Download - Cupid Peptides presentation wjr

Transcript
Page 1: Cupid Peptides presentation wjr

William  Jonathan  Ryves  

Cardiff,  U.K.  

Page 2: Cupid Peptides presentation wjr

       Applica(ons  for  Cupid  Technology  

•  Cell  Marker  and  Tracking.  Real-­‐(me,  dye-­‐less    •  Real-­‐(me  Protein  /  Pep(de  delivery  for  protein-­‐protein  interac(on  and  protein  func(on  mapping  

•  Drug  delivery  vehicle  for  cell-­‐impermeable  conjoined  API’s  

•  Regenera(ve  medicine  e.g  Safe  crea(on  of  Stem  Cells  ex-­‐vivo,  Cancer  diagnosis  /  therapy  in  vivo,  wound  /  burn  treatment  in  situ    

Page 3: Cupid Peptides presentation wjr

Cell  Penetra(ng  Pep(des  classified  by  ac(on  

Class  1  (e.g.  Synthe(c  Ca(onic  Pep(des)    •  Short  strings  of  +vely  charged  amino  acids  e.g.  Polyarginine,  Polylysine  •  Adhere  to  outer-­‐cell  membrane  through  charge  interac(on  •  Endocytosed  into  vesicles  through  ac(on  of  membrane  recycling  machinery  

Class  2  (e.g.  Viral  Pep(des)    •  Short  strings  of  amino  acids  derived  from  viral  proteins  e.g.  TAT  from  HIV  •  Adhere  to  outer-­‐cell  membrane  through  interac(on  with  receptor  protein  

embedded  in  cell  membrane  •  Endocytosed  into  vesicles  through  ac(on  of  receptor  recycling  machinery    Class  3  (Membrane-­‐Permeable  Pep(des)    •  Short  strings  of  amphipathic  amino  acids  e.g.  Cupid  •  Adhere  to  outer-­‐cell  membrane  through  charge  interac(on  •  Pass  directly  through  lipid  bilayer  through  interac(on  with  both  hydrophilic  and  

hydrophobic  parts      

Page 4: Cupid Peptides presentation wjr

LIVE  

FIXED  

FIG. 2. Visualization of PTD–GFP fusion protein import in CHO cells. The recombinant proteins were added to the cells for 5 min at 37°C. The cells were washedextensively with PBS and microscopy was performed either on live unfixed cells or after methanol fixation. FITC, fluorescein–isothiocyanate filter; PC, phasecontrast.

FIG. 3. Adherence of PTD–GFP fusion proteins to prefixed CHO cells. The cells were fixed with methanol and rehydrated in PBS. Recombinant proteins wereadded for 5 min at room temperature and the cells were washed extensively with PBS prior to microscopy. FITC, fluorescein–isothiocyanate filter; PC, phasecontrast.

ARTICLEdoi:10.1016/S1525-0016(03)00135-7

145MOLECULAR THERAPY Vol. 8, No. 1, July 2003Copyright © The American Society of Gene Therapy

FIG. 2. Visualization of PTD–GFP fusion protein import in CHO cells. The recombinant proteins were added to the cells for 5 min at 37°C. The cells were washedextensively with PBS and microscopy was performed either on live unfixed cells or after methanol fixation. FITC, fluorescein–isothiocyanate filter; PC, phasecontrast.

FIG. 3. Adherence of PTD–GFP fusion proteins to prefixed CHO cells. The cells were fixed with methanol and rehydrated in PBS. Recombinant proteins wereadded for 5 min at room temperature and the cells were washed extensively with PBS prior to microscopy. FITC, fluorescein–isothiocyanate filter; PC, phasecontrast.

ARTICLEdoi:10.1016/S1525-0016(03)00135-7

145MOLECULAR THERAPY Vol. 8, No. 1, July 2003Copyright © The American Society of Gene Therapy

GFP  alone  

VP-­‐22  GFP  

TAT  GFP  

K8  GFP  

R8  GFP  

FIG. 2. Visualization of PTD–GFP fusion protein import in CHO cells. The recombinant proteins were added to the cells for 5 min at 37°C. The cells were washedextensively with PBS and microscopy was performed either on live unfixed cells or after methanol fixation. FITC, fluorescein–isothiocyanate filter; PC, phasecontrast.

FIG. 3. Adherence of PTD–GFP fusion proteins to prefixed CHO cells. The cells were fixed with methanol and rehydrated in PBS. Recombinant proteins wereadded for 5 min at room temperature and the cells were washed extensively with PBS prior to microscopy. FITC, fluorescein–isothiocyanate filter; PC, phasecontrast.

ARTICLEdoi:10.1016/S1525-0016(03)00135-7

145MOLECULAR THERAPY Vol. 8, No. 1, July 2003Copyright © The American Society of Gene Therapy

BUT  Added  to  cells  AFTER  FIXATION  

The  Lundberg  Revision:  How  different  condi(ons  can  result  in  

misinterpreta(on  of  CPP  ac(on  

Cell  surface  adherence  and  endocytosis  of  protein  transduc?on  domains.  Lundberg  M,  Wikström  S,  Johansson  M.  Mol  Ther.  2003  Jul;8(1):143-­‐50.  

       Problems  in  deploying  Class  1  and  2  CPP’s  

Page 5: Cupid Peptides presentation wjr

bind to negatively charged structures within the cells,such as DNA, which become exposed upon membranedisruption by cell fixation. The ability to of the proteins toadhere to intracellular structures results in a redistributionof protein during fixation, resulting in an apparent butnot true translocation across the cell membrane. The re-location of PTD proteins during fixation explains whyprotein import into almost all cells in a cell population isdetected within only minutes of incubation as well aswhy the import process can occur at 37 and 4°C[5,18,26,27,29]. It also explains why many PTD sequencemutants, and even peptides with reversed amino acidsequences, retain the ability of protein import [18,27].The possibility of postfixation movement of proteins andpeptides thereby invalidates methods requiring fixationto study membrane translocation by PTDs. However,methods studying live cells such as flow cytometry alsorequire caution because they do not distinguish betweenprotein immobilized on the cell surface and protein thathas translocated across the cell membrane.

The binding of PTDs to the cell surface and artificialimport during fixation do not exclude that a smallamount of protein, undetectable by standard imagingtechniques, is imported into cells. The notion that PTDsin fact translocate across the cell membrane is supportedby several studies on biological effects mediated by PTDfusion proteins. These studies include the functional de-livery of p16INK4 [23], p27Kip1 [21], an HIV protease-acti-

vated caspase-3 [20], and Cre and Flp recombinases[25,41–43]. A fixation artifact of protein import cannotexplain the results of these studies, since the biologicaleffects observed for the imported proteins require that thecells are viable. Based on the data presented in the presentstudy, we suggest three possible mechanisms to explainthe biological effects observed: (i) PTD proteins exert ef-fects on the cell surface, (ii) the proteins exert their effectwithin endosomes, or (iii) the PTDs are released from theendosomes into the cytosol by endosomolysis. The firstmechanism implies that the PTD peptides and proteinsadhered to the cell surface may affect cell surface recep-tors, which results in a biological effect. The membrane-translocating property of TAT was first discovered whenrecombinant TAT was added to a cell line containing anHIV long terminal repeat promoter reporter construct [3].The exogenously added TAT was shown to activate thereporter gene, which was interpreted as import of TATinto the cell nucleus and TAT-mediated activation of thepromoter. However, subsequent studies suggested thatexogenously added TAT binds to the cell surface where itactivates cell surface receptors that in turn activate tran-scription factors and induce transcription of the promoter[44,45]. Accordingly, it is possible that some of the bio-logical effects of the PTD fusion proteins are mediated bycell surface receptor activation. The second possiblemechanism of PTD action suggested is that the proteinsexert a local effect within the endosomes and lysosomes.

FIG. 5. Endocytosis of VP22-GFP. CHO cells were incubated 5 min, 1 h, or 24 h with VP22-GFP. Microscopy was performed on live unfixed cells.

ARTICLEdoi:10.1016/S1525-0016(03)00135-7

147MOLECULAR THERAPY Vol. 8, No. 1, July 2003Copyright © The American Society of Gene Therapy

Class  2  CPP  stuck    on  cell  surface   Class  2  CPP  becomes  

trapped  in  vesicles  

Class  2  CPP  excluded  from  Parts  of  cell  e.g.  nucleus  

       With  live  imaging  the  class  2  CPPs  can  be  seen  to  be  trapped  in  vesicles  

Cell  surface  adherence  and  endocytosis  of  protein  transduc?on  domains.  Lundberg  M,  Wikström  S,  Johansson  M.  Mol  Ther.  2003  Jul;8(1):143-­‐50.  

Page 6: Cupid Peptides presentation wjr

       Problems  in  deploying  Class  1  and  2  CPP’s  

CPPs  of  Class  1  and  2  have  a  problem  exi(ng  the  endosoma(c  pathway  to  meet  cellular  targets  

=  Endocyto(c  vesicle  

=  Degrada(on  pathway  

CPP  1  

CPP  2  

Cell  

?  

Recycle  

Page 7: Cupid Peptides presentation wjr

Early  work  with  CPP3  inhibi(ng  PKA  in  vivo  

Free  living  Dictyostelium  amoeba  Starva?on:  Cells  release  when  they  begin  starving.  This  ac(vates  PKA  which  causes  them  to  Aggregate  within  24  hours  

CPP3  alone  No  treatment  CPP3-­‐PKA  inhibitor  

pep(de  

Cells  aggregate  normally   Cells  fail  to  aggregate  

PKA  inhibitor  pep(de  alone  

Use  of  a  penetra?n-­‐linked  pep?de  in  Dictyostelium.  Ryves  WJ,  Harwood  AJ.  Mol  Biotechnol.  2006  Jun;33(2):123-­‐32.  

Page 8: Cupid Peptides presentation wjr

•  Success  in  Dictyostelium  –  PKA  inhibi(on  points  to  new  tools  to  inves(gate  protein  interac(ons  

•  Unlike  gene(cally  engineered  cells,  the  CPP3  based  research  is  fast  and  in  real  (me  

•  Unlike  CPP1  and  CPP2  related  work,  CPP3s  penetrate  cells  quickly  and  directly  without  using  receptors  or  vesicles.    

Early  work  with  CPP3  inhibi(ng  PKA  in  vivo  

Page 9: Cupid Peptides presentation wjr

CPP3 blockade of PTEN interaction with Drebrin.

     A  CPP3-­‐linked  pep(de  inhibi(ng  PTEN  in  vivo  

The interaction of PTEN with Drebrin was observed in vivo by co-expression of GFP-PTEN with mCherry-Drebin in PC12 cells. Interaction was analyzed by measuring fluorescence resonance energy transfer (FRET) using multiphoton fluorescence-lifetime imaging microscopy (FLIM) and demonstrated these proteins bound together in a complex and this complex regulates the phosphorylation state of Drebrin  

Page 10: Cupid Peptides presentation wjr

     A  CPP3-­‐linked  pep(de  inhibi(ng  PTEN  in  vivo  

Phosphorylation of the actin binding protein Drebrin at S647 is regulated by neuronal activity and PTEN. Kreis P, Hendricusdottir R, Kay L, Papageorgiou IE, van Diepen M, Mack T, Ryves J, Harwood A, Leslie NR, Kann O, Parsons M, Eickholt BJ. PLoS One. 2013 Aug 5;8(8):e71957. doi: 10.1371/journal.pone.0071957.

PTEN%Drebrin%

Response%

B)%Depolarisa4on%s4mulus%decreases%Protein:Protein%interac4on%

Low$interac,on$determined$by$

FRET$

Drebrin$in$Phosphorylated$state$

S4mulus%

Addition of a class 3 cell-permeable peptide containing the D-Loop peptide, part of the PTEN protein, resulted in separating these proteins by competing for PTEN D-loop interactions.

PTEN%Drebrin%

C)%Addi0on%of%CPP3%linked%to%‘D8Loop’%of%PTEN%pep0de%Inhibits%Protein8Protein%interac0on%and%aAenuates%response%

Low$interac,on$determined$by$

FRET$

Drebrin$in$Phosphorylated$state$AAenuated%Response%

S0mulus%

CPP3%

+/-­‐  

Page 11: Cupid Peptides presentation wjr

•  The  PTEN  work  shows  efficacy  of  CPP3s  as  a  research  tool  but  scratches  the  surface  of  a  huge  opportunity  

•  Pep(des  can  be  engineered  to  inhibit  those  different  parts  of  proteins  which  play  key  roles  in  cell  propaga(on,  cell  func(oning  and  cell  death  

•  Each  of  those  pep(des  can  be  alached  to  a  CPP3  to  speed  up  in  vivo  research  

•  The  task  was  to  develop  a  superior  CPP3  and  then  to  produce  a  range  of  CPP3  linked  pep(des  as  an  ever  expanding  tool  kit  to  tackle  the  huge  research  task  ahead.  

A  CPP3-­‐linked  pep(de  inhibi(ng  PTEN  in  vivo  

Page 12: Cupid Peptides presentation wjr

Cupid  the  company  established  to:  •  Patent  technology  •  Produce  CPP3  linked  products  for  wider  research  and  commercial  use  

•  Develop  the  technology  to  aid  ease  of  produc(on,  ease  of  use  and  inves(gate  the  op(mal  environment  for  producing  and  using  Cupid  pep(des  

Cupid  Pep(des  the  Company  

Page 13: Cupid Peptides presentation wjr

A  few  Cupid-­‐linked  pep(de  products  

Page 14: Cupid Peptides presentation wjr

nm  

Ab  

Spectrum  C.  Cupid-­‐GFP  

Cupid   GFP  (2-­‐239  )  Tag  

A.  

N  

42

31 32.3 kD Mr

24

B.  

Developing  Cupid-­‐GFP  Class  3  CPP  

Column  elu(on  frac(ons  Mr  

Page 15: Cupid Peptides presentation wjr

Time   15  mins   30  mins   45  mins   60  mins  

       Cupid  Class  3  CPP  is  able  to  directly  penetrate  cell  membranes  in  1  hour  

0  

Cupid-­‐GFP  5  uM  (NON-­‐Fluorescent)  LIVE  Mouse  heart  cell  culture  NO  wash  off  during  experiment  

Dr  Chris  George,  Welsh  Na(onal  Heart  Ins(tute,  Cardiff  U.K.    

1"

2"

3"

4"

0" 30" 60" 90" 120"

TOTA

L Fl

uore

scen

ce

(mul%p

le(of(b

aseline)(

Time(Minutes(

Cupid-­‐GFP  fluorescence  in  living  cells  increases  with  exposure  ?me    Cupid-­‐GFP  refolds  to  fluorescence  within  1  hour  

Page 16: Cupid Peptides presentation wjr

Cupid-­‐GFP  is  dispersed  throughout  cultured  Mouse  Heart  cells  

Confocal  sec?ons  of  GFP  Fluorescence  Mouse  Cardiomyocytes  

Top  of  cells  

Base  of  Slide  

Cupid-­‐GFP  fluorescence  is  distributed  throughout  the  interior  of  living  cells  

Cupid-­‐GFP  5  uM  (NON-­‐Fluorescent)  LIVE  Mouse  heart  cell  culture  1  Hour  NO  wash  off  during  experiment  

Cupid-­‐GFP  fluorescence  is  neither  trapped  in  vesicles  nor  excluded  from  structures  e.g.  nucleus  

Page 17: Cupid Peptides presentation wjr

Cupid-­‐GFP  is  dispersed  throughout  cultured  Human  cells  

Cupid-­‐GFP  1  uM  (NON-­‐Fluorescent)  LIVE  Human  HEC  cell  culture  1  Hour  NO  wash  off  during  experiment  Confocal  sec?ons  of  GFP  Fluorescence  

Top  

Base  

Human  endometrioid  adenocarcinoma  images  courtesy    Dr  Lewis  Francis,  Swansea  University,  U.K.  

Page 18: Cupid Peptides presentation wjr

         Cupid-­‐GFP  treated  cells  exhibit  normal  viability  

Viability  test  using  MTT  assay  Cupid-­‐GFP  5  uM  (NON-­‐Fluorescent)  Human  HEC-­‐50  cell  culture    

0  

20  

40  

60  

80  

100  

120  

140  

0   4   8   24  

Viability  %  of  Control  

Time  (Hours)  

Page 19: Cupid Peptides presentation wjr

Applica(ons  of  Cupid  Technology  

Induced  pluripotent  stem  cells  (iPSCs)    Adult  cells  that  have  been  gene(cally  reprogrammed  to  an  embryonic  stem  cell–like  state  by  factors  important  for  maintaining  the  defining  proper(es  of  embryonic  stem  cells  

•  iPSCs  were  first  generated  by  Shinya  Yamanaka  at  Kyoto  University,  Japan  in  2006.      •  Yamanaka  used  genes  that  had  been  iden(fied  as  par(cularly  important  in  embryonic  stem  cells  (ESCs),  and  used  retroviruses  to  transduce  mouse  fibroblasts  with  a  selec(on  of  those  genes.      •  Eventually,  four  key  pluripotency  genes  essen(al  for  the  produc(on  of  pluripotent  stem  cells  were  isolated;  Oct-­‐3/4,  SOX2,  c-­‐Myc,  and  Klf4  

Page 20: Cupid Peptides presentation wjr

         Why  are  iPSCs  important?    

iPS  cell  research  allows    −  both  wild-­‐type  and  disease-­‐specific  pluripotent  cells  to  be  derived  from  accessible  sources      iPS  cells  will  help  researchers  −  create  gene(c  models  for  disease  −  understand  molecular  controls  influencing  cell  development        iPS  cells  hold  the  promise  of    −  reducing  drug  development  (mes    −  improving  drug  safety  −  bringing  us  closer  to  Personalized  Medicine  and  targeted  therapies  

Page 21: Cupid Peptides presentation wjr

Genera(on  of  iPSC  cells  with  Reprogramming  Factors  (RFs)  

Soma(c  cells  (e.g.  Fibroblasts)  

Add  genes  for  reprogramming  factors    e.g.  Oct-­‐3/4,  SOX2,  c-­‐Myc,  and  Klf4  

Select  and  expand  iPSC  colonies  

Page 22: Cupid Peptides presentation wjr

iPSC  Problems  

-­‐  Protocols  do  not  exist  to  harmonize  results  from  research  laboratories  u(lizing  iPS  cell  lines  necessary  to  validate  findings.    

-­‐  Current  iPSC  genera(on  protocols  use  gene(c  delivery  systems  of  Reprogramming            Proteins  (RP’s),  risking  integra(on  with  iPSC  DNA  and  gene(c  problems  downstream.    -­‐          Furthermore  Cupid  RP  factors  proteins  themselves  have  oncogenic  poten(al  

•  Oncogenesis  Problem  

•  Gene?c  Instability  Problem:  

•  Valida?on  Criteria  Problem:  

-­‐      iPS  cells  have  demonstrated  significant  gene(c  variability  upon  reprogramming  and  subsequent  culture.    

Page 23: Cupid Peptides presentation wjr

Genera(ng  iPSC  cells  with  CPP3  linked  Reprogramming  Factors  (RFs)  

Soma(c  cells  (e.g.  Fibroblasts)  

Add  the  reprogramming  factors  (e.g.  Oct-­‐3/4,  SOX2,    c-­‐Myc,  and  Klf4)  as  CPP3-­‐Proteins      

Select  and  expand  iPSC  colonies  

Page 24: Cupid Peptides presentation wjr

     Cupid  Solu(ons  to  iPSC  problems  

-­‐  Cupid  RFs  are  applied  to  the  media  and  therefore  dosing  regimes  are  very  controllable.  This  will  allows  result  evalua(on  and  protocol  harmoniza(on.  

-­‐  Unlike  retroviral  or  other  gene(c  delivery  systems,  Cupid-­‐linked  reprogramming  factors  (Cupid  RFs)  are  proteins  and  will  not  integrate  with  iPSC  DNA,  avoiding  the  poten(al  to  cause  gene(c  problems  downstream.  -­‐  Furthermore  Cupid  RFs  will  be  recycled  (‘turned  over’)  just  like  other  proteins  and  therefore  will  be  removed  following  simple  media  exchange.  

-­‐  Variability  caused  by  differences  in  modes  of  gene(c  delivery  systems  or  uneven  delivery  between  individual  iPS  cells  could  poten(ally  be  controlled  or  negated  with  a  Cupid  RF  delivery  system.  

•  Oncogenesis  Solu?on  

•  Gene?c  Instability  Solu?on:  

•  Valida?on  Criteria  Solu?on:  

Page 25: Cupid Peptides presentation wjr

Prototype  Cupid-­‐GFP-­‐KLF4  

Cupid   GFP  (2-­‐239  )  Tag  

Cupid-­‐GFP-­‐KLF4  

N   KLF4  (2-­‐479  )  

Total  Amino  acids:  759  

98  

62  49  

38  

28  

Cell  Penetra(on  of  Cupid-­‐GFP-­‐83kD  in  living  cells  (5  uM,  1  Hour).  Star(ng  product  is  Non-­‐Fluorescent  

Mr:  83  kD  

Page 26: Cupid Peptides presentation wjr

Cupid-­‐GFP  sa(sfies  the  characteris(cs  required  from  CPP  technology  

•  Pure,  water-­‐soluble,  stable  in  storage  •  Capable  of  carrying  large  cargo    •  Non-­‐toxic  at  applied  concentra(ons  

•  Able  to  directly  access  cytosol  to  allow  refolding  and  subsequent  target  interac(on  

•  Ini(ally  non-­‐fluorescent,  regaining  fluorescence  within  cells.            -­‐  Eliminates  need  for  washing  of  cells            -­‐  Allows  tracking  of  CPP  throughout  experiment  

 ✔      ✔      ✔    

 ✔    

 ✔    

Page 27: Cupid Peptides presentation wjr

Summary  

 

Cupid  technology  has  reached  the  stage  where  it  can  be  applied  to  a  range  of  bioscience  applica?ons:  •   Cell  Tracking,  protein-­‐protein  interac(on  and  protein  func(on  mapping  •   Regenera(ve  medicine:  Crea(on  of  Stem  Cells,  cell  treatment          ex-­‐vivo,    •   Drug  delivery  vehicle  

Cupid  manufactures  Cell-­‐Penetra?ng  proteins  linked  to  our  proprietary  molecule  Cupid  -­‐  Cupid  products  are  added  to  the  cell  medium  and  directly  accesses  the  interior  of  cells  -­‐  Penetra(on  and  dispersal  are  monitored  by  imaging  the  refolding  of  GFP  within  living  cells  -­‐  Rapid  Cell  penetra(on  is  observed  in  real  (me  

Page 28: Cupid Peptides presentation wjr

William  Jonathan  Ryves  

Cardiff,  

U.K.  

www.cupidpep(des.com  

Page 29: Cupid Peptides presentation wjr

Collabora(on  with  Cardiff  and  Vale  UHB  and  Cardiff  University  

Goal:  By  working  together  Cupid  and  CVUHB  /  CU  could  establish  Cardiff  as  the  global  centre  for  Cell  Penetra(ng  Pep(de  (CPP)  technology  Benefits:  a)  Inward  commercial  investment  in  Wales  b)  Enhance  biotechnology  profile  of  CVUHB  /  CU    c)  Increase  employment    

Provides  

Cupid   CVUHB  /  CU    1.  Access  to  CPP  patented  technology  2.  Leadership  in  CPP  experiments  3.  Novel  CPP  products  

Receives  

1.  Access  1st  class  labs  and  equipment  2.  Personnel  to  conduct  experiments  3.  Know-­‐how  in  specific  scien(fic  areas  

1.  Enhanced  recogni(on  of  Cupid  2.  Accelera(on  of  Cupid  development  3.  Improved  access  to  R  &  D  funding  

1.  Access  to  leading  CPP  products  2.  Development  of  CPP  skill  set  3.  Opportunity  to  publish  in  and  

open  up  new  research  areas  4.  Improve  access  to  grant  funding  

Page 30: Cupid Peptides presentation wjr

Exis(ng  Development  Program  

Cardiff:  a)  Adrian  Harwood  b)  Trevor  Dale  c)  Rachel  Errington  Swansea:  Lewis  Francis,  Nano  &  Micro  technologies  for  Healthcare  (NMH)  (Exploring  penetra(on  mechanism  with  Atomic  Force  Microscopy)    

Commercial  Development:  Contacts  with  firms  interested  in  using  Cupid  as  a  drug  delivery  mechanism  

a)  European  Cancer  Stem  Cell  Research  Ins(tute  (ECSCR  -­‐  Cardiff)  b)  Neuroscience  and  Mental  Health  Research  Ins(tute  (NMHRI  -­‐  Cardiff)  c)  Research  and  development  funding  sources  d)  Suppliers  to  CU  /  CVUHB  to  make  use  of  Cupid-­‐GFP  tracking  technology  

Poten(al  addi(onal  contact  areas  

Contact  details:   W  J  Ryves          :        jonnyryves@cupidpep(des.com  A  W  Speirs      :      [email protected]