Download - A. Yousefi, S. Javadi, E. Babolian, E. [email protected],, Abstract In this paper, we propose and analyze a spectral Chebyshev-Legendre approximation for fractional order

Transcript
  • Convergence analysis of the Chebyshev-Legendre spectral method for a class of Fredholm

    fractional integro-differential equations

    A. Yousefi, S. Javadi, E. Babolian, E. Moradi

    Department of Computer Science, Faculty of Mathematical Sciences and Computer, Kharazmi

    University, Tehran, Iran

    [email protected], [email protected], [email protected], [email protected],,

    Abstract

    In this paper, we propose and analyze a spectral Chebyshev-Legendre approximation for

    fractional order integro-differential equations of Fredholm type. The fractional derivative is

    described in the Caputo sense. Our proposed method is illustrated by considering some examples

    whose exact solutions are available. We prove that the error of the approximate solution decay

    exponentially in ๐ฟ2-norm.

    Keyword. Chebyshev-Legendre Spectral method, Caputo derivative, Fractional integro-

    differential equations, Convergence analysis.

    1. Introduction

    Many phenomena in engineering, physics, chemistry, and the other sciences may be applied

    by models using mathematical tools from fractional calculus. The theory of derivatives and

    integrals of fractional order allow us to describe physical phenomena more accurately [1-2].

    Furthermore most problems cannot be solved analytically, and hence finding good approximate

    solution, using numerical methods will be very helpful. Recently, several numerical methods have

    been given to solve fractional differential equations (FDEs) and fractional integro-differential

    equations (FIDEs). These methods include collocation method [3-4], variational iteration method

    [5], Adomian decomposition method [6], Homotopy perturbation method [5,7], fractional

    differential transform method [8-9], the reproducing kernel method [10], and wavelet method [11-

    13].

    Spectral methods are an emerging area in the field of applied sciences and engineering. These

    methods provide a computational approach that has achieved substantial popularity over the last

    three decades. They have been applied successfully to numerical simulations of many problems

    in fractional calculus ([14-20]).

    In this paper, we are concerned with numerical solutions of the following equation:

    โˆ‘๐‘Ž๐‘– ๐ท(๐‘–)๐‘ฆ(๐‘ก)

    ๐‘›

    ๐‘–=0

    = ๐‘“(๐‘ก) +โˆซ ๐‘˜(๐‘ก, ๐‘ ) ๐ท๐›ผ๐‘ฆ(๐‘ ) ๐‘‘๐‘ 1

    0

    ,

    ๐‘šโˆ’1 < ๐›ผ โ‰ค ๐‘š,๐‘š โˆˆ โ„•, ๐‘ก โˆˆ [0,1], (1)

    subject to the initial values

    mailto:[email protected]:[email protected]:[email protected]:[email protected]

  • ๐‘ฆ(๐‘–)(0) = ๐‘‘๐‘– , ๐‘– = 0,1, โ€ฆ , ๐‘› โˆ’ 1, (2)

    where Dฮฑ is the fractional derivative in the Caputo sense, ๐‘“(๐‘ก) and ๐‘˜(๐‘ก, ๐‘ ) are the known functions

    that are supposed to be sufficiently smooth and ๐‘‘๐‘– for any ๐‘– is constant. Existence and uniqueness

    of the solution of the Eq. (1) have been shown in [21]. The authors in [22] applied the backward

    and central-difference formula for approximating solution at the mesh points.

    The fractional derivative are global, i.e. they are defined over the whole interval ๐ผ = [0,1],

    and therefore global method, such as spectral methods, are better suited for FDEs and FIDEs.

    Yousefi and et al. [20] introduced a quadrature shifted Legendre tau method based on the Gauss-

    Lobatto interpolation for solving Eq. (1). Inspired by the work of [23-24], we extend the approach

    to Eq. (1) and provide a rigorous convergence analysis for the Chebyshev-Legendre method. We

    show that approximate solutions are convergent in ๐ฟ2 โˆ’norm.

    The structure of this paper is as follows: In section 2, some necessary definitions and

    mathematical tools of the fractional calculus which are required for our subsequent developments

    are introduced. In section 3, the Chebyshev-Legendre method of FIDEs is obtained. The rest of

    this section is devoted to apply the proposed method for solving Eq. (1) by using the shifted

    Legendre and Chebyshev polynomials. After this section, we discuss about convergence analysis

    and then, some numerical experiments are presented in Section 5 to show the efficiency of

    Chebyshev-Legendre spectral method. The conclusion is given in section 6.

    2. Basic Definitions and Fractional Derivatives

    For ๐‘š โˆˆ โ„•, the smallest integer that is greater than or equal to ๐›ผ, i.e. ๐‘š = โŒˆ๐›ผโŒ‰, the Caputoโ€™s

    fractional derivative operator of order ๐›ผ > 0, is defined as:

    ๐ท๐›ผ๐‘ฆ(๐‘ฅ) = {๐ฝ๐‘šโˆ’๐›ผ๐ท๐‘š๐‘ฆ(๐‘ฅ), ๐‘šโˆ’ 1 < ๐›ผ โ‰ค ๐‘š,

    ๐ท๐‘š๐‘ฆ(๐‘ฅ), ๐›ผ = ๐‘š, (3)

    where

    ๐ฝ๐‘šโˆ’๐›ผ๐‘ฆ(๐‘ฅ) =1

    ฮ“(๐‘š โˆ’๐›ผ) โˆซ (๐‘ฅ โˆ’ ๐‘ก)๐‘šโˆ’๐›ผโˆ’1๐‘ฆ(๐‘ก)๐‘‘๐‘ก

    ๐‘ฅ

    0

    , ๐œˆ > 0, ๐‘ฅ > 0.

    For the Caputoโ€™s derivative we have [2]:

    ๐ท๐›ผ ๐‘ฅ๐›ฝ = {

    0, ๐›ฝ โˆˆ {0,1,2, โ€ฆ } ๐‘Ž๐‘›๐‘‘ ๐›ฝ < ๐‘š,

    ฮ“(๐›ฝ + 1)

    ฮ“(๐›ฝ โˆ’ ๐›ผ + 1) ๐‘ฅ๐›ฝโˆ’๐›ผ ๐›ฝ โˆˆ {0,1,2,โ€ฆ } ๐‘Ž๐‘›๐‘‘ ๐›ฝ โ‰ฅ ๐‘š.

    (4)

    Recall that for ฮฑ โˆˆ โ„•, the Caputo differential operator coincides with the usual differential

    operator. Similar to standard differentiation, Caputoโ€™s fractional differentiation is a linear

    operator, i.e.,

    ๐ท๐›ผ(๐œ† ๐‘”(๐‘ฅ) + ๐œ‡ โ„Ž(๐‘ฅ)) = ๐œ†๐ท๐›ผ๐‘”(๐‘ฅ) + ๐œ‡๐ท๐›ผโ„Ž(๐‘ฅ),

    where ๐œ† and ๐œ‡ are constants.

    The Chebyshev polynomials {๐‘‡๐‘–(๐‘ก); ๐‘– = 0,1,โ€ฆ } are defined on the interval [โˆ’1,1] with the

    following recurrence formula:

    ๐‘‡๐‘–+1(๐‘ก) = 2๐‘ก ๐‘‡๐‘–(๐‘ก) โˆ’ ๐‘‡๐‘–โˆ’1(๐‘ก), ๐‘– = 1,2,โ€ฆ,

  • with ๐‘‡0(๐‘ก) = 1 and ๐‘‡1(๐‘ก) = t. The shifted Chebyshev polynomials are defined by introducing the

    change of variable ๐‘ก = 2๐‘ฅ โˆ’ 1. Let the shifted Chebyshev polynomials ๐‘‡๐‘–(2๐‘ฅ โˆ’ 1) be denote by

    ๐‘‡1,๐‘–(๐‘ฅ), satisfying the relation

    ๐‘‡1,๐‘–+1(๐‘ฅ) = 2(2๐‘ฅ โˆ’ 1)๐‘‡1,๐‘–(๐‘ฅ) โˆ’ ๐‘‡1,๐‘–โˆ’1(๐‘ฅ), ๐‘– = 1,2, โ€ฆ , ๐‘ฅ โˆˆ [0,1], (5)

    where ๐‘‡1,0(๐‘ฅ) = 1 and ๐‘‡1,1(๐‘ฅ) = 2๐‘ฅ โˆ’ 1.

    By these definitions we will have [32]

    - ๐‘‡1,๐‘–(๐‘ฅ) = ๐‘– โˆ‘ (โˆ’1)๐‘–โˆ’๐‘˜ (๐‘–+๐‘˜โˆ’1)! 2

    2๐‘˜

    (๐‘–โˆ’๐‘˜)!(2๐‘˜)! ๐‘ฅ๐‘˜ ๐‘– = 1,2, โ€ฆ๐‘–๐‘˜=0 . (6)

    - ๐‘‡1,๐‘–(0) = (โˆ’1)๐‘– , ๐‘‡1,๐‘–(1) = 1. (7

    - โˆซ ๐‘‡1,๐‘—(๐‘ฅ) ๐‘‡1,๐‘˜(๐‘ฅ)(๐‘ฅ โˆ’ ๐‘ฅ2)

    โˆ’1

    2 ๐‘‘๐‘ฅ = ๐›ฟ๐‘—๐‘˜โ„Ž๐‘˜,1

    0 (8)

    where ๐›ฟ๐‘—๐‘˜ is Kronecker delta and

    โ„Ž๐‘˜ = {๐œ‹, ๐‘˜ = 0 ๐œ‹

    2, ๐‘˜ โ‰ฅ 1

    , (9)

    In this paper, we will consider the Gauss-type quadrature formulas. We start by defining the

    Chebyshev-Gauss quadrature nodes and weights, respectively:

    ๐‘ฅ๐‘— = โˆ’ cos(2๐‘—+1)๐œ‹

    2๐‘+2, ๐‘ค๐‘— =

    ๐œ‹

    ๐‘+1, ๐‘— = 0,1,โ€ฆ , ๐‘.

    With the above choices, there holds

    โˆซ ๐‘(๐‘ฅ)1

    โˆš1โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฅ = โˆ‘๐‘(๐‘ฅ๐‘—)๐‘ค๐‘—, โˆ€๐‘ โˆˆ ๐‘ƒ2๐‘+1

    ๐‘

    ๐‘—=0

    1

    โˆ’1

    , (10)

    where ๐‘ƒ2๐‘+1 is a polynomial of degree less than or equal 2๐‘ + 1.

    We now turn to the discrete Chebyshev transforms. The transforms can be performed via a matrix-

    vector multiplication with ๐’ช(๐‘2) operations as usual and when we use Chebyshev polynomials,

    it can be carried out with ๐’ช(๐‘ ๐‘™๐‘œ๐‘”2 ๐‘) operations via fast Fourier transform (๐…๐…๐“) [26-27].

    We define the Chebyshev-Lagrange polynomial by

    ๐บ๐‘˜(๐‘ฅ) =๐‘‡๐‘˜(๐‘ฅ)

    (๐‘ฅ โˆ’ ๐‘ฅ๐‘˜)๐‘‡๐‘˜โ€ฒ(๐‘ฅ๐‘˜)

    , ; = 0,1, โ€ฆ , ๐‘.

    Given ๐‘ข(๐‘ฅ) โˆˆ ๐ถ[โˆ’1,1], the Chebyshev-Lagrange interpolation operator ๐ผ๐‘๐‘๐‘ข is defined by

    (๐ผ๐‘๐‘๐‘ข)(๐‘ฅ) =โˆ‘ ๐‘ข๐‘˜ ๐บ๐‘˜(๐‘ฅ) โˆˆ โ„™๐‘ ,

    ๐‘

    ๐‘˜=0

    (11)

    where {๐‘ข๐‘˜} are determined by the forward discrete Chebyshev transform as follows

    ๐‘ข๐‘˜ = โˆ‘ ๐‘ข(๐‘ฅ๐‘—)cos(2๐‘˜+1)๐‘—๐œ‹

    2๐‘, 0 โ‰ค ๐‘˜ โ‰ค ๐‘. (12)๐‘โˆ’1๐‘—=0

    The above transform can be computed by using ๐‘ญ๐‘ญ๐‘ป in ๐’ช(๐‘ ๐‘™๐‘œ๐‘”2๐‘) operations [26-27].

    Let ๐ฟ ๐‘–(๐‘ก) be the standard Legendre polynomial of degree i, then we have [20]

    - Three-term recurrence relation

    (๐‘– + 1)๐ฟ๐‘–+1(๐‘ก) = (2๐‘– + 1)๐‘ก ๐ฟ๐‘–(๐‘ก) โˆ’ ๐‘–๐ฟ ๐‘–โˆ’1(๐‘ก), ๐‘– โ‰ฅ 1, (13)

    and the first two Legendre polynomials are

  • ๐ฟ0(๐‘ก) = 1, ๐ฟ1(๐‘ก) = ๐‘ก.

    - The Legendre polynomial ๐ฟ ๐‘–(๐‘ก) has the expansion

    ๐ฟ๐‘–(๐‘ก) =1

    2๐‘– โˆ‘ (โˆ’1)๐‘™

    (2๐‘–โˆ’2๐‘™) !

    2๐‘™ ๐‘™!(๐‘–โˆ’๐‘™)!(๐‘–โˆ’2๐‘™)! ๐‘ก๐‘–โˆ’2๐‘™ . (14)

    [๐‘–

    2]

    ๐‘™=0

    - Orthogonality

    โˆซ ๐ฟ๐‘—(๐‘ก)๐ฟ๐‘˜(๐‘ก) ๐‘‘๐‘ก = โ„Ž๐‘˜๐›ฟ๐‘—๐‘˜ , (15)1

    โˆ’1

    such that

    โ„Ž๐‘˜ =2

    2๐‘˜ + 1.

    - Symmetry property

    ๐ฟ๐‘–(โˆ’๐‘ก) = (โˆ’1)๐‘– ๐ฟ๐‘–(๐‘ก), Li(ยฑ1) = (ยฑ1)

    ๐‘– . (16)

    Hence, ๐ฟ๐‘–(๐‘ก) is an odd (resp. even) function, if ๐‘– is odd (resp. even).

    Now, if we define the shifted Legendre polynomial of degree ๐‘– by ๐ฟ1,๐‘–(๐‘ฅ) = ๐ฟ๐‘–(2๐‘ฅโˆ’ 1), then we

    can obtain the analytic form and three-term recurrence relation of the shifted Legendre

    polynomials of degree ๐‘– by the following form, respectively

    ๐ฟ1,๐‘–(๐‘ฅ) = โˆ‘(โˆ’1)๐‘–+๐‘˜

    (๐‘– + ๐‘˜)!

    (๐‘– โˆ’ ๐‘˜)! (๐‘˜!)2 ๐‘ฅ๐‘˜ ,

    ๐‘–

    ๐‘˜=0

    ๐ฟ1,๐‘–(๐‘ฅ) =2๐‘– + 1

    ๐‘– + 1๐‘ฅ ๐ฟ1,๐‘–(๐‘ฅ) โˆ’

    ๐‘–

    ๐‘– + 1๐ฟ1,๐‘–โˆ’1(๐‘ฅ), ๐‘– โ‰ฅ 1. (17)

    According to Eq. (15), the orthogonality relation of shifted Legendre polynomials is

    โˆซ ๐ฟ1,๐‘—(๐‘ก)๐ฟ1,๐‘˜(๐‘ก) ๐‘‘๐‘ก = โ„Ž๐‘˜๐›ฟ๐‘—๐‘˜ . (18)1

    0

    We denote ๐ฟ๐œ”2 (๐ผ) by the weighted ๐ฟ2 Hilbert space with the scalar product

    (๐‘ข, ๐‘ฃ) = โˆซ ๐‘ข(๐‘ฅ) ๐‘ฃ(๐‘ฅ) ๐œ”(๐‘ฅ)๐‘‘๐‘ก1

    0

    , โˆ€๐‘ข, ๐‘ฃ โˆˆ ๐ฟ๐œ”2 (๐ผ),

    and the norm โ€–๐‘ขโ€–๐ฟ๐œ”2 = (๐‘ข, ๐‘ข)๐œ”

    1

    2 , where ๐œ”(๐‘ฅ) = 1 in the Legendre case and ๐œ”(๐‘ฅ) = (1 โˆ’ ๐‘ฅ2)โˆ’1

    2

    in the Chebyshev case. We may drop the subscript ๐‘ค when ๐œ” = 1. Therefore, the corresponding

    norm is

    โ€–๐‘ขโ€–๐ฟ2 = (๐‘ข, ๐‘ข)12 .

    Let ๐ป๐œ”๐‘š(๐ผ) = {๐‘ข โˆˆ ๐ฟ๐œ”

    2 (๐ผ) โˆถ ๐‘‘๐‘–๐‘ข

    ๐‘‘๐‘ฅ๐‘–โˆˆ ๐ฟ๐œ”

    2 (๐ผ), ๐‘– = 0,1, โ€ฆ๐‘š} be the weighted Sobolev space with the

    norm and semi norm defined respectively

    โ€–๐‘ฆโ€–๐ป๐œ”๐‘š (๐ผ)2 = โˆ‘โ€–๐‘ฆ(๐‘˜)โ€–

    ๐ฟ๐œ”2 (๐ผ)

    2,

    ๐‘š

    ๐‘˜=0

    and

    |๐‘ฆ|๐ป๐‘š :๐‘ (๐ผ)2 = โˆ‘ โ€–๐‘ฆ(๐‘˜)โ€–

    ๐ฟ๐œ”2 (๐ผ)

    2.๐‘๐‘˜=min(๐‘š:๐‘)

  • ๐ป๐‘š(๐ผ) by its inner product is Hilbert space.

    For a function ๐‘ฆ(๐‘ฅ) โˆˆ ๐ฟ2[0,1], the shifted Legendre expansion is

    ๐‘ฆ(๐‘ฅ) =โˆ‘๐‘Ž๐‘— ๐ฟ1,๐‘—(๐‘ฅ),

    โˆž

    ๐‘—=0

    where

    ๐‘Ž๐‘— =1

    โ„Ž1,๐‘— โˆซ ๐‘ฆ(๐‘ฅ) ๐ฟ1,๐‘—(๐‘ฅ) ๐‘‘๐‘ฅ, ๐‘— = 0,1,2, โ€ฆ, (19)

    1

    0

    and

    โ„Ž1,๐‘— =1

    2โ„Ž๐‘— =

    1

    2๐‘— + 1.

    Now, we describe the Legendre-Gauss integration in the interval (0,1). We denote by ๐‘ฅ๐‘,๐‘—,

    ๐œ”๐‘,๐‘—, ๐‘— = 0, โ€ฆ , ๐‘ , respectively the nodes and weights of the standard integration on the interval

    (โˆ’1,1). We suppose ๐‘ฅ1,๐‘,๐‘— ,๐œ”1,๐‘,๐‘— , ๐‘— = 0,โ€ฆ , ๐ฟ, are nodes and weights of the Legendre-Gauss

    integration in the interval (0,1). Then, we have

    ๐‘ฅ1,๐‘,๐‘— =1

    2 (๐‘ฅ๐‘,๐‘— +1), ๐‘ค1,๐‘,๐‘— =

    1

    2๐‘ค๐‘,๐‘— ๐‘— = 0, . . , ๐‘.

    According to Eq. (29) for any ๐‘” โˆˆ โ„™2๐‘+1, set of all polynomials of degree at most 2๐‘+ 1, we

    get

    โˆซ ๐‘”(๐‘ฅ)๐‘‘๐‘ฅ =1

    2

    1

    0

    โˆซ ๐‘”(1

    2(๐‘ฅ + 1))๐‘‘๐‘ฅ

    1

    โˆ’1

    =1

    2โˆ‘ ๐œ”๐‘,๐‘— ๐‘” (

    1

    2(๐‘ฅ๐‘,๐‘— + 1))

    ๐‘

    ๐‘—=0

    =โˆ‘ ๐œ”1,๐‘,๐‘— ๐‘”(๐‘ฅ1,๐‘,๐‘—).๐‘

    ๐‘—=0

    (20)

    In practice, a number of first shifted Legendre polynomials are considered. We let

    ๐œ™(๐‘ฅ) = [๐ฟ1,0(๐‘ฅ), ๐ฟ1,1(๐‘ฅ),โ€ฆ , ๐ฟ1,๐‘(๐‘ฅ)]๐‘‡,

    ๐‘†๐‘(๐ผ) = ๐‘ ๐‘๐‘Ž๐‘›{๐ฟ1,0(๐‘ฅ),๐ฟ1,1(๐‘ฅ),โ€ฆ , ๐ฟ1,๐‘(๐‘ฅ)}. (21)

    Theorem 2.1 [25] suppose ๐œ™(๐‘ฅ) is defined in Eq.(21) and ๐›ผ > 0; then the following relation holds:

    ๐‘ซ๐›ผ๐œ™(๐‘ฅ) โ‰… ๐‘ซ(๐›ผ)๐œ™(๐‘ฅ), (22)

    where ๐‘ซ(๐›ผ) is the (๐‘ + 1) ร— (๐‘+ 1) operational matrix of Caputo derivative which is given by:

  • ๐ท(๐›ผ) = (๐‘‘๐‘–๐‘—)0โ‰ค๐‘–,๐‘—โ‰ค๐‘ =

    [ 0 0 0 โ€ฆ 0

    โ‹ฎ๐‘†๐›ผ(๐‘š,0) ๐‘†๐›ผ(๐‘š,1) ๐‘†๐›ผ(๐‘š,2) . . . ๐‘†๐›ผ(๐‘š,๐‘)

    โ‹ฎ๐‘†๐›ผ(๐‘–, 0) ๐‘†๐›ผ(๐‘–, 1) ๐‘†๐›ผ(๐‘–, 2) โ€ฆ ๐‘†๐›ผ(๐‘–,๐‘)

    โ‹ฎ๐‘†๐›ผ(๐‘,0) ๐‘†๐›ผ(๐‘,1) ๐‘†๐›ผ(๐‘,2) โ€ฆ ๐‘†๐›ผ(๐‘,๐‘)]

    , (23)

    where

    ๐‘†๐›ผ(๐‘–,๐‘—) = โˆ‘(โˆ’1)๐‘–+๐‘˜ (2๐‘— + 1) (๐‘– + ๐‘˜)! ฮ“(๐‘˜โˆ’ ๐‘—โˆ’ ๐›ผ+ 1)

    ๐ฟ๐›ผ(๐‘– โˆ’ ๐‘˜)!๐‘˜! ฮ“(๐‘˜ โˆ’ ๐›ผ+ 1) ฮ“(๐‘˜ + ๐‘— โˆ’ ๐›ผ+ 1). (24)

    ๐‘–

    ๐‘˜=๐‘š

    Note that because of ๐ท๐›ผ๐ฟ1,๐‘–(๐‘ก) = 0, for ๐‘– = 0,1,โ€ฆ ,๐‘š โˆ’ 1, the first ๐‘š rows are zero in ๐‘ซ.

    3. Chebyshev-Legendre Spectral Method

    The Chebyshev-Legendre spectral method was introduced in [24] to take advantage of both the

    Legendre and Chebyshev polynomials. The main idea is to use the Legendre-Galerkin

    formulation which preserves the symmetry of the underlying problem and lead to a simple sparse

    linear system, while the physical values are evaluated at the Chebyshev-Gauss-type points. Thus,

    we may replace the expensive Legendre transform by a fast Chebyshev-Legendre transform

    between the coefficients of Legendre expansion and Chebyshev expansion at the Chebyshev-

    Gauss-type points.

    The main advantage of using Chebyshev polynomials is that the discrete Chebyshev transform

    can be performed in ๐‘‚(๐‘๐‘™๐‘œ๐‘”2 ๐‘) operations by using ๐น๐น๐‘‡. On the other hand, the discrete

    Legendre transform is expensive, and therefore in our article, the Chebyshev-Legendre method

    based on Legendre expansion and Chebyshev-Gauss-type points is applied to reduce the cost of

    solving the corresponding system (For more detail see [17, 24, 28]). Then, we use the Chebyshev

    interpolation operator ๐ผ๐‘๐‘ , relative to the Gauss-Chebyshev points to approximate the known

    functions and use of Legendre polynomials expansion to approximate the unknown function

    together. At last, the solution procedure is essentially the same as Legendre spectral method

    except that Chebyshev-Legendre transform, between the values of a function at the Gauss-

    Chebyshev points and the coefficients of its Legendre expansion, are needed instead of the

    Legendre transform. There are several efficient algorithms to transform from the coefficients of

    Legendre expansions to Chebyshev expansions at the Chebyshev-Gauss-Lobatto points and vice

    versa [24, 26-28]. We use the algorithm in [24] as follow:

    We let

    ๐‘ข(๐‘ฅ) =โˆ‘๐›ผ๐‘— ๐‘‡1,๐‘—

    ๐‘

    ๐‘—=0

    =โˆ‘๐›ฝ๐‘— ๐ฟ1,๐‘—

    ๐‘

    ๐‘—=0

    ,

    ๐œถ = (๐›ผ0,๐›ผ1, โ€ฆ , ๐›ผ๐‘),

    ๐œท = (๐›ฝ0, ๐›ฝ1,โ€ฆ , ๐›ฝ๐‘).

  • In this work, what we need to apply spectral method is using the transform between ๐œถ and ๐œท. By

    virtue of orthogonality of Chebyshev and Legendre polynomials, the relation between ๐œถ and ๐œท

    can be obtained by computing (๐‘ข, ๐‘‡1,๐‘—)๐‘ค and (๐‘ข,๐ฟ1,๐‘—). defining

    ๐ด = (๐‘Ž๐‘–๐‘—)0โ‰ค๐‘–,๐‘—โ‰ค๐‘,

    ๐ต = (๐‘๐‘–๐‘—)0โ‰ค๐‘–,๐‘—โ‰ค๐‘,

    then, by using Eqs. (8) and (15), we can obtain

    ๐‘Ž๐‘–๐‘— =1

    โ„Ž๐‘– (๐‘‡1,๐‘– , ๐ฟ1,๐‘—)๐‘ค

    ,

    ๐‘๐‘–๐‘— = (๐‘– +1

    2)(๐ฟ1,๐‘– , ๐‘‡1,๐‘—).

    Thus, we will have

    ๐œถ = ๐ด๐œท,

    ๐œท = ๐ต๐œถ,

    ๐ด๐ต = ๐ต๐ด = ๐ผ.

    According to orthogonality and parity of the Chebyshev and Legendre polynomials, we get

    ๐‘Ž๐‘–๐‘— = ๐‘๐‘–๐‘— = 0, for ๐‘– > ๐‘— or ๐‘– + ๐‘— odd.

    Therefore, we only determine the nonzero elements of both ๐ด and ๐ต by using three-term

    recurrence relation of the shifted Legendre and Chebyshev polynomials. Applying definition of

    ๐‘Ž๐‘–๐‘—, we can obtain recurrence formula

    ๐‘Ž๐‘–๐‘— =1

    โ„Ž๐‘– (๐‘‡1,๐‘– , ๐ฟ1,๐‘—)๐‘ค

    =1

    โ„Ž๐‘– (๐‘‡1,๐‘– ,

    2๐‘— + 1

    ๐‘— + 1 (2๐‘ฅ โˆ’ 1) ๐ฟ1,๐‘—(๐‘ฅ) โˆ’

    ๐‘—

    ๐‘— + 1๐ฟ1,๐‘—โˆ’1(๐‘ฅ))

    ๐‘ค

    =1

    โ„Ž๐‘– {2๐‘— + 1

    ๐‘— + 1((2๐‘ฅ โˆ’ 1)๐‘‡1,๐‘– , ๐ฟ1,๐‘—)

    ๐‘คโˆ’

    ๐‘—

    ๐‘— + 1(๐‘‡1,๐‘– , ๐ฟ1,๐‘—โˆ’1)๐‘ค

    }

    =1

    โ„Ž๐‘– {2๐‘— + 1

    2๐‘— + 2 (๐‘‡1,๐‘–+1 + ๐‘‡1,๐‘–โˆ’1, ๐ฟ1,๐‘—)๐‘ค

    โˆ’๐‘—

    ๐‘— + 1 โ„Ž๐‘–๐‘Ž๐‘– ,๐‘—โˆ’1}

    =โ„Ž๐‘–+1โ„Ž๐‘–

    2๐‘— + 1

    2๐‘— + 2 ๐‘Ž๐‘–+1,๐‘— +

    โ„Ž๐‘–โˆ’1โ„Ž๐‘–

    2๐‘— + 1

    2๐‘— + 2 ๐‘Ž๐‘–โˆ’1,๐‘— โˆ’

    ๐‘—

    ๐‘— + 1 ๐‘Ž๐‘–,๐‘—โˆ’1.

    We can similarly derive entries of matrix ๐ต as follow

  • ๐‘๐‘–๐‘— = (๐‘– +1

    2) ๏ฟฝฬƒ๏ฟฝ๐‘–๐‘—,

    where

    ๏ฟฝฬƒ๏ฟฝ๐‘–๐‘—: = (๐ฟ1,๐‘– , ๐‘‡1,๐‘—) =2๐‘– + 2

    2๐‘– + 1 ๏ฟฝฬƒ๏ฟฝ๐‘–+1,๐‘— +

    2๐‘–

    2๐‘– + 1 ๏ฟฝฬƒ๏ฟฝ๐‘–โˆ’1,๐‘— โˆ’ ๏ฟฝฬƒ๏ฟฝ๐‘–,๐‘—โˆ’1.

    Thus, we can obtain each nonzero element of ๐ด and ๐ต by just a few operations. Therefore, we can

    extremely apply Chebyshev-Legendre spectral method.

    We now describe our spectral approximations to Eq. (1). Therefore, if ๐‘ฆ๐‘(๐‘ก) โˆˆ ๐‘†๐‘(๐ผ), then by

    implementing Chebyshev-Legendre spectral method for Eq.(1), we can easily obtain

    โˆ‘๐‘Ž๐‘–

    ๐‘›

    ๐‘–=0

    (๐ท(๐‘–)๐‘ฆ๐‘, ๐ฟ1,๐‘˜) = (๐ผ๐‘๐‘ ๐‘“,๐ฟ1,๐‘˜)+ (โˆซ ๐ผ๐‘

    ๐‘ ๐‘˜(. , ๐‘ ) ๐ท๐›ผ๐‘ฆ๐‘(๐‘ ) ๐‘‘๐‘ 1

    0

    , ๐ฟ1,๐‘˜). (25)

    We have ๐‘ฆ๐‘(๐‘ก) = โˆ‘ ๐‘๐‘—๐ฟ1,๐‘—(๐‘ก),๐‘๐‘—=0 then according to linearity of Caputoโ€™s fractional

    differentiation, Eq.(23) can be written as:

    โˆ‘๐‘Ž๐‘–

    ๐‘›

    ๐‘–=0

    โˆ‘๐‘๐‘—

    ๐‘

    ๐‘—=0

    (๐ท(๐‘–)๐ฟ1,๐‘— , ๐ฟ1,๐‘˜)

    = (๐ผ๐‘๐‘ ๐‘“,๐ฟ1,๐‘˜)+โˆ‘๐‘๐‘—

    ๐‘

    ๐‘—=0

    (โˆซ ๐ผ๐‘๐‘ ๐‘˜(. , ๐‘ ) ๐ท๐›ผ๐ฟ1,๐‘—(๐‘ ) ๐‘‘๐‘ 

    1

    0

    , ๐ฟ1,๐‘˜). (26)

    From Eq. (22) to (24) in Theorem 2.1, we can obtain

    ๐ท๐›ผ๐ฟ1,๐‘—(๐‘ก) = โˆ‘ ๐‘†๐›ผ(๐‘—, ๐‘™)๐ฟ1,๐‘™(๐‘ก), ๐‘— = ๐‘š,๐‘š +1,โ€ฆ ,๐‘. (27)๐‘๐‘™=0

    We notice that if ๐›ผ = ๐‘› โˆˆ โ„•, then ๐‘†๐›ผ defined in Eq. (24) tend to integer order case and

    Theorem 2.1 gives the same result as integer order case.

    Inserting Eq.(27) in Eq.(26), we get

    โˆ‘โˆ‘๐‘Ž๐‘– ๐‘๐‘—

    ๐‘

    ๐‘—=๐‘–

    (โˆ‘๐‘†๐‘–(๐‘—, ๐‘™)

    ๐‘

    ๐‘™=0

    (๐ฟ1,๐‘™, ๐ฟ1,๐‘˜))

    ๐‘›

    ๐‘–=0

    = (๐ผ๐‘๐‘ ๐‘“, ๐ฟ1,๐‘˜)+ โˆ‘ ๐‘๐‘—

    ๐‘

    ๐‘—=๐‘š

    โˆ‘ ๐‘†๐›ผ(๐‘—, ๐‘™)

    ๐‘

    ๐‘™=0

    (โˆซ ๐ผ๐‘๐‘ ๐‘˜(. , ๐‘ ) ๐ฟ1,๐‘™(๐‘ก) ๐‘‘๐‘ 

    1

    0

    , ๐ฟ1,๐‘˜). (28)

    Then, making use of the orthogonality relation of shifted Legendre polynomials, i.e. Eq.(18),

    Eq. (24) reduce to

  • โˆ‘โˆ‘๐‘Ž๐‘– ๐‘๐‘—

    ๐‘

    ๐‘—=๐‘–

    ๐‘†๐‘–(๐‘—,๐‘˜)

    2๐‘˜ + 1

    ๐‘›

    ๐‘–=0

    = (๐ผ๐‘๐‘ ๐‘“, ๐ฟ1,๐‘˜)+ โˆ‘ ๐‘๐‘—

    ๐‘

    ๐‘—=๐‘š

    โˆ‘ ๐‘†๐›ผ(๐‘—, ๐‘™)

    ๐‘

    ๐‘™=0

    (โˆซ ๐ผ๐‘๐‘ ๐‘˜(. , ๐‘ ) ๐ฟ1,๐‘™(๐‘ก) ๐‘‘๐‘ 

    1

    0

    , ๐ฟ1,๐‘˜). (29)

    We let

    โ„Ž๐‘™(๐‘ฅ) = โˆซ ๐ผ๐‘๐‘ ๐‘˜(๐‘ฅ,๐‘ ) ๐ฟ1,๐‘™(๐‘ก) ๐‘‘๐‘ 

    1

    0

    โ‰…โˆ‘๐‘๐‘™๐‘Ÿ ๐ฟ1,๐‘Ÿ(๐‘ฅ)

    ๐‘

    ๐‘Ÿ=0

    ,

    ๐‘“๐‘˜ = (๐ผ๐‘๐‘ ๐‘“,๐ฟ1,๐‘˜).

    Thus, again by using Eqs.(18), Eq. (29) becomes the following form

    โˆ‘โˆ‘๐‘Ž๐‘– ๐‘๐‘—

    ๐‘

    ๐‘—=๐‘–

    ๐‘†๐‘–(๐‘—,๐‘˜)

    2๐‘˜ + 1

    ๐‘›

    ๐‘–=0

    = ๐‘“๐‘˜ + โˆ‘โˆ‘๐‘๐‘— ๐‘†๐›ผ(๐‘—, ๐‘™)

    ๐‘

    ๐‘™=0

    ๐‘

    ๐‘—=๐‘š

    ๐‘๐‘™๐‘˜2๐‘˜ + 1

    . (30)

    It is easy to verify that initial conditions convert to following equations

    โˆ‘ โˆ‘ ๐‘๐‘— ๐‘†๐‘–(๐‘—, ๐‘™) ๐ฟ1,๐‘™(0)๐‘๐‘™=0

    ๐‘๐‘—=0 = ๐‘‘๐‘– , ๐‘– = 0,1, โ€ฆ , ๐‘› โˆ’ 1. (31)

    Combining Eqs. (30) and (31) yields

    {

    โˆ‘โˆ‘๐‘Ž๐‘– ๐‘๐‘—

    ๐‘

    ๐‘—=๐‘–

    ๐‘†๐‘–(๐‘—,๐‘˜)

    2๐‘˜ + 1

    ๐‘›

    ๐‘–=0

    โˆ’โˆ‘โˆ‘๐‘๐‘— ๐‘†๐›ผ(๐‘—, ๐‘™)

    ๐‘

    ๐‘—=๐‘š

    ๐‘

    ๐‘™=0

    ๐‘๐‘™๐‘˜2๐‘˜ + 1

    = ๐‘“๐‘˜ , ๐‘˜ = 0,1,โ€ฆ๐‘ โˆ’ ๐‘›,

    โˆ‘โˆ‘๐‘๐‘— ๐‘†๐‘–(๐‘—, ๐‘™) ๐ฟ1,๐‘™(0)

    ๐‘

    ๐‘™=0

    ๐‘

    ๐‘—=0

    = ๐‘‘๐‘– , ๐‘– = 0,1, โ€ฆ , ๐‘› โˆ’ 1.

    By solving the above system of linear equations, we can get the value of {๐‘๐‘—}๐‘—=0๐‘

    and obtain the

    expression of ๐‘ฆ๐‘(๐‘ฅ) accordingly.

    4. Convergence Analysis of the Chebyshev-Legendre Spectral method

    In this section, we present a general approach to the convergence analysis for NIFDEs that is

    proved in ๐ฟ2 โˆ’norm. Here, there are some properties and elementary lemmas, which are

    important for the derivation of the main results.

    Lemma 4.1 [29] For multiple integrals, the following relation holds:

    โˆซ โˆซ โ€ฆโˆซ โˆซ ๐‘”(๐‘ก1)๐‘ก2

    0

    ๐‘‘๐‘ก1๐‘‘๐‘ก2 โ€ฆ๐‘‘๐‘ก๐‘›

    ๐‘ก3

    0

    ๐‘ก๐‘›

    0

    ๐‘ก

    0

    =1

    (๐‘› โˆ’ 1)! โˆซ (๐‘ก โˆ’ ๐‘ )๐‘›โˆ’1๐‘”(๐‘ )

    ๐‘ก

    0

    ๐‘‘๐‘ , (32)

    where ๐‘” is integrable function on interval (0,๐‘ก) and ๐‘ก๐‘– (๐‘– = 2,3, โ€ฆ , ๐‘›) are parameters in the

    purpose interval.

  • Lemma 4.2 [30] (Granwall's Lemma) Assume that ๐‘ข, ๐œ”, ๐›ฝ โˆˆ ๐ถ (๐ผ) with ๐›ฝ(๐‘ก) โ‰ฅ 0. If ๐‘ข satisfies the

    inequality

    ๐‘ข(๐‘ก) โ‰ค ๐œ”(๐‘ก) + โˆซ ๐›ฝ(๐‘ )๐‘ข(๐‘ ) ๐‘‘๐‘ ๐‘ก

    0

    , ๐‘ก โˆˆ ๐ผ,

    then

    ๐‘ข(๐‘ก) โ‰ค ๐œ”(๐‘ก) + โˆซ ๐›ฝ(๐‘ )๐œ”(๐‘ ) exp(โˆซ ๐›ฝ(๐‘ฃ) ๐‘‘๐‘ฃ๐‘ก

    ๐‘ 

    ) ๐‘‘๐‘ ๐‘ก

    0

    , ๐‘ก โˆˆ ๐ผ. (33)

    On the other word, if ๐œ” is non-decreasing on ๐ผ, the above inequality reduce to

    ๐‘ข(๐‘ก) โ‰ค ๐œ”(๐‘ก) exp(โˆซ ๐›ฝ(๐‘ฃ) ๐‘‘๐‘ฃ๐‘ก

    ๐‘ 

    ), ๐‘ก โˆˆ ๐ผ. (34)

    Lemma 4.3 [30] Suppose that ๐‘˜ is a given kernel function on ๐ผ ร— ๐ผ. If ๐‘“ โˆˆ ๐ฟ๐‘(๐‘Ž, ๐‘) for

    1 โ‰ค p โ‰ค โˆž, the integral

    ๐‘‡๐‘“(๐‘ฅ) = โˆซ ๐‘˜(๐‘ฅ, ๐‘ก) ๐‘“(๐‘ก)๐‘ฅ ๐‘œ๐‘Ÿ ๐‘

    ๐‘Ž

    ๐‘‘๐‘ก

    is well-defined in ๐ฟ๐‘(๐‘Ž, ๐‘) and there exists ๐ถโˆ— > 0 such that

    โ€–๐‘‡๐‘“โ€–๐ฟ๐‘ (๐‘Ž,๐‘) โ‰ค ๐ถโˆ—โ€–๐‘“โ€–๐ฟ๐‘ (๐‘Ž,๐‘) . (35)

    Let ๐‘๐‘ be the interpolation projection operator from ๐•ƒ2(๐ผ) upon โ„™๐‘(๐ผ). Then, for any function ๐‘“

    in ๐ฟ2(๐ผ) satisfies

    โˆซ (๐‘“ โˆ’ ๐‘๐‘๐‘“)(๐‘ก) ๐‘”(๐‘ก)๐‘‘๐‘ก = 0,1

    0

    โˆ€๐‘” โˆˆ โ„™๐‘(๐ผ).

    Also, the following relations for interpolation in shifted Legendre polynomials and shifted Gauss-

    Legendre nodal points ๐‘˜ โ‰ฅ 1 (or for any fixed ๐‘˜ โ‰ค ๐‘) may readily be obtained as [14]

    โ€–๐‘ฆ โˆ’ ๐‘๐‘(๐‘ฆ)โ€–๐ป๐‘™ (๐ผ) โ‰ค ๐ถ1๐‘2๐‘™โˆ’

    12โˆ’๐‘˜|๐‘ฆ|๐ป๐‘˜:๐‘(๐ผ) , (36)

    โ€–๐‘ฆ โˆ’ ๐‘๐‘(๐‘ฆ)โ€–๐ฟ2 (๐ผ) โ‰ค ๐ถ2๐‘โˆ’๐‘˜|๐‘ฆ|๐ป๐‘˜:๐‘(๐ผ) . (37)

    where ๐‘ฆ โˆˆ ๐ป๐‘š(๐ผ), and ๐ถ1 and ๐ถ2 are constants independent of ๐‘ and 0 โ‰ค ๐‘™ โ‰ค ๐‘š.

    Now, we shall prove the main result in this section. In the following theorem, an error estimation

    for an approximate solution of Eq. (1) with supplementary conditions of Eq. (2) is obtained. Let

    ๐‘’๐‘(๐‘ฅ) = ๐‘ฆ(๐‘ฅ) โˆ’ ๐‘ฆ๐‘(๐‘ฅ), be the error function of the Chebyshev-Legendre spectral approximation

    to ๐‘ฆ(๐‘ฅ). From the mathematical point of view, it is possible to keep track of the effect of the

    boundary conditions upon the overall accuracy of the scheme. In the other hand, the boundary

    treatment does not destroy the spectral accuracy of the Chebyshev-Legendre method.

  • Theorem 4.3 For sufficiently large ๐‘, the Chebyshev-Legendre spectral approximations ๐‘ฆ๐‘(๐‘ฅ)

    converge to exact solution in ๐ฟ2-norm, i.e.

    โ€–๐‘’๐‘โ€–๐ฟ2 (๐ผ) = โ€–๐‘ฆ โˆ’ ๐‘ฆ๐‘โ€–๐ฟ2(๐ผ) โ†’ 0.

    Proof. Assume that ๐‘ฆ๐‘(๐‘ฅ) is obtained by using the Chebyshev-Legendre spectral method Eq. (1)

    together with initial conditions Eq. (2). Then, we have

    โˆ‘๐‘Ž๐‘– ๐ท(๐‘–)๐‘ฆ๐‘(๐‘ก)

    ๐‘›

    ๐‘–=0

    = ๐‘๐‘(๐‘“(๐‘ก)) + ๐‘๐‘ (โˆซ ๐‘˜(. , ๐‘ ) ๐ท๐›ผ๐‘ฆ๐‘(๐‘ ) ๐‘‘๐‘ 

    1

    0

    ), (38)

    such that ๐‘๐‘ is the Lagrange interpolation polynomial operator defined for Legendre polynomial.

    With ๐‘› times integration from Eq. (38), we obtain

    โˆ‘๐‘Ž๐‘– โˆซ โˆซ โ€ฆโˆซ โˆซ ๐‘ฆ๐‘(๐‘–)(๐‘ก1)

    ๐‘ก2

    0

    ๐‘‘๐‘ก1๐‘‘๐‘ก2 โ€ฆ๐‘‘๐‘ก๐‘›

    ๐‘ก3

    0

    ๐‘ก๐‘›

    0

    ๐‘ก

    0

    ๐‘›

    ๐‘–=0

    = โˆซ โˆซ โ€ฆโˆซ โˆซ ๐‘๐‘(๐‘“(๐‘ก1))๐‘ก2

    0

    ๐‘‘๐‘ก1๐‘‘๐‘ก2 โ€ฆ๐‘‘๐‘ก๐‘›

    ๐‘ก3

    0

    ๐‘ก๐‘›

    0

    ๐‘ก

    0

    +โˆซ โˆซ โ€ฆโˆซ โˆซ ๐‘๐‘ (โˆซ ๐‘˜(๐‘ก1, ๐‘ ) ๐ท๐›ผ๐‘ฆ๐‘(๐‘ ) ๐‘‘๐‘ 

    1

    0

    )๐‘ก2

    0

    ๐‘‘๐‘ก1๐‘‘๐‘ก2 โ€ฆ๐‘‘๐‘ก๐‘›

    ๐‘ก3

    0

    ๐‘ก๐‘›

    0

    ๐‘ก

    0

    . (39)

    By virtue of Lemma 4.1, we can convert each of the multiple integral to single integral, so we

    have

    ๐‘Ž๐‘›๐‘ฆ๐‘(๐‘ก) + ๐‘”(๐‘ก) +โˆ‘โˆซ๐‘Ž๐‘–

    (๐‘›โˆ’ ๐‘– โˆ’ 1)! (๐‘ก โˆ’ ๐‘ )๐‘›โˆ’๐‘–โˆ’1 ๐‘ฆ๐‘(๐‘ ) ๐‘‘๐‘ 

    ๐‘ก

    0

    ๐‘›โˆ’1

    ๐‘–=0

    =โˆซ(๐‘ก โˆ’ ๐‘ )๐‘›โˆ’1

    (๐‘› โˆ’ 1)! ๐‘๐‘(๐‘“(๐‘ )) ๐‘‘๐‘ 

    ๐‘ก

    0

    +โˆซ(๐‘ก โˆ’ ๐‘ )๐‘›โˆ’1

    (๐‘›โˆ’ 1)! ๐‘๐‘ (โˆซ ๐‘˜(๐‘ , ๐‘ 1) ๐ท

    ๐›ผ๐‘ฆ๐‘(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    ) ๐‘‘๐‘ ,๐‘ก

    0

    (40)

    where ๐‘” is a polynomial of degree ๐‘› with the initial condition coefficient. Similarly, from Eq.

    (1), we get

    ๐‘Ž๐‘›๐‘ฆ(๐‘ก) + ๐‘”(๐‘ก) +โˆ‘โˆซ๐‘Ž๐‘–

    (๐‘› โˆ’ ๐‘– โˆ’ 1)! (๐‘ก โˆ’ ๐‘ )๐‘›โˆ’๐‘–โˆ’1 ๐‘ฆ(๐‘ ) ๐‘‘๐‘ 

    ๐‘ก

    0

    ๐‘›โˆ’1

    ๐‘–=0

    = โˆซ(๐‘ก โˆ’ ๐‘ )๐‘›โˆ’1

    (๐‘› โˆ’ 1)! ๐‘“(๐‘ ) ๐‘‘๐‘ 

    ๐‘ก

    0

    +โˆซ(๐‘ก โˆ’ ๐‘ )๐‘›โˆ’1

    (๐‘›โˆ’ 1)! โˆซ ๐‘˜(๐‘ ,๐‘ 1) ๐ท

    ๐›ผ๐‘ฆ(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    ๐‘‘๐‘ .๐‘ก

    0

    (41)

  • By subtracting Eq. (40) from Eq. (41), we obtain

    ๐‘Ž๐‘›๐‘’๐‘(๐‘ก) +โˆ‘โˆซ๐‘Ž๐‘–

    (๐‘›โˆ’ ๐‘– โˆ’ 1)! (๐‘ก โˆ’ ๐‘ )๐‘›โˆ’๐‘–โˆ’1 ๐‘’๐‘(๐‘ ) ๐‘‘๐‘ 

    ๐‘ก

    0

    ๐‘›โˆ’1

    ๐‘–=0

    = โˆซ(๐‘ก โˆ’ ๐‘ )๐‘›โˆ’1

    (๐‘› โˆ’ 1)! ๐‘’๐‘๐‘(๐‘“(๐‘ )) ๐‘‘๐‘ 

    ๐‘ก

    0

    +โˆซ(๐‘ก โˆ’ ๐‘ )๐‘›โˆ’1

    (๐‘›โˆ’ 1)! ๐‘’๐‘๐‘(๐พ๐›ผ๐‘ฆ(๐‘ )) ๐‘‘๐‘ ,

    ๐‘ก

    0

    (42)

    such that

    ๐‘’๐‘๐‘(๐‘“(๐‘ )) = ๐‘“(๐‘ ) โˆ’ ๐‘๐‘(๐‘“(๐‘ )),

    ๐พ๐›ผ๐‘ฆ(๐‘ ) = โˆซ ๐‘˜(๐‘ , ๐‘ 1) ๐ท๐›ผ๐‘ฆ(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    ,

    ๐‘’๐‘๐‘(๐พ๐›ผ๐‘ฆ(๐‘ )) = ๐พ๐›ผ๐‘ฆ(๐‘ ) โˆ’ ๐‘๐‘(๐พ๐›ผ๐‘ฆ๐‘(๐‘ ))

    = ๐พ๐›ผ๐‘ฆ(๐‘ ) โˆ’๐พ๐›ผ๐‘ฆ๐‘(๐‘ ) + ๐พ๐›ผ๐‘ฆ๐‘(๐‘ ) โˆ’ ๐‘๐‘(๐พ๐›ผ๐‘ฆ๐‘(๐‘ ))

    = ๐พ๐›ผ๐‘’๐‘(๐‘ ) โˆ’ ๐‘’๐‘๐‘(๐พ๐›ผ๐‘ฆ๐‘(๐‘ )). 0 โ‰ค ๐‘  โ‰ค ๐‘ก.

    From Eq. (42), we can obtain

    |๐‘’๐‘(๐‘ก)| โ‰คโˆ‘ |๐‘Ž๐‘–

    โˆ’๐‘Ž๐‘› (๐‘›โˆ’ ๐‘– โˆ’ 1)!|

    ๐‘›โˆ’1

    ๐‘–=0

    โˆซ |(๐‘ก โˆ’ ๐‘ )๐‘›โˆ’๐‘–โˆ’1 ๐‘’๐‘(๐‘ )|๐‘‘๐‘ ๐‘ก

    0

    +1

    |๐‘Ž๐‘› |(๐‘›โˆ’ 1)! โˆซ |(๐‘ก โˆ’ ๐‘ )๐‘›โˆ’1 ๐‘’๐‘๐‘(๐‘“(๐‘ ))|๐‘‘๐‘ 

    ๐‘ก

    0

    +1

    |๐‘Ž๐‘›|(๐‘›โˆ’ 1)! โˆซ |(๐‘กโˆ’ ๐‘ )๐‘›โˆ’1 ๐‘’๐‘๐‘(๐พ๐›ผ๐‘ฆ(๐‘ ))|๐‘‘๐‘ 

    ๐‘ก

    0

    โ‰ค ๐ถ2โˆซ |๐‘’๐‘(๐‘ )|๐‘ก

    0

    ๐‘‘๐‘  + ๐ถ3โˆซ |๐‘’๐‘๐‘(๐‘“(๐‘ ))|๐‘ก

    0

    ๐‘‘๐‘  + ๐ถ4โˆซ |๐‘’๐‘๐‘(๐พ๐›ผ๐‘ฆ(๐‘ ))|๐‘ก

    0

    ๐‘‘๐‘ . (43)

    Applying Lemma 4.2 leads to

    |๐‘’๐‘(๐‘ก)| โ‰ค exp(โˆซ ๐ถ2๐‘‘๐‘ ๐‘ก

    0

    ) (๐ถ3โˆซ |๐‘’๐‘๐‘(๐‘“(๐‘ ))|๐‘ก

    0

    ๐‘‘๐‘  + ๐ถ4โˆซ |๐‘’๐‘๐‘(๐พ๐›ผ๐‘ฆ(๐‘ ))|๐‘ก

    0

    ๐‘‘๐‘ )

    โ‰ค ๐ถ5โˆซ |๐‘’๐‘๐‘(๐‘“(๐‘ ))|๐‘ก

    0

    ๐‘‘๐‘  + ๐ถ6โˆซ |๐‘’๐‘๐‘(๐พ๐›ผ๐‘ฆ(๐‘ ))|๐‘ก

    0

    ๐‘‘๐‘ . (44)

    Equivalently, by using the ๐ฟ2 โˆ’norm, we get

    โ€–๐‘’๐‘โ€–๐ฟ2 (๐ผ) โ‰ค ๐ถ5 โ€–โˆซ |๐‘’๐‘๐‘(๐‘“(๐‘ ))|๐‘ก

    0

    ๐‘‘๐‘ โ€–๐ฟ2 (๐ผ)

    + ๐ถ6 โ€–โˆซ |๐‘’๐‘๐‘(๐พ๐›ผ๐‘ฆ(๐‘ ))|๐‘ก

    0

    ๐‘‘๐‘ โ€–๐ฟ2(๐ผ)

    . (45)

  • Bu using Lemma 4.3, the above inequality reduce to

    โ€–๐‘’๐‘โ€–๐ฟ2(๐ผ) โ‰ค ๐ถ7 โ€–๐‘’๐‘๐‘(๐‘“(๐‘ ))โ€–๐ฟ2 (๐ผ)+๐ถ8 โ€–๐‘’๐‘๐‘(๐พ๐›ผ๐‘ฆ(๐‘ ))โ€–๐ฟ2 (๐ผ)

    . (46)

    On the other hand, we have

    ๐‘’๐‘๐‘(๐พ๐›ผ๐‘ฆ(๐‘ )) = โˆซ ๐‘˜(๐‘ , ๐‘ 1) ๐ท๐›ผ๐‘ฆ(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    โˆ’๐‘๐‘ (โˆซ ๐‘˜(๐‘ , ๐‘ 1) ๐ท๐›ผ๐‘ฆ๐‘(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    )

    =โˆซ ๐‘˜(๐‘ , ๐‘ 1) ๐ท๐›ผ๐‘ฆ(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    โˆ’โˆซ ๐‘˜(๐‘ , ๐‘ 1) ๐ท๐›ผ๐‘ฆ๐‘(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    +โˆซ ๐‘˜(๐‘ , ๐‘ 1) ๐ท๐›ผ๐‘ฆ๐‘(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    โˆ’ ๐‘๐‘ (โˆซ ๐‘˜(๐‘ , ๐‘ 1) ๐ท๐›ผ๐‘ฆ๐‘(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    )

    =โˆซ ๐‘˜(๐‘ , ๐‘ 1) ๐ท๐›ผ๐‘’๐‘(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    +๐ธ(๐‘ ), (47)

    where

    ๐ธ(๐‘ ) = โˆซ ๐‘˜(๐‘ , ๐‘ 1) ๐ท๐›ผ๐‘ฆ๐‘(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    โˆ’ ๐‘๐‘ (โˆซ ๐‘˜(๐‘ , ๐‘ 1) ๐ท๐›ผ๐‘ฆ๐‘(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    ).

    Therefor

    โ€–๐‘’๐‘๐‘(๐พ๐›ผ๐‘ฆ(๐‘ ))โ€–๐ฟ2(๐ผ)โ‰ค โ€–โˆซ ๐‘˜(. , ๐‘ 1) ๐ท

    ๐›ผ๐‘’๐‘(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    โ€–๐ฟ2(๐ผ)

    + โ€–๐ธ(๐‘ )โ€–๐ฟ2 (๐ผ) . (48)

    According to relation (37) and Lemma 4.3, we have

    โ€–๐ธ(๐‘ )โ€–๐ฟ2 (๐ผ) โ‰ค ๐ถ2๐‘โˆ’๐‘˜ โ€–โˆซ ๐‘˜(. , ๐‘ 1) ๐ท

    ๐›ผ๐‘ฆ๐‘(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    โ€–๐ป๐‘˜:๐‘ (๐ผ)

    โ‰ค ๐ถ2๐ถโˆ—๐‘โˆ’๐‘˜โ€–๐ท๐›ผ๐‘ฆโ€–๐ป๐‘˜:๐‘ (๐ผ) (49)

    In the other hand, because of linear operator ๐ท๐›ผ โˆถ โ„™๐‘ โ†’ โ„™๐‘ is continuous and bounded [31], thus

    there exists a constant ๐ถโˆ—โˆ— โ‰ฅ 0 such that

    โ€–๐ท๐›ผ๐‘ฆ๐‘โ€–๐ป๐‘˜:๐‘(๐ผ) โ‰ค ๐ถโˆ—โˆ— โ€–๐‘ฆ๐‘โ€–๐ป๐‘˜:๐‘(๐ผ) , ๐‘˜ โˆˆ โ„• ๐‘Ž๐‘›๐‘‘ ๐‘˜ โ‰ค ๐‘. (50)

    Therefore, by combining two recent relations, we get

    โ€–๐ธ(๐‘ )โ€–๐ฟ2 (๐ผ) โ‰ค ๐ถ2๐ถโˆ—๐ถโˆ—โˆ— ๐‘โˆ’๐‘˜โ€–๐‘ฆ๐‘โ€–๐ป๐‘˜:๐‘(๐ผ)

    = ๐ถ9 ๐‘โˆ’๐‘˜ โ€–๐‘ฆ โˆ’ ๐‘’๐‘โ€–๐ป๐‘˜:๐‘ (๐ผ)

  • โ‰ค ๐ถ9 ๐‘โˆ’๐‘˜ (โ€–๐‘ฆโ€–๐ป๐‘˜:๐‘ (๐ผ) + โ€–๐‘’๐‘โ€–๐ป๐‘˜ :๐‘(๐ผ) ). (51)

    Now, by using relation(36), we proceed with the above inequality as

    โ€–๐ธ(๐‘ )โ€–๐ฟ2 (๐ผ) โ‰ค ๐ถ9 ๐‘โˆ’๐‘˜ (โ€–๐‘ฆโ€–๐ป๐‘˜:๐‘(๐ผ) + โ€–๐‘’๐‘โ€–๐ป๐‘˜:๐‘(๐ผ))

    โ‰ค ๐ถ9 ๐‘โˆ’๐‘˜ (โ€–๐‘ฆโ€–๐ป๐‘˜ :๐‘(๐ผ) + โ€–๐‘’๐‘โ€–๐ป1:๐‘(๐ผ))

    โ‰ค ๐ถ9 ๐‘โˆ’๐‘˜ (โ€–๐‘ฆโ€–๐ป๐‘˜ :๐‘(๐ผ) +๐ถ1๐‘

    32โˆ’๐‘˜|๐‘ฆ|๐ป๐‘˜:๐‘(๐ผ))

    โ‰ค ๐ถ9 ๐‘โˆ’๐‘˜โ€–๐‘ฆโ€–๐ป๐‘˜:๐‘ (๐ผ) + ๐ถ10 ๐‘

    32โˆ’2๐‘˜ |๐‘ฆ|๐ป๐‘˜ :๐‘ (๐ผ) . (52)

    Similarly, from Lemma 4.3 and relation (50), we obtain

    โ€–โˆซ ๐‘˜(. , ๐‘ 1) ๐ท๐›ผ๐‘’๐‘(๐‘ 1) ๐‘‘๐‘ 1

    1

    0

    โ€–๐ฟ2(๐ผ)

    โ‰ค ๐ถ11 โ€–๐ท๐›ผ๐‘’๐‘โ€–๐ป๐‘˜:๐‘(๐ผ)

    โ‰ค ๐ถ11 โ€–๐‘’๐‘โ€–๐ป1:๐‘(๐ผ)

    โ‰ค ๐ถ12 ๐‘32โˆ’๐‘˜|๐‘ฆ|๐ป๐‘˜:๐‘(๐ผ) . (53)

    At last, combining(48),(52), and (53) gives

    โ€–๐‘’๐‘๐‘(๐พ๐›ผ๐‘ฆ(๐‘ ))โ€–๐ฟ2 (๐ผ)โ‰ค ๐ถ9 ๐‘

    โˆ’๐‘˜โ€–๐‘ฆโ€–๐ป๐‘˜:๐‘(๐ผ) + ๐ถ13 ๐‘32โˆ’2๐‘˜ |๐‘ฆ|๐ป๐‘˜:๐‘(๐ผ) . (54)

    In a similar manner with relation (37), we may write

    โ€–๐‘’๐‘๐‘(๐‘“(๐‘ ))โ€–

    ๐ฟ2 (๐ผ)โ‰ค ๐ถ2๐‘

    โˆ’๐‘˜|๐‘“|๐ป๐‘˜:๐‘(๐ผ) . (55)

    Finally, by substituting (54) โˆ’ (55) in (46), the following relation can be obtained

    โ€–๐‘’๐‘โ€–๐ฟ2(๐ผ) โ‰ค ๐ถ7 ๐ถ2๐‘โˆ’๐‘˜|๐‘“|๐ป๐‘˜ :๐‘(๐ผ) +๐ถ8 (๐ถ9 ๐‘

    โˆ’๐‘˜โ€–๐‘ฆโ€–๐ป๐‘˜:๐‘ (๐ผ) + ๐ถ13 ๐‘32โˆ’2๐‘˜ |๐‘ฆ|๐ป๐‘˜ :๐‘ (๐ผ))

    โ‰ค ๐›พ1 ๐‘โˆ’๐‘˜(|๐‘“|๐ป๐‘˜:๐‘(๐ผ) + โ€–๐‘ฆโ€–๐ป๐‘˜ :๐‘ (๐ผ))+ ๐›พ2๐‘

    32โˆ’2๐‘˜

    |๐‘ฆ|๐ป๐‘˜:๐‘ (๐ผ) .

    The above inequality proves that the approximation is convergent in ๐ฟ2 โˆ’norm. Hence the

    theorem is proved.

    5. Numerical example

    To show efficiency of the numerical method, the following examples are considered.

  • Example 5.1. Consider the following fractional integro-differential equation [20]

    ๐‘ฆโ€ฒ(๐‘ฅ) = 14 (1 โˆ’๐‘ก

    2.5 ฮ“(1.5))+โˆซ ๐‘ฅ๐‘  ๐ท

    12๐‘ฆ(๐‘ ) ๐‘‘๐‘ 

    1

    0

    ,

    with the initial condition: ๐‘ฆ(0) = 0, and exact solution ๐‘ฆ(๐‘ฅ) = 14๐‘ฅ.

    We have solved this example using Chebyshev-Legendre spectral method and approximations

    are obtained as follows:

    ๐‘› = 0: ๐‘ฆ0(๐‘ฅ) = 0,

    ๐‘› = 1: ๐‘ฆ1(๐‘ฅ) = 14๐‘ฅ,

    ๐‘› = 2: ๐‘ฆ2(๐‘ฅ) = 14๐‘ฅ,

    ๐‘› = 3: ๐‘ฆ3(๐‘ฅ) = 14๐‘ฅ,

    and so on. Therefore, we obtain ๐‘ฆ(๐‘ฅ) = 14๐‘ฅ which is the exact solution of the problem.

    Example 5.2. Our second example is the following fractional integro-differential equation [20]

    ๐‘ฆโ€ฒ(๐‘ฅ) = ๐‘“(๐‘ฅ)+ โˆซ ๐‘ฅ2๐‘ 2 ๐ท14๐‘ฆ(๐‘ ) ๐‘‘๐‘ 

    1

    0

    ,

    with the initial condition

    ๐‘ฆ(0) = 0,

    where ๐‘“(๐‘ฅ) = 8๐‘ฅ3 โˆ’3

    2๐‘ฅ1

    2 โˆ’ (48

    6.75 ฮ“(4.75)โˆ’

    ฮ“(2.75)

    4.25 ฮ“(2.25))๐‘ฅ2, and ๐‘ฆ(๐‘ฅ) = 2๐‘ฅ4 โˆ’ ๐‘ฅ

    3

    2 is the exact

    solution. The numerical results of our method can be seen from Figure 1 and Figure 2. These

    results indicate that the spectral accuracy is obtained for this problem, although the given function

    ๐‘“(๐‘ก) is not very smooth.

  • Figure 1. Comparison between exact solution and approximate solution of Example 5.2 (left), the

    error function for some different values (right)

  • Figure 2. The error of numerical and exact solution of Example 5.2 versus the number of interpolation

    operator in ๐ฟ2 norm

    Example 5.3. Consider the following fractional integro-differential equation

    2๐‘ฆโ€ฒโ€ฒ(๐‘ฅ)+ ๐‘ฆโ€ฒ(๐‘ฅ) = (9โˆš๐œ‹ โˆ’ 12

    โˆšฯ€)๐‘ฅ2 + 36๐‘ฅ + 8+ โˆซ ๐‘ฅ2โˆš๐‘  ๐ท

    32๐‘ฆ(๐‘ ) ๐‘‘๐‘ 

    1

    0

    ,

    with the initial conditions

    ๐‘ฆ(0) = 0,

    ๐‘ฆโ€ฒ(0) = 8.

    Taking ๐‘ = 4, by implementing the Chebyshev-Legendre spectral method, we get the numerical

    solution as follow

    ๐‘ฆ4 = 8๐‘ฅ + 1.003417 ร— 10โˆ’12๐‘ฅ2 +3๐‘ฅ3 + 1.652105 ร— 10โˆ’13๐‘ฅ4 โ‰… 8๐‘ฅ + 3๐‘ฅ3.

    The approximate solution ๐‘ฆ4 for this fractional integro-differential equation tends rapidly to exact

    solution, i.e. ๐‘ฆ(๐‘ฅ) = 8๐‘ฅ + 3๐‘ฅ3.

    Example 5.4. Let us consider the following fractional integro-differential equation

    3๐‘ฆ(3)(๐‘ฅ) โˆ’ ๐‘ฆโ€ฒโ€ฒ(๐‘ฅ) + ๐‘ฆ(๐‘ฅ) = (7 โˆ’32

    15โˆš๐œ‹)๐‘’๐‘ฅ +3๐‘ฅ๐‘’๐‘ฅ + โˆซ ๐‘’๐‘ฅโˆ’๐‘  ๐ท

    12๐‘ฆ(๐‘ ) ๐‘‘๐‘ 

    1

    0

    ,

    with the initial conditions

    ๐‘ฆ(0) = 0,

    ๐‘ฆโ€ฒ(0) = 1,

  • ๐‘ฆโ€ฒโ€ฒ(0) = 2.

    The exact solution of this fractional integro-differential is ๐‘ฆ(๐‘ฅ) = ๐‘ฅ๐‘’๐‘ฅ . We have reported the

    obtained numerical results for ๐‘ = 4 and 8 in Table 1. Also, in Figure 3, we plot the resulting

    errors versus the number ๐‘ of the steps. This figure shows the exponential rate of convergence

    predicted by the proposed method.

    t Proposed method

    at ๐‘ = 4 Proposed method

    at ๐‘ = 8 Exact solution

    0 .0000000000 .0000000000 .0000000000

    0.2 .2442815491 .2442805512 .2442805516

    0.4 .5967277463 .5967298754 .5967298792

    0.6 1.093273679 1.093271221 1.093271280

    0.8 1.780432013 1.780432791 1.780432742

    1 2.718281658 2.718281815 2.718281828 Table 1. The numerical results and exact solution for Example 5.4

    Figure 3. Comparison between exact solution and approximate solution of Example 5.4 (left),

    the error function for some different values (right)

    6. Conclusion

    In this paper we present a Chebyshev-Legendre spectral approximation of a class of Fredholm

    fractional integro-differential equations. The most important contribution of this paper is that the

    errors of approximations decay exponentially in ๐ฟ2 โˆ’ ๐‘›๐‘œ๐‘Ÿ๐‘š. We prove that our proposed method

    is effective and has high convergence rate. The results given in the previous section are compared

    with exact solutions. The satisfactory results agree very well with exact solutions only for small

    numbers of shifted Legendre polynomials.

    Reference

  • [1] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential

    Equations, North-Holland Math. Stud., vol. 204, Elsevier Science B.V., Amsterdam, (2006).

    [2] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999).

    [3] A. H. Bhrawy and M. A. Alghamdi, A shifted Jacobi-Gauss-Lobatto collocation method for solving

    nonlinear fractional Langevin equation involving two fractional orders in different intervals, Boundary

    Value Problems, vol. 2012, article 62, 13 pages, 2012.

    [4] E. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method,

    Appl. Math. Comput. 176, 1-6 (2006).

    [5] Y. Nawaz, Variational iteration method and Homotopy perturbation method for fourth-order

    fractional integro-differential equations, Comput. Math. Appl. 61, 2330-2341 (2011).

    [6] S. Momani and M. A. Noor, Numerical method for fourth-order fractional integro-differential

    equations, Appl. Math. Comput. 182,754-760 (2006).

    [7] H. Saeedi and F. Samimi, He's homotopy perturbation method for nonlinear Fredholm integro-

    differential equation of fractional order, International J. of Eng. Res. And App., Vol. 2, no. 5, pp. 52-56,

    2012.

    [8] A. Ahmed and S. A. H. Salh, Generalized Taylor matrix method for solving linear integro-fractional

    differential equations of Volterra type, App. Math. Sci., Vol. 5, no. 33-36, pp. 1765-1780, 2011.

    [9] A. Arikoglo and L. Ozkol, Solution of fractional integro-differential equation by using fractional

    differential transform method, Chaos Solitons Fractals 34, 1473-1481 (2007).

    [10] J. Wei and T. Tian, Numerical solution of nonlinear Volterra integro-differential equations of

    fractional order by the reproducing kernel method, Appl. Math. Model. 39, 4871-4876 (2015).

    [11] Li Zhu and Qibin Fan, Solving fractional nonlinear Fredholm integro-differential equations by the

    second kind Chebyshev wavelet, Common. Nonlinear Sci. Numer. Simul. 17, 2333โ€“2341(2012).

    [12] H. Saeedi, M. Mohseni Moghadam, N. Mollahasani and GN. Chuev, A CAS wavelet method for

    solving nonlinear Fredholm integro-differential equation of fractional order, Common. Nonlinear Sci.

    Numer. Simul. 16, 1154-1163 (2011).

    [13] Z. Meng, L. Wang, H. Li and W. Zhang, Legendre wavelets method for solving fractional integro-

    differential equations, Int. J. Comput. Math. 92, 1275-1291 (2015).

    [14] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral methods: Fundamentals in single

    domain, Springer, Berlin (2006).

    [15] P. E. Bjorstad and B. P. Tjostheim, Efficient algorithm for solving a fourth-order equation with the

    spectral Galerkin method, SIAM J. Sci. Comput., 18, pp. 621-632 (1997).

    [16] J. Shen, Efficient spectral-Galerkin method I. Direct solvers for second- and fourth-order equations

    by using Legendre polynomials, SIAM J. Sci. Comput., 15, pp. 1489-1505 (1994).

    [17] J. Shen, T. Tang and Li-Lian Wang, Spectral Methods: Algorithms, Analysis and Applications,

    Springer-Verlag, Berlin Heidelberg (2011).

  • [18] S. Karimi Vanani and A. Amin Ataei, Operational Tau approximation for a general class of fractional

    integro-differential equations, J. Comp. and Appl. Math., Vol. 30, N. 3, 655-674 (2011).

    [19] M. M. Khader and N. H. Sweilam, A Chebyshev pseudo-spectral method for solving fractional order

    integro-differential equation, The ANZIAM J. of Australian Math. Soc., Vol. 51 (04), pp. 464-475 (2010).

    [20] A. Yousefi, T. Mahdavi-Rad and S. G. Shafiei, A quadrature Tau method for solving Fractional

    integro-differential equations in the Caputo sense, J. of Math. Computer Sci. 16, 97-107 (2015).

    [21] W. G. El-Sayed and A. M.A. El-Sayed, On the fractional integral equations of mixed type integro-

    differential equations of fractional orders, App. Math. Comput. 154, 461-467 (2004).

    [22] M. F. Al-Jamal and E. A. Rawashdeh, The approximate solution of fractional integro-differential

    equations, Int. J. Contemp. Math. Sci. 4, no. 22, 1067-1078 (2009).

    [23] J. Shen and R. Temam, Nonlinear Galerkin method using Chebyshev and Legendre polynomials I.

    The one-dimensional case, SIAM J. Numer. Anal., 32(1995), pp. 215-234.

    [24] J. Shen, Efficient Chebyshev-Legendre Galerkin methods for elliptic problems, in Proc.

    ICOSAHOM'95, A. V. Ilin and R. Scott, eds., Houston J. Math., 233-240 (1996).

    [25] A. H. Bhrawy, A.S. Alofi and S.S. Ezz-Eldien, A quadrature Tau method for fractional differential

    equations with variable coefficients, App. Math. Letter 24, 2146-2152 (2011).

    [26] B.K. Alpert and V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions. SIAM J.

    Sci. Stat. Comput., 12:158-179 (1991).

    [27] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73:325-

    348 (1987).

    [28] W.S. Don and D. Gottlieb. The Chebyshev-Legendre method: implementing Legendre methods on

    Chebyshev points. SIAM J. Numer. Anal., 31:1519-1534 (1994).

    [29] R.P. Kanwal, Linear Integral Equations, second ed., Birkhauser Boston, Inc., Boston, MA, (1971).

    [30] Y. Chen and T. Tang, Convergence analysis of the Jacobi spectral collocation methods for Volterra

    integral equations with a weakly singular kernel, Math. Comp. 79 (269): 147โ€“167(2010).

    [31] A.W. Naylor and G.R. Sell, Linear operator theory in engineering and science, Second ed., in:

    Applied mathematical sciences, Vol. 40, Springer-Verlag, New York, Berlin (1982).

    [32] E.H. Doha, A.H. Bhrawy and S.S. Ezz-Eldien, A Chebyshev spectral method based on operational

    matrix for initial and boundary value problems of fractional order, J. of Comp. and Math. with Appl. 62

    2364โ€“2373 (2011).