/j.tpb.2016.05.005

Gomulkiewicz,R.,&Holt,R.D. (1995).Whendoesevolutionbynatu-ralselectionpreventextinction?Evolution,49,201–207.https://doi.org/10.1111/j.1558-5646.1995.tb05971.x

Gomulkiewicz,R.,Holt,R.D.,&Barfield,M.(1999).Theeffectsofdensitydependenceandimmigrationonlocaladaptationandnicheevolutioninablack-holesinkenvironment.Theoretical Population Biology,55,283–296.https://doi.org/10.1006/tpbi.1998.1405

Gonzalez, A., Ronce, O., Ferriere, R., & Hochberg, M. E. (2013).Evolutionaryrescue:Anemergingfocusattheintersectionbetweenecologyandevolution.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,368,20120404.

Grimm, V. (1999). Ten years of individual-based modelling in ecol-ogy: What have we learned and what could we learn in the fu-ture? Ecological Modelling, 115, 129–148. https://doi.org/10.1016/S0304-3800(98)00188-4

Guill, C., & Drossel, B. (2008). Emergence of complexity in evolvingniche-modelfoodwebs.Journal of Theoretical Biology,251,108–120.https://doi.org/10.1016/j.jtbi.2007.11.017

Gyllenberg, M., Parvinen, K., & Dieckmann, U. (2002). Evolutionarysuicide and evolution of dispersal in structured metapopulations.Journal of Mathematical Biology,45,79–105.https://doi.org/10.1007/s002850200151

Haafke,J.,AbouChakra,M.,&Becks,L.(2016).Eco-evolutionaryfeed-backpromotesRedQueendynamicsandselects forsex inpreda-tor populations. Evolution, 70, 641–652. https://doi.org/10.1111/evo.12885

Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T., & Fox, J. A.(2005). Rapid evolution and the convergence of ecological andevolutionary time. Ecology Letters, 8, 1114–1127. https://doi.org/10.1111/j.1461-0248.2005.00812.x

Hanski,I.(1999).Metapopulation ecology.Oxford,UK:OxfordUniversityPress.

Hanski,I.A.(2011).Eco-evolutionaryspatialdynamicsintheglanvillefrit-illarybutterfly.Proceedings of the National Academy of Sciences of the United States of America,108,14397–14404.https://doi.org/10.1073/pnas.1110020108

Hanski,I.,&Mononen,T.(2011).Eco-evolutionarydynamicsofdispersalinspatiallyheterogeneousenvironments.Ecology Letters,14,1025–1034.https://doi.org/10.1111/j.1461-0248.2011.01671.x

Harrison,S.,&Hastings,A. (1996).Geneticandevolutionaryconse-quencesofmetapopulationstructure.Trends in Ecology & Evolution,11,180–183.https://doi.org/10.1016/0169-5347(96)20008-4

Hendry,A.P.(2017).Eco‐evolutionary dynamics.Princeton,NJ:PrincetonUniversityPress.https://doi.org/10.1515/9781400883080

Hendry,A.P.(2018)Acritiqueforeco-evolutionarydynamics.Functional Ecology.https://doi.org/10.1111/1365-2435.13244

Hendry,A.P.,&Kinnison,M.T.(1999).Thepaceofmodernlife:Measuringrates of contemporary microevolution. Evolution, 53, 1637–1653.https://doi.org/10.1111/j.1558-5646.1999.tb04550.x

Hillaert, J., Vandegehuchte, M. L., Hovestadt, T., & Bonte, D. (2018).Informationuseduringmovementregulateshowfragmentationand

Page 16: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

16  |    Functional Ecology GOVAERT ET Al.

lossofhabitat affectbody size.Proceedings of the Royal Society. B, Biological Sciences,285,20180953.

Hiltunen,T.,Hairston,N.G.,Hooker,G.,Jones,L.E.,&Ellner,S.P.(2014).A newly discovered role of evolution in previously published con-sumer-resource dynamics. Ecology Letters, 17, 915–923. https://doi.org/10.1111/ele.12291

Huang,W., Traulsen, A.,Werner, B., Hiltunen, T., & Becks, L. (2017).Dynamical trade-offs arise from antagonistic coevolution and de-crease intraspecific diversity. Nature Communications, 8, 2059.https://doi.org/10.1038/s41467-017-01957-8

Ito,H.C.,&Ikegami,T.(2006).Food-webformationwithrecursiveevo-lutionarybranching.Journal of Theoretical Biology,238,1–10.https://doi.org/10.1016/j.jtbi.2005.05.003

Jones, L. E., & Ellner, S. P. (2007). Effects of rapid prey evolution onpredator–preycycles.Journal of Mathematical Biology,55,541–573.https://doi.org/10.1007/s00285-007-0094-6

Jones,E.I.,Ferriere,R.,&Bronstein,J.L.(2009).Eco-evolutionarydynam-icsofmutualistsandexploiters.American Naturalist,174,780–794.

Kisdi,E.(1999).Evolutionarybranchingunderasymmetriccompetition.Journal of Theoretical Biology,19,149–162.https://doi.org/10.1006/jtbi.1998.0864

Kovach-Orr,C.,&Fussmann,G.F.(2013).Evolutionaryandplasticrescueinmultitrophicmodelcommunities.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,368,20120084.

Kremer,C.T.,&Klausmeier,C.A.(2013).Coexistenceinavariableen-vironment: Eco-evolutionary perspectives. Journal of Theoretical Biology,339,14–25.https://doi.org/10.1016/j.jtbi.2013.05.005

Kremer,C.T.,&Klausmeier,C.A. (2017). Speciespacking ineco-evo-lutionary models of seasonally fluctuating environments. Ecology Letters,20,1158–1168.https://doi.org/10.1111/ele.12813

Kubisch,A.,Winter,A.M.,&Fronhofer,E.A.(2016).Thedownwardspiral:Eco-evolutionary feedback loops lead to the emergence of `elastic’ranges.Ecography,39,261–269.https://doi.org/10.1111/ecog.01701

Kylafis, G., & Loreau, M. (2008). Ecological and evolutionary conse-quencesofnicheconstructionforitsagent.Ecology Letters,11,1072–1081.https://doi.org/10.1111/j.1461-0248.2008.01220.x

Kylafis, G., & Loreau, M. (2011). Niche construction in the lightof niche theory. Ecology Letters, 14, 82–90. https://doi.org/10.1111/j.1461-0248.2010.01551.x

Lande, R. (2007). Expected relative fitness and the adaptive topogra-phy of fluctuating selection.Evolution,61, 1835–1846. https://doi.org/10.1111/j.1558-5646.2007.00170.x

Lande,R.,Engen,S.,&Saether,B.E.(2009).Anevolutionarymaximumprinciple for density-dependent population dynamics in a fluctu-atingenvironment.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 1511–1518. https://doi.org/10.1098/rstb.2009.0017

Lande, R., & Shannon, S. (1996). The role of genetic variation in ad-aptation and population persistence in a changing environment.Evolution,50,434–437.https://doi.org/10.1111/j.1558-5646.1996.tb04504.x

Legrand,D.,Cote,J.,Fronhofer,E.A.,Holt,R.D.,Ronce,O.,Schtickzelle,N., … Clobert, J. (2017). Eco-evolutionary dynamics in fragmentedlandscapes.Ecography,40,9–25.https://doi.org/10.1111/ecog.02537

Lehmann, L. (2008). The adaptive dynamics of niche construct-ing traits in spatially subdivided populations: Evolving posthu-mous extended phenotypes. Evolution, 62, 549–566. https://doi.org/10.1111/j.1558-5646.2007.00291.x

Lehtonen,J.,&Kokko,H.(2012).Positivefeedbackandalternativestablestates in inbreeding, cooperation, sex roles andotherevolutionaryprocesses.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,367, 211–221. https://doi.org/10.1098/rstb.2011.0177

Leibold,M.A.,Holyoak,M.,Mouquet,N.,Amarasekare,P.,Chase,J.M.,Hoopes,M.F.,…Gonzalez,A.(2004).Themetacommunityconcept:

Aframeworkformulti-scalecommunityecology.Ecology Letters,7,601–613.https://doi.org/10.1111/j.1461-0248.2004.00608.x

Leibold,M.A.,&Norberg,J. (2004).Biodiversity inmetacommunities:Planktonascomplexadaptivesystems?Limnology and Oceanography,49,1278–1289.https://doi.org/10.4319/lo.2004.49.4_part_2.1278

Lenormand, T. (2002). Gene flow and the limits to natural selection.Trends in Ecology & Evolution,17,183–189.https://doi.org/10.1016/S0169-5347(02)02497-7

Lenski,R.E.,&May,R.M. (1994).Theevolutionofvirulence inparasitesand pathogens: Reconciliation between two competing hypotheses.Journal of Theoretical Biology, 169, 253–265. https://doi.org/10.1006/jtbi.1994.1146

Leon,J.A.,&Charlesworth,B.(1978).Ecologicalversionsoffisher'sfun-damentaltheoremofnaturalselection.Ecology,59,457–464.https://doi.org/10.2307/1936575

Lion, S. (2018). Theoretical approaches in evolutionary ecology:Environmental feedback as a unifying perspective. American Naturalist,191,21–44.https://doi.org/10.1086/694865

Lion,S.,&Gandon,S.(2015).Evolutionofspatiallystructuredhost–par-asiteinteractions.Journal of Evolutionary Biology,28,10–28.https://doi.org/10.1111/jeb.12551

Lion, S., & Gandon, S. (2016). Spatial evolutionary epidemiology ofspreading epidemics. Proceedings of the Royal Society. B, Biological Sciences,283,20161170.https://doi.org/10.1098/rspb.2016.1170

Lion,S.,&Metz,J.A.(2018).BeyondR0maximisation:Onpathogenevo-lutionandenvironmentaldimensions.Trends in Ecology & Evolution,33,458–473.https://doi.org/10.1016/j.tree.2018.02.004

Litchman, E., Klausmeier, C., & Yoshiyama, K. (2009). Contrasting sizeevolution in marine and freshwater diatoms. Proceedings of the National Academy of Sciences of the United States of America, 106,2665–2670.https://doi.org/10.1073/pnas.0810891106

Lively, C. M. (2012). Feedbacks between ecology and evolution:InteractionsbetweenΔNandΔpinalife-historymodel.Evolutionary Ecology Research,14,299–309.

Loeuille,N.,&Leibold,M.A. (2008). Ecological consequencesof evo-lutioninplantdefensesinametacommunity.Theoretical Population Biology,74,34–45.https://doi.org/10.1016/j.tpb.2008.04.004

Loeuille,N.,&Leibold,M.A.(2014).Effectsoflocalnegativefeedbacksontheevolutionofspecieswithinmetacommunities.Ecology Letters,17,563–573.https://doi.org/10.1111/ele.12258

Luo,S.,&Koelle,K.(2013).Navigatingthedeviouscourseofevolution:Theimportanceofmechanisticmodelsforidentifyingeco-evolution-arydynamicsinnature.American Naturalist,181(Suppl.1),S58–S75.https://doi.org/10.1086/669952

Lynch,M.(1993).Evolutionandextinctioninresponsetoenvironmentalchange. InP.M.Karieva, J.G.Kingsolver,&R.B.Huey (Eds.),Biotic Interactions and Global Change,(pp.234–250).Sunderland,MA:SinauerAssociatesInc.

Lynch,M.,&Walsh,B.(1998).Genetics and analysis of quantitative traits. Sunderland,MA:SinauerAssociatesInc.

MacArthur, R. H. (1962). Some generalized theorems of natural se-lection. Proceedings of the National Academy of Sciences of the United States of America,48, 1893–1897. https://doi.org/10.1073/pnas.48.11.1893

Marrow,P.,Dieckmann,U.,&Law,R.(1996).Evolutionarydynamicsofpred-ator-preysystems:Anecologicalperspective.Journal of Mathematical Biology,34,556–578.https://doi.org/10.1007/BF02409750

Martín,P.V.,Hidalgo,J.,deCasas,R.R.,&Muñoz,M.A.(2016).Eco-evo-lutionarymodel of rapid phenotypic diversification in species-richcommunities.PLoS Computational Biology,12,e1005139.https://doi.org/10.1371/journal.pcbi.1005139

Matthews,B.,DeMeester, L., Jones,C.G., Ibelings,B.W.,Bouma,T. J.,Nuutinen,V.,…Odling-Smee,J. (2014).Undernicheconstruction:Anoperationalbridgebetweenecology,evolution,andecosystemscience.Ecological Monographs,84,245–263.https://doi.org/10.1890/13-0953.1

Page 17: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  17Functional EcologyGOVAERT ET Al.

McGill,B. J.,&Brown, J.S. (2007).Evolutionarygametheoryandadap-tivedynamicsofcontinuoustraits.Annual Review of Ecology Evolution and Systematics, 38, 403–435. https://doi.org/10.1146/annurev.ecolsys.36.091704.175517

McPeek, M. A. (2017). The ecological dynamics of natural selection:Traits and the coevolution of community structure. American Naturalist,189,E91–E117.https://doi.org/10.1086/691101

Melián, C. J., Matthews, B., de Andreazzi, C. S., Rodríguez, J. P.,Harmon, L. J., & Fortuna,M. A. (2018).Deciphering the interde-pendence between ecological and evolutionary networks. Trends in Ecology & Evolution, 33, 504–512. https://doi.org/10.1016/j.tree.2018.04.009

Metcalf, C., Rose, K., Childs, D., Sheppard, A., Grubb, P., & Rees, M.(2008). Evolution of flowering decisions in a stochastic, density-dependent environment. Proceedings of the National Academy of Sciences of the United States of America,105,10466–10470.https://doi.org/10.1073/pnas.0800777105

Metz,J.A.,&Geritz,S.A.(2016).Frequencydependence3.0:Anattemptatcodifyingtheevolutionaryecologyperspective.Journal of Mathematical Biology,72,1011–1037.https://doi.org/10.1007/s00285-015-0956-2

Metz,J.A.J.,Mylius,S.D.,&Diekmann,O.(2008).Whendoesevolutionoptimize?Evolutionary Ecology Research,10,629–654.

Metz,J.A.J.,Nisbet,R.M.,&Geritz,S.A.H.(1992).Howshouldwedefine“fitness”forgeneralecologicalscenarios?.Trends in Ecology & Evolution,7,198–202.https://doi.org/10.1016/0169-5347(92)90073-K

Meyer,J.R.,Ellner,S.P.,Hairston,N.G.,Jones,L.E.,&Yoshida,T.(2006).Preyevolutiononthetimescaleofpredator–preydynamicsrevealedbyallele-specificquantitativepcr.Proceedings of the National Academy of Sciences of the United States of America,103,10690–10695.https://doi.org/10.1073/pnas.0600434103

Norberg,J.,Urban,M.C.,Vellend,M.,Klausmeier,C.A.,&Loeuille,N.(2012).Eco-evolutionary responses of biodiversity to climate change.Nature Climate Change,2,747–751.https://doi.org/10.1038/nclimate1588

Nosil,P.,Funk,D.J.,&Ortitz-Barrientos,D.(2009).Divergentselectionandheterogeneousgenomicdivergence.Molecular Ecology,18,375–402.https://doi.org/10.1111/j.1365-294X.2008.03946.x

Nuismer,S.L.,Otto,S.P.,&Blanquart,F.(2008).Whendohost–parasitein-teractionsdrivetheevolutionofnon-randommating?Ecology Letters,11,937–946.https://doi.org/10.1111/j.1461-0248.2008.01207.x

Nuismer, S. L., Thompson, J. N., & Gomulkiewicz, R. (2000).Coevolutionaryclinesacrossselectionmosaics.Evolution,54,1102–1115.https://doi.org/10.1111/j.0014-3820.2000.tb00546.x

Nuismer,S.L.,Thompson,J.N.,&Gomulkiewicz,R.(2003).Coevolutionbetweenhostsandparasiteswithpartiallyoverlappinggeographicranges. Journal of Evolutionary Biology, 16, 1337–1345. https://doi.org/10.1046/j.1420-9101.2003.00609.x

Odling-Smee, F. J.,Odling-Smee,H., Laland,K.N., Feldman,M.W.,&Feldman,F.(2003).Niche construction: The neglected process in evolu‐tion,Vol.37.Princeton,NJ:PrincetonUniversityPress.

Orr,H.A.,&Unckless,R.L.(2014).Thepopulationgeneticsofevolution-ary rescue. PLoS Genetics, 10, e1004551. https://doi.org/10.1371/journal.pgen.1004551

Parvinen,K.,&Dieckmann,U. (2013).Self-extinctionthroughoptimiz-ing selection. Journal of Theoretical Biology, 333, 1–9. https://doi.org/10.1016/j.jtbi.2013.03.025

Patel,S.,Cortez,M.H.,&Schreiber,S.J.(2018).Partitioningtheeffectsof eco-evolutionary feedbacks on community stability. American Naturalist,191,381–394.https://doi.org/10.1086/695834

Pease,C.M.,Lande,R.,&Bull,J.(1989).Amodelofpopulationgrowth,dispersal and evolution in a changing environment. Ecology, 70,1657–1664.https://doi.org/10.2307/1938100

Pelletier, F.,Garant,D.,&Hendry,A. (2009). Eco-evolutionary dynamics.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,364,1483–1489.https://doi.org/10.1098/rstb.2009.0027

Pimentel, D. (1961). Animal population regulation by the geneticFeed-Backmechanism.American Naturalist, 95, 65–79. https://doi.org/10.1086/282160

Poethke,H. J.,Dytham,C.,&Hovestadt, T. (2011). Ametapopulationparadox: Partial improvement of habitat may reduce metapopu-lation persistence. American Naturalist, 177, 792–799. https://doi.org/10.1086/659995

Poethke,H.J.,&Hovestadt,T.(2002).Evolutionofdensity-andpatch-size-dependentdispersalrates.Proceedings of the Royal Society. B, Biological Sciences,269,637–645.https://doi.org/10.1098/rspb.2001.1936

Poethke,H.J.,Pfenning,B.,&Hovestadt,T.(2007).Therelativecontri-butionofindividualandkinselectiontotheevolutionofdensity-de-pendentdispersalrates.Evolutionary Ecology Research,9,41–50.

Polechová,J.,Barton,N.,&Marion,G.(2009).Species’range:Adaptationinspaceandtime.American Naturalist,174,E186–E204.https://doi.org/10.1086/605958

Post, D.M., & Palkovacs, E. P. (2009). Eco-evolutionary feedbacks incommunityandecosystemecology: Interactionsbetweentheeco-logical theatreandtheevolutionaryplay.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,364,1629–1640.https://doi.org/10.1098/rstb.2009.0012

Queller, D. C. (2017). Fundamental theorems of evolution. American Naturalist,189,345–353.https://doi.org/10.1086/690937

Räsänen,K.,&Hendry,A.P.(2008).Disentanglinginteractionsbetweenadap-tivedivergenceandgeneflowwhenecologydrivesdiversification.Ecology Letters,11,624–636.https://doi.org/10.1111/j.1461-0248.2008.01176.x

Rees, M., & Ellner, S. P. (2016). Evolving integral projection mod-els: Evolutionary demography meets eco-evolutionary dynam-ics. Methods in Ecology and Evolution, 7, 157–170. https://doi.org/10.1111/2041-210X.12487

Robertson, D. S. (1991). Feedback theory and darwinian evolution.Journal of Theoretical Biology,152,469–484.https://doi.org/10.1016/S0022-5193(05)80393-5

Ronce,O.(2007).Howdoesitfeeltobelikearollingstone?Tenques-tions about dispersal evolution.Annual Review of Ecology Evolution and Systematics, 38, 231–253. https://doi.org/10.1146/annurev.ecolsys.38.091206.095611

Rosenzweig, M. L. (1978). Competitive speciation. Biological Journal of the Linnean Society, 10, 275–289. https://doi.org/10.1111/j.1095-8312.1978.tb00016.x

Rossberg,A.G.,Matsuda,H.,Amemiya,T.,&Itoh,K.(2006).Foodwebs:Expertsconsumingfamiliesofexperts.Journal of Theoretical Biology,241,552–563.https://doi.org/10.1016/j.jtbi.2005.12.021

Roughgarden, J. (1979). Theory of population genetics and evolutionary ecology: An introduction.NewYork,NY:MacmillanPublishingCo.,Inc.

Rueffler,C.,Egas,M.,&Metz, J.A.J. (2006).Evolutionarypredictionsshouldbebasedon individual-leveltraits.American Naturalist,168,E148–E162.https://doi.org/10.1086/508618

Saastamoinen,M.,Bocedi,G.,Cote,J.,Legrand,D.,Guillaume,F.,Wheat,C.W.,…delMarDelgado,M.(2018).Geneticsofdispersal.Biological Reviews,93,574–599.https://doi.org/10.1111/brv.12356

Sasaki, A., & Dieckmann, U. (2011). Oligomorphic dynamics for an-alyzing the quantitative genetics of adaptive speciation. Journal of Mathematical Biology, 63, 601–635. https://doi.org/10.1007/s00285-010-0380-6

Schiffers, K., Bourne, E. C., Lavergne, S., Thuiller,W., & Travis, J. M.(2013). Limited evolutionary rescueof locally adaptedpopulationsfacingclimatechange.Philosophical Transactions of the Royal Society. Biological Sciences,368,20120083.

Schluter,D.(2000).Ecologicalcharacterdisplacementinadaptiveradiation.American Naturalist,156,S4–S16.https://doi.org/10.1086/303412

Schoener,T.W.(2011).Thenewestsynthesis:Understandingtheinter-playofevolutionaryandecologicaldynamics.Science,331,426–429.https://doi.org/10.1126/science.1193954

Page 18: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

18  |    Functional Ecology GOVAERT ET Al.

Schweitzer,J.A.,Juric,I.,Voorde,T.F.,Clay,K.,Putten,W.H.,&Bailey,J.K.(2014).Arethereevolutionaryconsequencesofplant–soilfeed-backsalongsoilgradients?Functional Ecology,28,55–64.https://doi.org/10.1111/1365-2435.12201

Shefferson, R. P., & Salguero-Gómez, R. (2015). Eco-evolutionary dy-namics in plants: Interactive processes at overlapping time-scalesandtheirimplications.Journal of Ecology,103,789–797.https://doi.org/10.1111/1365-2745.12432

Slatkin,M.(1980).Ecologicalcharacterdisplacement.Ecology,61,163–177.https://doi.org/10.2307/1937166

Smallegange, I., Rhebergen, F., Van Gorkum, T., Vink, D., & Egas, M.(2018)Aroundandaroundwego:Understandingeco-evolutionarydynamics by studying polymorphisms and closed feedback loops.Functional Ecology.

Sӕther,B.E.,&Engen,S. (2015).Theconceptof fitness influctuatingenvironments.Trends in Ecology & Evolution,30,273–281.https://doi.org/10.1016/j.tree.2015.03.007

Takahashi,D.,Brännström,Å.,Mazzucco,R.,Yamauchi,A.,&Dieckmann,U. (2013). Abrupt community transitions and cyclic evolutionarydynamics incomplexfoodwebs.Journal of Theoretical Biology,337,181–189.https://doi.org/10.1016/j.jtbi.2013.08.003

Taper,M.L.,&Case,T.J.(1992).Modelsofcharacterdisplacementandthe theoretical robustnessof taxoncycles.Evolution,46,317–333.https://doi.org/10.1111/j.1558-5646.1992.tb02040.x

terHorst,C.,Miller, T.,&Powell, E. (2010).Whencan competition forresources lead to ecological equivalence? Evolutionary Ecology Research,12,843–854.

terHorst,C.P.,&Zee,P.C.(2016).Eco-evolutionarydynamicsinplant–soil feedbacks. Functional Ecology, 30, 1062–1072. https://doi.org/10.1111/1365-2435.12671

terHorst,C.P.,Zee,P.C.,Heath,K.D.,Miller,T.E.,Pastore,A.I.,Patel,S.,…Walsh,M.R. (2018).Evolution ina community context:Traitresponsestomultiplespeciesinteractions.American Naturalist,191,368–380.https://doi.org/10.1086/695835

Thibert-Plante,X.,&Hendry,A.(2009).Fivequestionsonecologicalspecia-tionaddressedwithindividual-basedsimulations.Journal of Evolutionary Biology, 22, 109–123. https://doi.org/10.1111/j.1420-9101.2008. 01627.x

Thomas,M.K.,Kremer,C.T.,Klausmeier,C.A.,&Litchman,E. (2012).A global pattern of thermal adaptation in marine phytoplankton.Science,338,1083–1085.

Thompson,J.N.(2005).The geographic mosaic of coevolution.Chicago,IL:UniversityofChicagoPress.

Travis,J.M.J.,&Dytham,C.(1999).Habitatpersistence,habitatavailabilityandtheevolutionofdispersal.Proceedings of the Royal Society. B, Biological Sciences,266,723–728.https://doi.org/10.1098/rspb.1999.0696

Travis,J.M.J.,&Dytham,C.(2002).Dispersalevolutionduringinvasions.Evolutionary Ecology Research,4,1119–1129.

Travis,J.,Leips,J.,&Rodd,F.H.(2013).Evolutioninpopulationparam-eters: Density-dependent selection or density-dependent fitness?American Naturalist,181,S9–S20.https://doi.org/10.1086/669970

Travis, J.,Reznick,D.,Bassar,R.D., López-Sepulcre,A., Ferriere,R.,&Coulson, T. (2014). Do eco-evo feedbacks help us understand na-ture? Answers from studies of the Trinidadian guppy.Advances in Ecological Research,50,1–40.

Turcotte,M.M.,Reznick,D.N.,&Hare,J.D.(2011).Theimpactofrapidevolutiononpopulationdynamics inthewild:Experimentaltestofeco-evolutionarydynamics.Ecology Letters,14,1084–1092.https://doi.org/10.1111/j.1461-0248.2011.01676.x

Uecker, H. (2017). Evolutionary rescue in randomly mating, selfing, andclonal populations. Evolution, 71, 845–858. https://doi.org/10.1111/evo.13191

Uecker,H.,Otto, S. P., &Hermisson, J. (2014). Evolutionary rescue instructuredpopulations.American Naturalist,183,E17–E35.https://doi.org/10.1086/673914

Urban,M.,Leibold,M.,Amarasekare,P.,Demeester,L.,Gomulkiewicz,R.,Hochberg,M.,…Norberg,J.(2008).Theevolutionaryecologyofmetacommunities.Trends in Ecology & Evolution,23,311–317.https://doi.org/10.1016/j.tree.2008.02.007

Van Baalen,M. (1998). Coevolution of recovery ability and virulence.Proceedings of the Royal Society. B, Biological Sciences,265,317–325.https://doi.org/10.1098/rspb.1998.0298

VanNuland,M.E.,Ware, I.M.,Bailey,J.K.,&Schweitzer,J.A. (2018).Geographicvariationinplantevolutionaryresponsestosoilfertilityismediatedbysoilmicrobialcommunities:Fillingtheeco-evolution-aryfeedbackknowledgegap.Functional Ecology.

VanNuland,M. E.,Wooliver, R. C., Pfennigwerth, A. A., Read, Q. D.,Ware,I.M.,Mueller,L.,…Bailey,J.K.(2016).Plant–soilfeedbacks:Connectingecosystemecologyandevolution.Functional Ecology,30,1032–1042.https://doi.org/10.1111/1365-2435.12690

Vasseur,D.A.,Amarasekare,P.,Rudolf,V.H.W.,&Levine,J.M.(2011).Eco-Evolutionary dynamics enable coexistence via neighbor-de-pendentselection.American Naturalist,178,E96–E109.https://doi.org/10.1086/662161

Vellend,M.(2010).Conceptualsynthesisincommunityecology.The Quarterly Review of Biology,85,183–206.https://doi.org/10.1086/652373

van Velzen, E., & Gaedke, U. (2017). Disentangling eco-evolution-ary dynamics of predator-prey coevolution: The case of anti-phase cycles. Scientific Reports,7, 17125. https://doi.org/10.1038/s41598-017-17019-4

Ware,I.,Fitzpatrick,C.,Johnson,M.,Palkovacs,E.,Kinnison,M.,Mueller,L.,…Bailey,J.(2018).Ecosystemeffectsofevolution:Asynthesisofeco-evolutionary feedbacksacross terrestrialandaquatic systems.Functional Ecology.

Waxman,D.,&Gavrilets, S. (2005). 20questions on adaptive dynam-ics. Journal of Evolutionary Biology, 18, 1139–1154. https://doi.org/10.1111/(ISSN)1420-9101

Yamamichi,M.,Yoshida,T.,&Sasaki,A.(2011).Comparingtheeffectsofrapidevolutionandphenotypicplasticityonpredator-preydynamics.American Naturalist,178,287–304.https://doi.org/10.1086/661241

Yoshida, T., Ellner, S. P., Jones, L. E., Bohannan, B. J., Lenski, R. E., &Hairston,N.G.Jr (2007).Crypticpopulationdynamics:Rapidevo-lutionmaskstrophicinteractions.PLoS Biology,5,e235.https://doi.org/10.1371/journal.pbio.0050235

Yoshida,T., Jones,L.E.,Ellner,S.P.,Fussmann,G.F.,&Hairston,N.G.(2003).Rapidevolutiondrivesecologicaldynamicsinapredator–preysystem.Nature,424,303–306.https://doi.org/10.1038/nature01767

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:GovaertL,FronhoferEA,LionS,etal.Eco-evolutionaryfeedbacks—Theoreticalmodelsandperspectives.Funct Ecol. 2018;00:1–18. https://doi.org/10.1111/1365-2435.13241