Download - Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

Transcript
Page 1: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

Min Soo KIM

Department of Mechanical and Aerospace EngineeringSeoul National University

Optimal Design of Energy Systems (M2794.003400)

Chapter 8. Lagrange Multipliers

Page 2: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

Chapter 8. Lagrange Multipliers

8.1 Calculus Methods of optimization

- Differentiable function

- Equality constraints

Using calculus Using the other methods

2/18

- Inequaility constraints

- Not continuous function

Page 3: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

Chapter 8. Lagrange Multipliers

8.2 Lagrange Multiplier equations

3/18

Function : 𝑦 = 𝑦 π‘₯1, π‘₯2, β‹― , π‘₯𝑛

Constraints : πœ™1 π‘₯1, π‘₯2, β‹― , π‘₯𝑛 = 0

πœ™2 π‘₯1, π‘₯2, β‹― , π‘₯𝑛 = 0

πœ™π‘š π‘₯1, π‘₯2, β‹― , π‘₯𝑛 = 0

βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™

How to optimize the function subject to the constraints?

Page 4: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

Chapter 8. Lagrange Multipliers

8.2 Lagrange Multiplier equations

4/18

For an optimized point function f(x,y) and g(x,y) are parallel, which meansgradient of f(x,y) is tangent to that of g(x,y)

Thus, for a certain constant Ξ», equation below is established

For multiple m constraints

𝛻𝑓 π‘₯, 𝑦 = πœ†π›»π‘” π‘₯, 𝑦

𝛻𝑓 =

π‘˜=1

π‘š

πœ†π‘šπ›»π‘”π‘š = 0

Page 5: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

Chapter 8. Lagrange Multipliers

8.3 The gradient vector

Gradient of scalar

𝛻𝑦 =πœ•π‘¦

πœ•π‘₯1 𝑖1 +

πœ•π‘¦

πœ•π‘₯2 𝑖2 +β‹―+

πœ•π‘¦

πœ•π‘₯𝑛 𝑖𝑛

𝛻 = π‘”π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘›π‘‘ π‘£π‘’π‘π‘‘π‘œπ‘Ÿ 𝑖 = 𝑒𝑛𝑖𝑑 π‘£π‘’π‘π‘‘π‘œπ‘Ÿ ∢ β„Žπ‘Žπ‘£π‘’ π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘›, 𝑒𝑛𝑖𝑑 π‘šπ‘Žπ‘”π‘›π‘–π‘‘π‘’π‘‘π‘’

( 𝑖1, 𝑖2 , 𝑖3 π‘Žπ‘Ÿπ‘’ π‘‘β„Žπ‘’ 𝑒𝑛𝑖𝑑 π‘£π‘’π‘π‘‘π‘œπ‘Ÿ 𝑖𝑛 π‘‘β„Žπ‘’ π‘₯1, π‘₯2, π‘₯3 π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘›)

5/18

Page 6: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

* *

1 1,m nx x

at optimum point

unknowns

m

n

m n

m nif fixed values of x’s(no optimization)

Chapter 8. Lagrange Multipliers

8.4 Further explanation of Lagrange multiplier equations

n scalar equations

𝑖1:πœ•π‘¦

πœ•π‘₯1βˆ’ πœ†1

πœ•πœ™1

πœ•π‘₯1βˆ’ πœ†π‘š

πœ•πœ™π‘š

πœ•π‘₯1= 0

βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™

𝑖𝑛:πœ•π‘¦

πœ•π‘₯π‘›βˆ’ πœ†1

πœ•πœ™1

πœ•π‘₯π‘›βˆ’ πœ†π‘š

πœ•πœ™π‘š

πœ•π‘₯𝑛= 0

+ m constraint equations m+n simultaneous equations

6/18

optimum point can be found

Page 7: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

8.5 Unconstrained optimization

Chapter 8. Lagrange Multipliers

𝑦 = 𝑦 π‘₯1, π‘₯2,β‹― , π‘₯𝑛

β†’ 𝛻𝑦 = 0 no ϕ′𝑠 π‘œπ‘Ÿπœ•π‘¦

πœ•π‘₯1=

πœ•π‘¦

πœ•π‘₯2= β‹― =

πœ•π‘¦

πœ•π‘₯𝑛= 0

The state point where the derivatives are zero = critical point

β‡’may be max, min, saddle point, ridge, valley

7/18

Page 8: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

From (1),

Example 8.1 :

Chapter 8. Lagrange Multipliers

Find minimum value of z for a given constraint

(Solution)

8/18

𝑧 = π‘₯2 + 𝑦2 1 = π‘₯2 + π‘₯𝑦 + 𝑦2

𝛻𝑓 π‘₯, 𝑦 = πœ†π›»π‘” π‘₯, 𝑦

2π‘₯ βˆ’ πœ† 2π‘₯ + 𝑦 = 0

𝑔 π‘₯, 𝑦 βˆ’ 1 = 0

Β·Β·Β·Β·Β·(1)

Β·Β·Β·Β·Β·(2)

2𝑦 βˆ’ πœ† 2𝑦 + π‘₯ = 0𝑦 = π‘₯ π‘œπ‘Ÿ 𝑦 = βˆ’π‘₯

Substituting (2) from the result

1 = 3π‘₯2 or 1 = π‘₯2

Thus, minimum value z is at π‘₯, 𝑦 =1

3,Β±

1

3

2

3

Page 9: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

Chapter 8. Lagrange Multipliers

Example 8.2,3 : Constrained/Unconstrained optimization

A total length of 100 m of tubes must be installed in a shell-and-tube heat

exchanger.

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘ = 900 + 1100𝐷2.5𝐿 + 320𝐷𝐿 (𝒂)

where L is the length of the heat exchanger and D is the diameter of the shell,

both in meters. 200 tubes will fit in a cross-sectional area of 1 m2 in the shell.

Determine the D and L of the heat exchanger for minimum first cost.

9/18

Page 10: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

Chapter 8. Lagrange Multipliers

(Solution) – Unconstrained Optimization

Have to put 100m tubes in the shell

: πœ‹π·2

4m2 200 tubes/m2 βˆ— 𝐿 m = 100 m

β‡’ 50πœ‹π·2𝐿 = 100 𝒃

Substitute (b) into (a)

β‡’ π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘ = 900 +2200

πœ‹π·0.5 +

640

πœ‹π·

𝑑(π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘)

𝑑(𝐷)=1100

πœ‹π·0.5βˆ’640

πœ‹π·2

π·βˆ— = 0.7 m, πΏβˆ— = 1.3 m, π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘βˆ— = $1777.45

10/18

Page 11: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

Chapter 8. Lagrange Multipliers

(Solution) – Constrained Optimization

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘ = 900 + 1100𝐷2.5𝐿 + 320𝐷𝐿 (𝒂)

50πœ‹π·2𝐿 = 100 𝒃

𝛻y = 2.5 1100 𝐷1.5𝐿 + 320𝐿 𝑖1 + 1100𝐷2.5 + 320𝐷 𝑖2

π›»πœ™ = 100πœ‹π·πΏ 𝑖1 + 50πœ‹π·2 𝑖2

𝑖1: 2750𝐷1.5𝐿 + 320𝐿 βˆ’ πœ†100πœ‹π·πΏ = 0 (𝒄)

𝑖2: 1100𝐷2.5 + 320𝐷 βˆ’ πœ†50πœ‹π·2 = 0 𝒅

Using (b), (c), (d), find π·βˆ—, πΏβˆ—, πœ†

Result is the same as unconstrained optimization

11/18

Page 12: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

2x

1x

3y y

2y y

1y y

1dx

2dx

Chapter 8. Lagrange Multipliers

8.7 Gradient vector

- gradient vector is normal to contour line

𝑦 = 𝑦 π‘₯1, π‘₯2

𝑑𝑦 =πœ•π‘¦

πœ•π‘₯1𝑑π‘₯1 +

πœ•π‘¦

πœ•π‘₯2𝑑π‘₯2

Along the line of 𝑦 = π‘π‘œπ‘›π‘ π‘‘.

𝑑𝑦 = 0 β†’ 𝑑π‘₯1 = βˆ’π‘‘π‘₯2πœ•π‘¦/πœ•π‘₯2πœ•π‘¦/πœ•π‘₯1

Substitution into arbitrary unit vector

𝑑π‘₯1 𝑖 + 𝑑π‘₯2 𝑗

(𝑑π‘₯1)2 + (𝑑π‘₯2)

2

12/18

Page 13: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

Tangent vector

Gradient vector

0T G

Chapter 8. Lagrange Multipliers

8.7 Gradient vector

𝑇 =𝑑π‘₯1 𝑖 + 𝑑π‘₯2 𝑗

(𝑑π‘₯1)2 + (𝑑π‘₯2)

2=

𝑖2 βˆ’πœ•π‘¦/πœ•π‘₯2πœ•π‘¦/πœ•π‘₯1

𝑖1

πœ•π‘¦/πœ•π‘₯2πœ•π‘¦/πœ•π‘₯1

2

+ 1

=βˆ’

πœ•π‘¦πœ•π‘₯2

𝑖1 +πœ•π‘¦πœ•π‘₯1

𝑖2

πœ•π‘¦πœ•π‘₯2

2

+πœ•π‘¦πœ•π‘₯1

2

𝐺 =𝛻𝑦

𝛻𝑦=

πœ•π‘¦/πœ•π‘₯1 𝑖1 + πœ•π‘¦/πœ•π‘₯2 𝑖2

πœ•π‘¦/πœ•π‘₯12 + πœ•π‘¦/πœ•π‘₯2

2

13/18

Page 14: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

saddle pointridge & valley point

ridge

valley

Chapter 8. Lagrange Multipliers

8.9 Test for maximum or minimum

decide whether the point is a maximum, minimum, saddle point, ridge, or valley

14/18

Page 15: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

minimum

maximum

a1x2x

a

1x2x

Chapter 8. Lagrange Multipliers

8.9 Test for maximum or minimum

π‘₯ = π‘Ž ∢ π‘‘β„Žπ‘’ π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š 𝑖𝑠 𝑒π‘₯𝑝𝑒𝑐𝑑𝑒𝑑 π‘‘π‘œ π‘œπ‘π‘π‘’π‘Ÿ

𝑦 π‘₯ = 𝑦 π‘Ž +𝑑𝑦

𝑑π‘₯π‘₯ βˆ’ π‘Ž +

1

2

𝑑2𝑦

𝑑π‘₯2(π‘₯ βˆ’ π‘Ž)2 +β‹― Taylor series expansion near π‘₯ = π‘Ž

If 𝑑𝑦

𝑑π‘₯> 0 π‘œπ‘Ÿ

𝑑𝑦

𝑑π‘₯< 0 π‘‘β„Žπ‘’π‘Ÿπ‘’ 𝑖𝑠 π‘›π‘œ π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š

→𝑑𝑦

𝑑π‘₯= 0

If𝑑2𝑦

𝑑π‘₯2> 0

If𝑑2𝑦

𝑑π‘₯2< 0

𝑦 π‘₯1 > 𝑦 π‘Ž π‘€β„Žπ‘’π‘› π‘₯1 > π‘Žπ‘¦ π‘₯2 > 𝑦 π‘Ž π‘€β„Žπ‘’π‘› π‘₯2 < π‘Ž

𝑦 π‘₯1 < 𝑦 π‘Ž π‘€β„Žπ‘’π‘› π‘₯1 > π‘Žπ‘¦ π‘₯2 < 𝑦 π‘Ž π‘€β„Žπ‘’π‘› π‘₯2 < π‘Ž

15/18

Page 16: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

min

11 12

21 22

2

11 22 12

y yD

y y

y y y

max

Chapter 8. Lagrange Multipliers

8.9 Test for maximum or minimum

π‘Ž1, π‘Ž2 : π‘‘β„Žπ‘’ π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š π‘œπ‘“ 𝑦 π‘₯1, π‘₯2 𝑖𝑠 𝑒π‘₯𝑝𝑒𝑐𝑑𝑒𝑑 π‘‘π‘œ π‘œπ‘π‘π‘’π‘Ÿ

𝑦 π‘₯1, π‘₯2 = 𝑦 π‘Ž1, π‘Ž2 +πœ•π‘¦

πœ•π‘₯1π‘₯1 βˆ’ π‘Ž1 +

πœ•π‘¦

πœ•π‘₯2π‘₯2 βˆ’ π‘Ž2 +

1

2𝑦11β€²β€² (π‘₯1 βˆ’ π‘Ž1)

2 +

𝑦12β€²β€² π‘₯1 βˆ’ π‘Ž1 π‘₯2 βˆ’ π‘Ž2 +

1

2𝑦22β€²β€² (π‘₯2 βˆ’ π‘Ž2)

2 +β‹―

𝐷 > 0 π‘Žπ‘›π‘‘ 𝑦11β€²β€² > 0 (𝑦22

β€²β€² > 0)

𝐷 > 0 π‘Žπ‘›π‘‘ 𝑦11β€²β€² < 0 (𝑦22

β€²β€² < 0)

𝐷 < 0 π‘Žπ‘›π‘‘ 𝑦11β€²β€² < 0 (𝑦22

β€²β€² < 0)

16/18

Page 17: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

Chapter 8. Lagrange Multipliers

Example 8.4 : Test for maximum or minimum

Optimal values of π‘₯1 and π‘₯2, test max, min

𝑦 =π‘₯12

4+

2

π‘₯1π‘₯2+ 4π‘₯2

(Solution)

πœ•π‘¦

πœ•π‘₯1=π‘₯12βˆ’

2

π‘₯12π‘₯2

πœ•π‘¦

πœ•π‘₯2= βˆ’

2

π‘₯1π‘₯22 + 4

π‘₯1βˆ— = 2, π‘₯2

βˆ— =1

2

πœ•2𝑦

πœ•π‘₯12 =

3

2,πœ•2𝑦

πœ•π‘₯22 = 16,

πœ•2𝑦

πœ•π‘₯1πœ•π‘₯2= 2

At π‘₯1 and π‘₯2

β†’3

22

2 16> 0 π‘Žπ‘›π‘‘ 𝑦11

β€²β€² > 0 minimum

17/18

Page 18: Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained Optimization Have to put 100m tubes in the shell: πœ‹π· 2 4 m2 200tubes/m2 βˆ—πΏm

In example 8.3, if the total length of the tube increases from 100m torandom value β€˜H’, what would be the increase in minimum cost ?

Extra meter of tube for the heat exchanger would cost additional $8.78

Chapter 8. Lagrange Multipliers

8.10 Sensitivity coefficients

- represents the effect on the optimal value of slightlyrelaxing the constraints

- variation of optimized objective function π‘¦βˆ—

50πœ‹π·2𝐿 = 𝐻 β†’ π·βˆ— = 0.7π‘š, πΏβˆ— = 0.013𝐻

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘βˆ— = 900 + 1100π·βˆ—2.5πΏβˆ— + 320π·βˆ—πΏβˆ— = 900 + 8.78𝐻

𝑆𝐢 =πœ•(π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘βˆ—)

πœ•π»= 8.78 = πœ†

18/18