Download - 47 haptic maps ntu

Transcript
Page 1: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Evaluation of Haptic RIA Maps David J. Brown and Lindsay J. Evett, ISRG, Nottingham Trent University

Page 2: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Introduction

People who are blind use sequential, route based strategies for navigating round the real world, rather than external, or allocentric, frames of references

More map-based strategies better for navigational tasks for people who are blind (Hill, et al, 1993); training in such

strategies greatly improves performance (Cummins and Rieser, 2008; Simonnet et al, 2006)

Allocentric mapping involves identifying location relative to

perceptible landmarks (external frames of reference) and encoding vectors between landmarks to provide a flexible system to determine location as the person moves around the environment (Feigenbaum and Morris (2004))

Page 3: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Spatial mental models

External frames of reference and map based strategies are more efficient and flexible – easier to remember, alternative routes can be taken, shortcuts made and destinations changed because they encompass a more

complete spatial representation (Martinsen et al, 2007)

Oliver and Burnett (2008) – route guidance systems suppress cognitive map development

Active exploration of virtual worlds and maps to support

development of map-based strategies and spatial mental models (Tversky, 1993) to support independent navigational skills

Page 4: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Spatial representations

We are investigating a range of games based and

assistive technologies that can support development of allocentric navigational strategies in people who are blind, and continually assessing their efficacy

In some circumstances these technologies offer advantages over real world route learning as they may help generate a fuller spatial cognitive representation, involve active learning positions, and be available for use on a daily basis (unlike

real world training support)

Page 5: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Haptic RIA Maps

Haptic RIA maps is an application whereby visually impaired users can explore a web-based representation of a street map using a force feedback/haptic device

As well as haptic feedback there are auditory cues, such as street names, and a sonification mechanism which provides distance information

Can this system provide information equivalent to that provided to sighted users by conventional 2D maps?

Page 6: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Spatial representation and Haptic Maps

Can people who are blind read Haptic Maps and get useful information out of them? (spatial information, contextual information…)

What is the level of improved spatial information? e.g., find out more about an unknown space, used it to extend a known route, or take alternative routes, or create a new route, take different perspectives…..?

Page 7: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Nature of Information generated by Haptic Maps

Tests proposed to assess whether active

exploration of Haptic Maps can support

development of spatial mental models, and

the complexity of those representations

The efficacy of the Haptic RIA Maps can be

compared to the use of Touch Over Maps,

and other navigational and Way Finding

support systems, such as the Virtual Cane,

Route Mate and Point Nav

Page 8: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

AEGIS Haptic RIA Maps Test Tasks

1. Search for a location; map generated through OpenStreetMap; after a map has loaded, generate 3D representations (i.e., create haptic map)

2. Explore the map, feel the haptic feedback, hear the auditory feedback: While moving on the streets, different sounds generated e.g., when standing at an intersection; pitch of sound indicates approximately distance to next intersection; press LCtrl for street; ~ for POI information

3. Search for a specific street name

4. Move/relocate the map: move around to see more of the map using the arrow keys. Press the spacebar to restore haptics

5. Zoom: Zoom the map in and out one step; wait until street info resumes. Space bar restores haptics.

Page 9: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Participants

LUND tested with 9 people: 1 test leader who also performed a heuristic evaluation, 2 pilot testers and 6

users. Both the pilot testers and 2 end users were fully sighted but used simulated cataract glasses. 1 user is blind, 3 have low vision

FONCE/UPM tested with 5 blind users, and 3 experts formed the focus group

EPR tested with 8 blind/partially sighted users, 10 experts

NTU tested with 2 blind users, 1 tutor and 3 experts (all

sighted). All took part in the focus group discussion.

LUND used the PHANToM OMNI; all others used the Novint Falcon

Page 10: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Participants - experience

LUND users all had varying degrees of experience

with force feedback haptics

NTU blind users had some limited experience of tactile maps; both use GPS and had some very

limited experience with the Falcon

FONCE/UPM users were experienced with Braille maps and GPS but had no experience of haptic

devices

EPR users had experience with swell paper and relief usage, but none had ever worked with a Falcon device before

Page 11: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Degree of Visual Impairment

Partial sightedness: someone who has serious loss

of vision even when corrected

Blind: severe sight loss even when corrected; may be total

Low vision: moderate sight loss (NHS choices, 2011; Wikipedia, 2011)

Aegis:

Low vision users (users with a sight impairment and blindness with

useful residual vision) rate: 1. mild; 2. moderate; 3. severe

Blind users (without useful residual vision) rate: 4. total

Page 12: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Results – tasks (b/ps users only)

1. Search: Search stage not accessible by screenreader

2. Explore Map: All groups found the Haptic feedback to be unstable. Those using the Falcon found it very difficult to use, haptic feedback was erratic and inconsistent, the device was prone to violently lurching and sometimes no haptic feedback could be felt at all

3. Search for specific street:

LUND – all users able to do tasks at least partly without help, but hard to find street with no guidance

FONCE/UPM – needed to know the area, or have explored Braille map to do this

EPR – mostly failed

NTU – one could, one couldn‟t

Page 13: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Results - tasks (contd.)

4. Move/relocate the map

LUND – all users able to do tasks at least partly without help

FONCE/UPM – not mentioned

EPR – couldn‟t do it

NTU – if any key press etc. while map relocating system crashed, so didn‟t do this

5. ZOOM

LUND – all users able to do tasks at least partly without help

FONCE/UPM – easier with fewer streets

EPR - couldn‟t do it

NTU – didn‟t work when in map

Page 14: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Results – auditory feedback

NTU: position of tilde key on English keyboards made it difficult to use. One of the blind users was left handed, found all the key commands awkward

All Falcon users had to go very slowly to be able to use it at all, to try and keep on the streets. Very easy to lift off the streets, audio feedback stopped.

No cues to leaving the map, so difficult to know if left the boundary of the map, or lifted the device off the map

Spanish users found verbal output difficult – Street names in Spanish BUT the rest in English, and pronunciations were difficult to understand. NTU found the voice difficult to understand. EPR reported the auditory feedback overall as good, but sometimes the CTRL key did not generate any feedback

Lag on TTS and sonification could cause problems; sonification could be difficult to understand, unpleasant

Page 15: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Results – Summary

Verbal feedback difficult to understand; sonification OK but could be improved (some lag on both)

Relocating and zooming unreliable; only LUND able to do these, but users didn‟t like losing their reference points, and having to turn haptics back on

All wanted indication of edge of map

The PHANToM appears to be easier to use than the Falcon, but still haptic feedback is unstable

Both interaction devices involve a complicated relationship with the

map representation (actions don‟t have direct/simple relationship with the map); PHANToM works better but too expensive

All groups liked the idea of the application; there were limitations with cues and feedback, but overriding difficulty was with the

haptic feedback, especially for the Falcon

Page 16: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Results – NTU comments

One blind user could do it all, but found it difficult to “keep on the map”; found the voice difficult to understand and the

sonification a bit difficult, slightly unpleasant

NONE of the other NTU users could use it

easily (1 blind, 4 sighted), although the sighted users did manage to move to

the specified street

Page 17: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

What to do?

Better device? MS haptic mouse? Better haptics?

Consider aims of app – to help blind users build a useful, spatial cognitive representation of the map area

Consider relationship between cognitive representation, actions, map representation

Need more direct and reliable relationship between them

Need reference points (implicit in a spatial mental

model, multiple perspectives)

Page 18: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Touch Over maps

HaptiMap demonstrator (HaptiMap, 2011)

Has all the desirable attributes:

user actions have a direct, reliable, relationship with maps

Simple reference points (may need more on tablet)

easy to use (2 blind users)

can reproduce the map (2 blind users)

BUT 1 blind user with resid. vision found areas with patchy feedback, frustrating and poor info.

MS haptic mouse could have similar attributes

To have both would give desktop and mobile apps

Page 19: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Further work

Investigate MS haptic mouse; improve haptics?

Evaluate the information obtained from exploring the map; can users create spatial mental models?

Can they use this information:

to know about the layout and content of an area?

to find out about an area in which they have known routes (to overcome obstacles, changes)?

to extend a known route?

to create a new route?

Page 20: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Evaluate Spatial Mental Models

Does model contain spatial relationships, allow multiple perspectives, sufficient for actual route finding? Possible tasks:

1. Recreate map

2. Describe routes from A to B and from C to B

3. Study area where known route:

• demonstrate ability to deal with obstacles

• extend known route

• create new route

Page 21: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Conclusions

Both Falcon and Phantom have significant usability

issues and are expensive

Alternative device – (Microsoft Haptic Mouse, £30). This gives much more direct correspondence

between real movement and virtual response

Improve haptic information in app

Touch Over Maps – direct correspondence between actions and map; reference points

Can blind/partially sighted obtain useful

information from these apps? Usable spatial cognitive representations – research to evaluate

Page 22: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

Comparison to other technologies

Virtual Cane – to support development of both egocentric and allocentric strategies (Evett at al, 2009). Similarities to the aims of Haptic Maps, but levels of scale and details are different

Point Nav (HaptiMap, 2011)

Talking GPS (Trekker; Mobile Accessibility)

RouteMate (Brown et al, 2011)

Bluetooth/wireless indoor way points (Evett at al, 2011)

Page 23: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

References

Aegis (2011). DOWNLOADS: WAI ARIA enabled plugins; Haptic RIA Maps, http://www.aegis-project.eu/ accessed 23/11/11

Brown, D. J., D. McHugh, P. Standen, L. Evett, N. Shopland, S. Battersby (2011), Designing location-based learning experiences for people with intellectual disabilities and additional sensory impairments, Computers and Education, vol. 56, pp. 11–20.

Code Factory (2011b) Mobile Accessibility for Android, http://www.codefactory.es/en/products.asp?id=415 accessed 29/3/11

Craik, K. J. W. (1943) The Nature of Explanation, CUP

Cummins P A & Rieser J J (2008), Strategies of maintaining dynamic spatial orientation when walking without vision, In Blindness and Brain Plasticity in Navigation and Object Perception (J J Rieser, D H Ashmead, F F Ebner and A L Corn, Eds), Lawrence Erlbaum Associates, New York, pp. 227-238

Evett, L., T. Allen, M. Javad Akhlaghinia, N. Shopland (2011). I need assistance: Smart phones as assistive devices, Proceedings Interactive Technology and Games, Nottingham UK

Page 24: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

References (contd.)

Evett L, Battersby S, Ridley A, and Brown DJ. (2009). An interface to virtual environments for people who are blind using Wii technology – mental models and navigation. Journal of Assistive Technologies, 3 (2), pp.30-39

Feigenbaum, J. D. and Morris, R. G. (2004). “Allocentric versus egocentric spatial memory after unilateral temporal lobectomy in humans”. Neuropsychology, 18, 462-472

HaptiMap (2011) HaptiMap project outline, http://www.haptimap.org/home/about-haptimap.html accessed 14/11/11

Hill E W, Rieser J J, Hill M, Halpin J & Halpin R (1993), How persons with visual impairments explore novel spaces: strategies of good and poor performers, J. Vis. Imp. and Blindness, 87, 8, pp. 295-301

Humanware (2011a) Trekker Breeze, http://www.humanware.com/en-united_kingdom/products/blindness/talking_gps/trekker_breeze/_details/id_101/trekker_breeze_handheld_talking_gps.html accessed 12/10/11

Martinsen, H., J. M. Tellevik, B. Elmerskog, M. Storlilokken (2007). Mental effort in mobility route learning, J. of Vis. Imp. and Blindness, 101, pp1-18.

Page 25: 47 haptic maps ntu

AEGIS Workshop and International Conference, Brussels

References (contd.)

NHS choices (2011) Visual impairment, http://www.nhs.uk/conditions/visual-impairment/Pages/Introduction.aspx accessed 14/11/11

Oliver, K. J., Burnett, G. E. (2008). Learning-oriented vehicle navigation systems: a preliminary investigation in a driving simulator. In Proceedings of the 10th International Conference on Human–Computer Interaction with Mobile Devices and Services. pp. 119–126

Simonnet M, Guinard J-Y & Tisseau J (2006), Preliminary work for vocal and haptic navigation software for blind sailors, Proc. 6th Intl Conf. Disability, Virtual Reality & Assoc. Tech. (ICDVRAT), Esbjerg, Denmark, 2006, pp. 255-262

Tversky, B (1993) Cognitive maps, cognitive collages and spatial mental models, in Frank, A U and Campari, I (Eds.) Spatial Information Theory: A Theoretical Basis for GIS, Proceedings COSIT „93, Lecture Notes in Computer Science, 716, pp. 14-24, Springer, Berlin

Wikipedia contributors (2011) Low vision. Wikipedia, The Free Encyclopaedia. November 1, 2011, 18:42 UTC. Available at: http://en.wikipedia.org/w/index.php?title=Low_vision&oldid=458503177 Accessed November 15, 2011.