Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... ·...

68
Zero-error quantum information theory with Gareth Boreland, QUB Rupert Levene, Dublin Vern Paulsen, IQC Waterloo Andreas Winter, Barcelona April 2019, Shanghai Jiao Tong Ivan Todorov QUB

Transcript of Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... ·...

Page 1: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Zero-error quantum information theory

withGareth Boreland, QUBRupert Levene, Dublin

Vern Paulsen, IQC WaterlooAndreas Winter, Barcelona

April 2019, Shanghai Jiao Tong

Ivan Todorov QUB

Page 2: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Outline

(1) The zero-error scenario in information transmission

(2) Zero-error capacity of classical channels

(3) The Sandwich Theorem

(4) Convex corners

(5) Quantum channels and zero-error transmission

(6) Non-commutative confusability graphs

(7) Non-commutative graph parameters

(8) The Quantum Sandwich Theorem

Ivan Todorov QUB

Page 3: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Shannon model

Source → Encoder → Channel → Decoder → Target

A channel N transmits symbols from an alphabet X into analphabet Y :

Ivan Todorov QUB

Page 4: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Shannon model

Source → Encoder → Channel → Decoder → Target

A channel N transmits symbols from an alphabet X into analphabet Y :

Ivan Todorov QUB

Page 5: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Formalism

A channel N : X → Y is a family {(p(y |x))y∈Y : x ∈ X} ofprobability distributions over Y , one for each input symbol x .

A zero-error code for N : a subset A ⊆ X such that each symbolfrom A can be identified unambiguously after its receipt, despitethe noise.

Equivalently: A ⊆ X such that

support(p(·|x))∩ support(p(·|x ′)) = ∅ whenever x , x ′ ∈ A distinct.

The confusability graph GN of N :

vertex set: X

x ∼ x ′ if support(p(·|x)) ∩ support(p(·|x ′)) 6= ∅.

(x ∼ x ′ iff ∃ y ∈ Y s.t. p(y |x) > 0 and p(y |x ′) > 0)

Ivan Todorov QUB

Page 6: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Formalism

A channel N : X → Y is a family {(p(y |x))y∈Y : x ∈ X} ofprobability distributions over Y , one for each input symbol x .

A zero-error code for N : a subset A ⊆ X such that each symbolfrom A can be identified unambiguously after its receipt, despitethe noise.

Equivalently: A ⊆ X such that

support(p(·|x))∩ support(p(·|x ′)) = ∅ whenever x , x ′ ∈ A distinct.

The confusability graph GN of N :

vertex set: X

x ∼ x ′ if support(p(·|x)) ∩ support(p(·|x ′)) 6= ∅.

(x ∼ x ′ iff ∃ y ∈ Y s.t. p(y |x) > 0 and p(y |x ′) > 0)

Ivan Todorov QUB

Page 7: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

An example

A channel (i) and its confusability graph C5 (ii)

Ivan Todorov QUB

Page 8: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

One shot zero-error capacity

One shot zero-error capacity: the size of a largest zero-error code.

Equivalently: the independence number α(GN ) of the graph GN .

By definition, α(G ) is the largest independent set in G , i.e. thelargest set A ⊆ X such that

x , x ′ ∈ A, x 6= x ′ implies x 6∼ x ′.

For C5, we have α(C5) = 2.

Ivan Todorov QUB

Page 9: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

One shot zero-error capacity

One shot zero-error capacity: the size of a largest zero-error code.

Equivalently: the independence number α(GN ) of the graph GN .

By definition, α(G ) is the largest independent set in G , i.e. thelargest set A ⊆ X such that

x , x ′ ∈ A, x 6= x ′ implies x 6∼ x ′.

For C5, we have α(C5) = 2.

Ivan Todorov QUB

Page 10: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Product channels

N1 : X1 → Y1, N2 : X2 → Y2 channels. The product channel

N1 ×N2 : X1 × X2 → Y1 × Y2

is given byp(y1, y2|x1, x2) = p(y1|x1)p(y2|x2).

GN1×N2 = GN1 � GN2

G1 � G2: the strong graph product:

vertex set: X1 × X2

(x1, x2) ' (x ′1, x′2) if x1 ' x ′1 and x2 ' x ′2.

Ivan Todorov QUB

Page 11: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Product channels

N1 : X1 → Y1, N2 : X2 → Y2 channels. The product channel

N1 ×N2 : X1 × X2 → Y1 × Y2

is given byp(y1, y2|x1, x2) = p(y1|x1)p(y2|x2).

GN1×N2 = GN1 � GN2

G1 � G2: the strong graph product:

vertex set: X1 × X2

(x1, x2) ' (x ′1, x′2) if x1 ' x ′1 and x2 ' x ′2.

Ivan Todorov QUB

Page 12: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Parallel repetition and zero-error capacity

Parallel repetition of N : forming products N×n, n = 1, 2, 3, . . . .

The zero-error capacity

c0(N ) = limn→∞

n

√α(G�nN

).

Note: The limit exists due to the fact that

α(G1 � G2) ≥ α(G1)α(G2).

Strict inequality may occur you can do better on the average byusing N repeatedly.

Question: What is c0(C5)?

Ivan Todorov QUB

Page 13: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Parallel repetition and zero-error capacity

Parallel repetition of N : forming products N×n, n = 1, 2, 3, . . . .

The zero-error capacity

c0(N ) = limn→∞

n

√α(G�nN

).

Note: The limit exists due to the fact that

α(G1 � G2) ≥ α(G1)α(G2).

Strict inequality may occur you can do better on the average byusing N repeatedly.

Question: What is c0(C5)?

Ivan Todorov QUB

Page 14: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Lovasz number

Answer (Lovasz, 1979): c0(C5) =√

5.

Method: Introduced a parameter θ(G ) such that

α(G ) ≤ θ(G ) and

θ(G1 � G2) = θ(G1)θ(G2).

The inequality θ(G1 � G2) ≤ θ(G1)θ(G2) alone will then give

c0(G ) ≤ θ(G ).

Note: θ(G ) remains the best general computable bound for c0(G ).

Ivan Todorov QUB

Page 15: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Lovasz number

Answer (Lovasz, 1979): c0(C5) =√

5.

Method: Introduced a parameter θ(G ) such that

α(G ) ≤ θ(G ) and

θ(G1 � G2) = θ(G1)θ(G2).

The inequality θ(G1 � G2) ≤ θ(G1)θ(G2) alone will then give

c0(G ) ≤ θ(G ).

Note: θ(G ) remains the best general computable bound for c0(G ).

Ivan Todorov QUB

Page 16: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Lovasz number

G a graph with vertex set X , |X | = d . For A ⊆ Rd+, let

A[ = {b ∈ Rd+ : 〈b, a〉 ≤ 1, ∀ a ∈ A}.

Orthogonal labelling (o.l.): a family (ax)x∈X of unit vectors s.t.

x 6' y ⇒ ax ⊥ ay .

P0(G ) ={(|〈ax , c〉|2

)x∈X : (ax)x∈X o.l. and ‖c‖ ≤ 1

}.

thab(G ) = P0(G )[

The Lovasz number

θ(G ) = max{∑

x∈X λx : (λx)x∈X ∈ thab(G )}.

Equivalently: θ(G ) = minc maxx∈X1

|〈ax ,c〉|2

Ivan Todorov QUB

Page 17: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Lovasz number

G a graph with vertex set X , |X | = d . For A ⊆ Rd+, let

A[ = {b ∈ Rd+ : 〈b, a〉 ≤ 1, ∀ a ∈ A}.

Orthogonal labelling (o.l.): a family (ax)x∈X of unit vectors s.t.

x 6' y ⇒ ax ⊥ ay .

P0(G ) ={(|〈ax , c〉|2

)x∈X : (ax)x∈X o.l. and ‖c‖ ≤ 1

}.

thab(G ) = P0(G )[

The Lovasz number

θ(G ) = max{∑

x∈X λx : (λx)x∈X ∈ thab(G )}.

Equivalently: θ(G ) = minc maxx∈X1

|〈ax ,c〉|2

Ivan Todorov QUB

Page 18: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Lovasz number

G a graph with vertex set X , |X | = d . For A ⊆ Rd+, let

A[ = {b ∈ Rd+ : 〈b, a〉 ≤ 1, ∀ a ∈ A}.

Orthogonal labelling (o.l.): a family (ax)x∈X of unit vectors s.t.

x 6' y ⇒ ax ⊥ ay .

P0(G ) ={(|〈ax , c〉|2

)x∈X : (ax)x∈X o.l. and ‖c‖ ≤ 1

}.

thab(G ) = P0(G )[

The Lovasz number

θ(G ) = max{∑

x∈X λx : (λx)x∈X ∈ thab(G )}.

Equivalently: θ(G ) = minc maxx∈X1

|〈ax ,c〉|2

Ivan Todorov QUB

Page 19: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Lovasz Sandwich Theorem

α(G ) ≤ c0(G ) ≤ θ(G ) ≤ χf(G ).

χf(G ): the fractional chromatic number of the complement of G .

χf(G ) = max{∑

x∈X λx :∑

x∈K λx ≤ 1, ∀ clique K}

The Strong Sandwich Theorem

vp(G ) ⊆ thab(G ) ⊆ fvp(G ).

vp(G ) = conv{χS : S ⊆ X independent set}fvp(G ) = conv{χK : K ⊆ X clique}[

vp(G ), thab(G ) and fvp(G ) are convex corners.

Ivan Todorov QUB

Page 20: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Lovasz Sandwich Theorem

α(G ) ≤ c0(G ) ≤ θ(G ) ≤ χf(G ).

χf(G ): the fractional chromatic number of the complement of G .

χf(G ) = max{∑

x∈X λx :∑

x∈K λx ≤ 1, ∀ clique K}

The Strong Sandwich Theorem

vp(G ) ⊆ thab(G ) ⊆ fvp(G ).

vp(G ) = conv{χS : S ⊆ X independent set}fvp(G ) = conv{χK : K ⊆ X clique}[

vp(G ), thab(G ) and fvp(G ) are convex corners.

Ivan Todorov QUB

Page 21: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Convex corners and dualities

Convex corner

A ⊆ Rd+ : convex, closed, hereditary

(Hereditary: a ∈ A, 0 ≤ b ≤ a ⇒ b ∈ A.)

vp and fvp are dual to each other

vp(G )[ = fvp(G )

thab is self-dual

thab(G )[ = thab(G )

Second anti-blocker theorem

If A ⊆ Rd+ is a convex corner then

A[[ = A.

Ivan Todorov QUB

Page 22: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Convex corners and dualities

Convex corner

A ⊆ Rd+ : convex, closed, hereditary

(Hereditary: a ∈ A, 0 ≤ b ≤ a ⇒ b ∈ A.)

vp and fvp are dual to each other

vp(G )[ = fvp(G )

thab is self-dual

thab(G )[ = thab(G )

Second anti-blocker theorem

If A ⊆ Rd+ is a convex corner then

A[[ = A.Ivan Todorov QUB

Page 23: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

From classical to quantum

Replace Cd by Md .

Md – the algebra of all d × d complex matrices; (Ex ,x ′)x ,x ′∈Xmatrix units.

Trace Tr((λx ,y )) =∑

x∈X λx ;

Inner product (A,B) = Tr(B∗A);

Duality 〈A,B〉 = Tr(AB), making it into a self-dual space;

Positivity A ≥ 0 if (Aξ, ξ) ≥ 0, ∀ ξ.

Let DX ⊆ Md be the subalgebra of all diagonal matrices.

Going from classical to quantum, we move from DX to Md ,and from sets to projections.

Ivan Todorov QUB

Page 24: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

From classical to quantum

Replace Cd by Md .

Md – the algebra of all d × d complex matrices; (Ex ,x ′)x ,x ′∈Xmatrix units.

Trace Tr((λx ,y )) =∑

x∈X λx ;

Inner product (A,B) = Tr(B∗A);

Duality 〈A,B〉 = Tr(AB), making it into a self-dual space;

Positivity A ≥ 0 if (Aξ, ξ) ≥ 0, ∀ ξ.

Let DX ⊆ Md be the subalgebra of all diagonal matrices.

Going from classical to quantum, we move from DX to Md ,and from sets to projections.

Ivan Todorov QUB

Page 25: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Quantum channels

Classical channels revisited: N = {(p(y |x))y∈Y : x ∈ X}.Here, p(y |x) ≥ 0 and

∑y∈Y p(y |x) = 1, for all x ∈ X .

Let ΦN : DX → DY be the linear map

ΦN (Ex ,x) =∑y∈Y

p(y |x)Ey ,y .

ΦN is positive: A ≥ 0 ⇒ ΦN (A) ≥ 0.

ΦN is trace preserving: Tr(ΦN (A)) = Tr(A).

Quantum channel

Φ : Md → Mk linear, completely positive, trace preserving.

Completely positive: Φ⊗ idd : Md ⊗Md → Mk ⊗Md is positive.

Ivan Todorov QUB

Page 26: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Quantum channels

Classical channels revisited: N = {(p(y |x))y∈Y : x ∈ X}.Here, p(y |x) ≥ 0 and

∑y∈Y p(y |x) = 1, for all x ∈ X .

Let ΦN : DX → DY be the linear map

ΦN (Ex ,x) =∑y∈Y

p(y |x)Ey ,y .

ΦN is positive: A ≥ 0 ⇒ ΦN (A) ≥ 0.

ΦN is trace preserving: Tr(ΦN (A)) = Tr(A).

Quantum channel

Φ : Md → Mk linear, completely positive, trace preserving.

Completely positive: Φ⊗ idd : Md ⊗Md → Mk ⊗Md is positive.

Ivan Todorov QUB

Page 27: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Kraus representation

The representation theorem

Let Φ : Md → Mk be a linear map. The following are equivalent:

Φ is a quantum channel;

there exist Ap : Cd → Ck , p = 1, . . . , r , such that

Φ(T ) =r∑

p=1

ApTA∗p, T ∈ Md ,

andr∑

p=1

A∗pAp = I .

Ivan Todorov QUB

Page 28: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Quantum communication

Quantum channels transmit states in Md to states in Mk .

A state in Md is a matrix ρ ∈ Md with ρ ≥ 0 and Tr(ρ) = 1.

The set of all states is convex; its extreme points are known aspure states.

Pure states: for a unit vector ξ, consider ξξ∗: (ξξ∗)(η) = (η, ξ)ξ.

Two states ρ, σ are perfectly distinguishable if Tr(ρσ) = 0.

Equivalently: there are orthogonal projections P ⊥ Q with

ρ = PρP and σ = QσQ.

Effect of noise: Pure states are not necessarily mapped to purestates.

Ivan Todorov QUB

Page 29: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Quantum zero-error communication

Let Φ : Md → Mk be a quantum channel.

A zero-error code for Φ is a set {ξi}mi=1 of unit vectors in Cd suchthat the states

Φ(ξ1ξ∗1),Φ(ξ2ξ

∗2), . . . ,Φ(ξmξ

∗m)

are perfectly distinguishable.

An abelian projection for Φ is a projection P in Md whose range isthe span of a zero-error code.

Write Φ(T ) =∑r

p=1 ApTA∗p. This means

ξiξ∗j ⊥ ApA

∗q, for all i , j , p, q.

One shot zero-error capacity α(Φ) of Φ: the maximum rank of anabelian projection.

Ivan Todorov QUB

Page 30: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Quantum zero-error communication

Let Φ : Md → Mk be a quantum channel.

A zero-error code for Φ is a set {ξi}mi=1 of unit vectors in Cd suchthat the states

Φ(ξ1ξ∗1),Φ(ξ2ξ

∗2), . . . ,Φ(ξmξ

∗m)

are perfectly distinguishable.

An abelian projection for Φ is a projection P in Md whose range isthe span of a zero-error code.

Write Φ(T ) =∑r

p=1 ApTA∗p. This means

ξiξ∗j ⊥ ApA

∗q, for all i , j , p, q.

One shot zero-error capacity α(Φ) of Φ: the maximum rank of anabelian projection.

Ivan Todorov QUB

Page 31: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Non-commutative confusability graphs

For a quantum channel Φ(T ) =∑r

p=1 ApTA∗p, let

SΦ = span{ApA∗q : p, q = 1, . . . , r}.

SΦ ⊆ Md ;

SΦ is an operator system: A ∈ SΦ ⇒ A∗ ∈ SΦ and I ∈ SΦ;

SΦ is independent of the Kraus representation of Φ;

P is an abelian projection for Φ if and only if PSΦP is acommutative.

Definition (Duan-Severini-Winter, 2013)

A non-commutative graph in Md is an operator system in Md ;

SΦ is called the non-commutative confusability graph of Φ.

Ivan Todorov QUB

Page 32: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Non-commutative confusability graphs

For a quantum channel Φ(T ) =∑r

p=1 ApTA∗p, let

SΦ = span{ApA∗q : p, q = 1, . . . , r}.

SΦ ⊆ Md ;

SΦ is an operator system: A ∈ SΦ ⇒ A∗ ∈ SΦ and I ∈ SΦ;

SΦ is independent of the Kraus representation of Φ;

P is an abelian projection for Φ if and only if PSΦP is acommutative.

Definition (Duan-Severini-Winter, 2013)

A non-commutative graph in Md is an operator system in Md ;

SΦ is called the non-commutative confusability graph of Φ.

Ivan Todorov QUB

Page 33: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Operator systems historically

Originated in the 1960’s in the work of Arveson;

Two viewpoints: concrete and abstract. Choi-Effros Theoremshows they are equivalent.

Lied at the base of Quantised Functional Analyisis, developedsince the 1980’s (Arveson, Christensen, Blecher, Effros,Haagerup, Pisier, Ruan, Sinclair and many others);

The natural domains of completely positive maps due torichness of positivity structure.

Applications to Quantum Information Theory: quantumcorrelations, Bell’s Theorem, non-local games, zero-errorquantum information.

Ivan Todorov QUB

Page 34: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Classical graphs as non-commutative graphs

Let G be a graph with vertex set X of cardinality d .

SG = span{Ex ,x ′ ,Ey ,y : y ∈ X , x ∼ x ′},

a graph operator system.

SG1∼= SG2 iff G1

∼= G2;

Let N : X → Y a classical channel. Then SGN = SΦN

justification for calling SΦ a confusability graph.

Consistency: α(G ) = α(SG )

Non-commutative graph theory: Combinatorial properties ofoperator systems.

Some successes: Non-commutative graph parameters, Ramseytheory.

Ivan Todorov QUB

Page 35: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Product quantum channels

If Φ1 : Md1 → Mk1 and Φ2 : Md2 → Mk2 are quantum channelsthen

Φ1 ⊗ Φ2 : Md1 ⊗Md2 → Mk1 ⊗Mk2

is a quantum channel.

For classical channels N1 and N2 we haveΦN1×N2 = ΦN1 ⊗ ΦN2 .

SΦ1⊗Φ2 = SΦ1 ⊗ SΦ2

Ivan Todorov QUB

Page 36: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Zero-error capacity: the quantum case

Let Φ : Md → Mk be a quantum channel.Parallel repetition of Φ : forming products Φ⊗n, n = 1, 2, 3, . . . .

Set S = SΦ.

The zero-error capacity

c0(Φ) = c0(S) = limn→∞

n√α (S⊗n).

Note: The limit exists due to the fact that

α(S1 ⊗ S2) ≥ α(S1)α(S2).

Strict inequality may occur in an extreme way:

Superactivation (Duan, 2008): ∃ Φ: α(Φ) = 1 and α(Φ⊗ Φ) > 1.

Ivan Todorov QUB

Page 37: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Zero-error capacity: the quantum case

Let Φ : Md → Mk be a quantum channel.Parallel repetition of Φ : forming products Φ⊗n, n = 1, 2, 3, . . . .

Set S = SΦ.

The zero-error capacity

c0(Φ) = c0(S) = limn→∞

n√α (S⊗n).

Note: The limit exists due to the fact that

α(S1 ⊗ S2) ≥ α(S1)α(S2).

Strict inequality may occur in an extreme way:

Superactivation (Duan, 2008): ∃ Φ: α(Φ) = 1 and α(Φ⊗ Φ) > 1.

Ivan Todorov QUB

Page 38: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The non-commutative graphs Sk

Let Sk = span{Ei ,j ,El ,l : i 6= j} ⊆ Mk , k ∈ N.

S2 ={(

λ ab λ

): λ, a, b ∈ C

},

the smallest non-trivial genuinely non-commutative graph.

α (Sk1 ⊗ · · · Skm) = 1;

c0 (Sk1 ⊗ · · · Skm) = 1;

If α(T ) = 1 then α(S2 ⊗ T ) = 1.

Ivan Todorov QUB

Page 39: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

A quantum Lovasz number

Let S ⊆ Md be a non-commutative graph.

Duan-Severini-Winter, 2013:

θDSW(S) = max{‖I + T‖ : T ∈ S⊥, I + T ≥ 0}.

α(S) ≤ θDSW(A);

Supermultiplicativity: θDSW(S1 ⊗ S2) ≥ θDSW(S1)θDSW(S2),not useful.

θDSW(S) = maxk∈N

θDSW(S ⊗Mk).

θDSW(S1 ⊗ S2) = θDSW(S1)θDSW(S2) and so

c0(S) ≤ θDSW(S).

Ivan Todorov QUB

Page 40: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

A quantum Lovasz number

Let S ⊆ Md be a non-commutative graph.

Duan-Severini-Winter, 2013:

θDSW(S) = max{‖I + T‖ : T ∈ S⊥, I + T ≥ 0}.

α(S) ≤ θDSW(A);

Supermultiplicativity: θDSW(S1 ⊗ S2) ≥ θDSW(S1)θDSW(S2),not useful.

θDSW(S) = maxk∈N

θDSW(S ⊗Mk).

θDSW(S1 ⊗ S2) = θDSW(S1)θDSW(S2) and so

c0(S) ≤ θDSW(S).

Ivan Todorov QUB

Page 41: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Advantages, disadvantages and questions

θDSW(S) is computable via semi-definite program. . .

. . . but is not always a useful bound:

θDSW(Sk) = k, θDSW(Sk) = k2.

Questions

Can we find better bounds on c0(S)?

Is there a Strong Sandwich Theorem, involving convexcorners?

Answers: YES

Ivan Todorov QUB

Page 42: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Advantages, disadvantages and questions

θDSW(S) is computable via semi-definite program. . .

. . . but is not always a useful bound:

θDSW(Sk) = k, θDSW(Sk) = k2.

Questions

Can we find better bounds on c0(S)?

Is there a Strong Sandwich Theorem, involving convexcorners?

Answers: YES

Ivan Todorov QUB

Page 43: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Orthogonal rank – classical and quantum

β(G ) = min{k : ∃ o.l. of G in Ck}

β(S) = min{k : ∃ Φ : Md → Mk quantum channel with SΦ ⊆ S}(Levene-Paulsen-T, 2018). Relation to min. semi-definite rank.

β(SG ) = β(G )

α(S) ≤ β(S)

Submultiplicativity: β(S1 ⊗ S2) ≤ β(S1)β(S2).

Can be genuinely better:

β(Sk ⊗ Sk2) ≤ k2 < k3 ≤ θDSW(Sk ⊗ Sk2).

Ivan Todorov QUB

Page 44: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Non-commutative convex corners

Convex corners in Md (Boreland - T - Winter)

A ⊆ M+d : convex, closed, hereditary

(A ∈ A, 0 ≤ B ≤ A =⇒ B ∈ A.)

Examples of “trivial” convex corners:

{T ∈ M+d : Tr(T ) ≤ 1} and {T ∈ M+

d : ‖T‖ ≤ 1}.

Anti-blocker: A] = {T ∈ M+d : Tr(ST ) ≤ 1, ∀ S ∈ A}.

Second anti-blocker theorem (Boreland - T - Winter)

If A is a convex corner in M+d then A]] = A.

Note: For any non-empty A ⊆ M+d , the anti-blocker A] is a

convex corner.Ivan Todorov QUB

Page 45: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Abelian and full projections

Let S ⊆ Md be a non-commutative graph.

Recall: A projection P ∈ Md is called abelian if it spans azero-error code for S.

Equivalently: PSP is a commutative family of matrices.

A projection P ∈ Md is called full if L(PH)⊕ 0P⊥H ⊆ S.

If G is a graph with vertex set X , a subset K is called a cliqueif x , x ′ ∈ K ⇒ x ' x ′.

If K ⊆ X is a clique for G then the projection PK ontospan{ex : x ∈ K} is full for SG . Every full projection for SG isof this form.

Ivan Todorov QUB

Page 46: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Convex corners from non-commutative graphs

Let S ⊆ Md be a non-commutative graph.

ap(S) = her(conv{P : an abelian projection})

(her(A) = {B ≥ 0 : ∃A ∈ A such that B ≤ A})

fp(S) = her(conv{P : a full projection})

Consistency (Boreland - T - Winter)

The convex corners ap(S) and fp(S)] are quantisations of vp(G )and fvp(G ):

ap(SG ) ∩ DX = ∆(ap(SG )) = vp(G );

fp(SG )] ∩ DX = ∆(fp(SG )]) = fvp(G ).

ap(S) ⊆ fp(S)]

Ivan Todorov QUB

Page 47: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Convex corners from non-commutative graphs

Let S ⊆ Md be a non-commutative graph.

ap(S) = her(conv{P : an abelian projection})

(her(A) = {B ≥ 0 : ∃A ∈ A such that B ≤ A})

fp(S) = her(conv{P : a full projection})

Consistency (Boreland - T - Winter)

The convex corners ap(S) and fp(S)] are quantisations of vp(G )and fvp(G ):

ap(SG ) ∩ DX = ∆(ap(SG )) = vp(G );

fp(SG )] ∩ DX = ∆(fp(SG )]) = fvp(G ).

ap(S) ⊆ fp(S)]

Ivan Todorov QUB

Page 48: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Lovasz non-commutative corner

Let S ⊆ L(H) be an operator system.

C(S) = {Φ : Md → Mk : quantum channel with SΦ ⊆ S, k ∈ N} .

th(S) ={T ∈ L(H)+ : Φ(T ) ≤ I for every Φ ∈ C(S)

}th(S) = {Φ∗(σ) : Φ ∈ C(S), σ ≥ 0,Tr(σ) ≤ 1} .

th(S) is a convex corner and th(S) = th(S)].

Consistency (Boreland - T - Winter)

If G is a graph with a vertex set X then

th(SG ) ∩ DX = ∆(th(SG )) = thab(G ).

Ivan Todorov QUB

Page 49: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Lovasz non-commutative corner

Let S ⊆ L(H) be an operator system.

C(S) = {Φ : Md → Mk : quantum channel with SΦ ⊆ S, k ∈ N} .

th(S) ={T ∈ L(H)+ : Φ(T ) ≤ I for every Φ ∈ C(S)

}th(S) = {Φ∗(σ) : Φ ∈ C(S), σ ≥ 0,Tr(σ) ≤ 1} .

th(S) is a convex corner and th(S) = th(S)].

Consistency (Boreland - T - Winter)

If G is a graph with a vertex set X then

th(SG ) ∩ DX = ∆(th(SG )) = thab(G ).

Ivan Todorov QUB

Page 50: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The strong Lovasz Sandwich Theorem

A quantum sandwich (Boreland - T - Winter)

Let S ⊆ Md be a non-commutative graph. Then

ap(S) ⊆ th(S) ⊆ fp(S)].

Ivan Todorov QUB

Page 51: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Non-commutative parameters

Maximising the trace functional yields the parameters:

max {Tr(T ) : T ∈ ap(S)} = α(S);

max {Tr(T ) : T ∈ th(S)} =: θ(S);

max{Tr(T ) : T ∈ fp(S)]

}=: ωf(S).

By the consistency results, for a graph G we have:

θ(SG ) = θ(G ) and ωf(SG ) = ωf(G )

ωf(G ) = χf(G )

Ivan Todorov QUB

Page 52: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Lovasz Sandwich Theorem

Let S be a non-commutative graph in Md .

α(S) ≤ θ(S) ≤ ωf(S)

Question: Is θ a bound on the zero-error capacity?

– open

Ivan Todorov QUB

Page 53: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The Lovasz Sandwich Theorem

Let S be a non-commutative graph in Md .

α(S) ≤ θ(S) ≤ ωf(S)

Question: Is θ a bound on the zero-error capacity? – open

Ivan Todorov QUB

Page 54: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The parameter θ

Let S be a non-commutative graph.

θ(S) = inf{∥∥Φ∗(σ)−1

∥∥ : σ ≥ 0,Tr(σ) ≤ 1,Φ ∈ C(S),Φ∗(σ) invertible}

θ vs. θ

(i) θ(S)−1 = sup {inf {‖Φ(ρ)‖ : ρ a state on H} : Φ ∈ C(S)};

(ii) θ(S)−1 = inf {sup {‖Φ(ρ)‖ : Φ ∈ C(S)} : ρ a state on H}.

d inf{‖Φ(Id)‖−1 : Φ ∈ C(S)

}≤ θ(S) ≤ θ(S) ≤ β(S) ≤ d .

Ivan Todorov QUB

Page 55: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The parameter θ

Let S be a non-commutative graph.

θ(S) = inf{∥∥Φ∗(σ)−1

∥∥ : σ ≥ 0,Tr(σ) ≤ 1,Φ ∈ C(S),Φ∗(σ) invertible}

θ vs. θ

(i) θ(S)−1 = sup {inf {‖Φ(ρ)‖ : ρ a state on H} : Φ ∈ C(S)};

(ii) θ(S)−1 = inf {sup {‖Φ(ρ)‖ : Φ ∈ C(S)} : ρ a state on H}.

d inf{‖Φ(Id)‖−1 : Φ ∈ C(S)

}≤ θ(S) ≤ θ(S) ≤ β(S) ≤ d .

Ivan Todorov QUB

Page 56: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

The parameter θ

Let S be a non-commutative graph.

θ(S) = inf{∥∥Φ∗(σ)−1

∥∥ : σ ≥ 0,Tr(σ) ≤ 1,Φ ∈ C(S),Φ∗(σ) invertible}

θ vs. θ

(i) θ(S)−1 = sup {inf {‖Φ(ρ)‖ : ρ a state on H} : Φ ∈ C(S)};

(ii) θ(S)−1 = inf {sup {‖Φ(ρ)‖ : Φ ∈ C(S)} : ρ a state on H}.

d inf{‖Φ(Id)‖−1 : Φ ∈ C(S)

}≤ θ(S) ≤ θ(S) ≤ β(S) ≤ d .

Ivan Todorov QUB

Page 57: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Consistency

Let G be a graph. Then θ(SG ) = θ(G ).

θ(G ) = θ(SG ) ≤ θ(SG )

Let (ax)x∈X ⊆ Ck be an orthogonal labelling.

Φ(S) =∑x∈X

(axe∗x )S(exa

∗x), S ∈ Md .

If x 6' y then (exa∗x)(aye

∗y ) = 〈ay , ax〉exe∗y = 0 ⇒ SΦ ⊆ SG .

Let c ∈ Ck s.t. 〈ax , c〉 6= 0, x ∈ X . Then∥∥Φ∗(cc∗)−1∥∥ = max

x∈X

1

|〈ax , c〉|2.

⇒ θ(SG ) ≤ θ(G ).

Ivan Todorov QUB

Page 58: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Consistency

Let G be a graph. Then θ(SG ) = θ(G ).

θ(G ) = θ(SG ) ≤ θ(SG )

Let (ax)x∈X ⊆ Ck be an orthogonal labelling.

Φ(S) =∑x∈X

(axe∗x )S(exa

∗x), S ∈ Md .

If x 6' y then (exa∗x)(aye

∗y ) = 〈ay , ax〉exe∗y = 0 ⇒ SΦ ⊆ SG .

Let c ∈ Ck s.t. 〈ax , c〉 6= 0, x ∈ X . Then∥∥Φ∗(cc∗)−1∥∥ = max

x∈X

1

|〈ax , c〉|2.

⇒ θ(SG ) ≤ θ(G ).

Ivan Todorov QUB

Page 59: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Submultiplicativity

θ(S1 ⊗ S2) ≤ θ(S1)θ(S2)

Let σi ∈ M+di

s.t. Tr(σi ) ≤ 1 and Φ∗i (σi ) invertible, andΦi : Mdi → Mki be q. c. with SΦi

⊆ Si , s. t.∥∥Φ∗i (σi )−1∥∥ ≤ θ1(Si ) + ε, i = 1, 2.

Φ1 ⊗ Φ2 : Md1d2 → Mk1k2 is a q. c. with SΦ1⊗Φ2 ⊆ S1 ⊗ S2.

θ(S1 ⊗ S2) ≤∥∥(Φ1 ⊗ Φ2)∗(σ1 ⊗ σ2)−1

∥∥=

∥∥Φ∗1(σ1)−1∥∥∥∥Φ∗2(σ2)−1

∥∥≤ (θ(S1) + ε)(θ(S2) + ε).

Ivan Todorov QUB

Page 60: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Submultiplicativity

θ(S1 ⊗ S2) ≤ θ(S1)θ(S2)

Let σi ∈ M+di

s.t. Tr(σi ) ≤ 1 and Φ∗i (σi ) invertible, andΦi : Mdi → Mki be q. c. with SΦi

⊆ Si , s. t.∥∥Φ∗i (σi )−1∥∥ ≤ θ1(Si ) + ε, i = 1, 2.

Φ1 ⊗ Φ2 : Md1d2 → Mk1k2 is a q. c. with SΦ1⊗Φ2 ⊆ S1 ⊗ S2.

θ(S1 ⊗ S2) ≤∥∥(Φ1 ⊗ Φ2)∗(σ1 ⊗ σ2)−1

∥∥=

∥∥Φ∗1(σ1)−1∥∥∥∥Φ∗2(σ2)−1

∥∥≤ (θ(S1) + ε)(θ(S2) + ε).

Ivan Todorov QUB

Page 61: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

θ is a bound on the zero-error capacity

Since α(S) ≤ θ(S), the submultiplicativity of θ immediately yields:

c0(S) ≤ θ(S)

Note: θ can be a genuinely better bound on the zero-error capacitythan θDSW .

Ivan Todorov QUB

Page 62: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Some more properties

θ can be efficiently computed: it suffices to consider channelsfrom Md into Md2 .

No need for higher dimension of the output system.

the map S → θ(S) is continuous.

θ is monotone: S → T implies θ(S) ≤ θ(T ) andθ(S) ≤ θ(T ).

Consequence: θ(Mn(S)) = θ(S) and θ(Mn(S)) = θ(S).

θ(S) = 1 iff θ(S) = 1 iff S = Md .

Ivan Todorov QUB

Page 63: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Some open questions

Is it true that θ(S) = θ(S)?

Perhaps not – counterexample?

Is the map S → θ(S) continuous?

Difficulty: Unboundedness of dimensions no compactnessarguments applicable

Is there a duality theorem for the non-commutative thetacorner, th(S)] = th(S)?

Difficulty: The non-commutative graph complement.

Does θ(S) arise from a convex corner?

What are the values of θ(Sk) and θ(Sk)?

Ivan Todorov QUB

Page 64: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Some open questions

Is it true that θ(S) = θ(S)?

Perhaps not – counterexample?

Is the map S → θ(S) continuous?

Difficulty: Unboundedness of dimensions no compactnessarguments applicable

Is there a duality theorem for the non-commutative thetacorner, th(S)] = th(S)?

Difficulty: The non-commutative graph complement.

Does θ(S) arise from a convex corner?

What are the values of θ(Sk) and θ(Sk)?

Ivan Todorov QUB

Page 65: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Some open questions

Is it true that θ(S) = θ(S)?

Perhaps not – counterexample?

Is the map S → θ(S) continuous?

Difficulty: Unboundedness of dimensions no compactnessarguments applicable

Is there a duality theorem for the non-commutative thetacorner, th(S)] = th(S)?

Difficulty: The non-commutative graph complement.

Does θ(S) arise from a convex corner?

What are the values of θ(Sk) and θ(Sk)?

Ivan Todorov QUB

Page 66: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Some open questions

Is it true that θ(S) = θ(S)?

Perhaps not – counterexample?

Is the map S → θ(S) continuous?

Difficulty: Unboundedness of dimensions no compactnessarguments applicable

Is there a duality theorem for the non-commutative thetacorner, th(S)] = th(S)?

Difficulty: The non-commutative graph complement.

Does θ(S) arise from a convex corner?

What are the values of θ(Sk) and θ(Sk)?

Ivan Todorov QUB

Page 67: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

Some open questions

Is it true that θ(S) = θ(S)?

Perhaps not – counterexample?

Is the map S → θ(S) continuous?

Difficulty: Unboundedness of dimensions no compactnessarguments applicable

Is there a duality theorem for the non-commutative thetacorner, th(S)] = th(S)?

Difficulty: The non-commutative graph complement.

Does θ(S) arise from a convex corner?

What are the values of θ(Sk) and θ(Sk)?

Ivan Todorov QUB

Page 68: Zero-error quantum information theorymath.sjtu.edu.cn/conference/Bannai/2019/data/20190412A/... · 2019-04-12 · The Shannon model Source !Encoder !Channel !Decoder !Target Achannel

THANK YOU VERY MUCH

Ivan Todorov QUB