Zero-Crossing Breaker vs Pre-Insertion Resistor

download Zero-Crossing Breaker vs Pre-Insertion Resistor

of 11

Transcript of Zero-Crossing Breaker vs Pre-Insertion Resistor

  • 7/28/2019 Zero-Crossing Breaker vs Pre-Insertion Resistor

    1/11

    CAPACITOR SWITCHING DEVICE

    Zero-Crossing Breaker

    vs

    Pre-Insertion Resistor

    Misc/SS/Zerocrossing vs Preinsertion/Cover Zerocrossing vs Preinsertion

  • 7/28/2019 Zero-Crossing Breaker vs Pre-Insertion Resistor

    2/11

    CAPACITOR SWITCHING DEVICE

    Zero-Crossing Breaker

    vs

    Pre-Insertion Resistor

    1. Method of Transient Control :

    1.1. Zero-Crossing Breaker

    1.2. Pre-Insertion Resistor

    2. Design & Reliability :

    2.1. Zero-Crossing Breaker vs Pre-Insertion Resistor

    3. Computer Simulation of Capacitor Switching Transients :

    3.1. Zero-Crossing Breaker vs Pre-Insertion Resistor

    3.2. Summary & Conclusion

    3.3. Reference :Pre-Insertion Resistors in HV Capacitor Bank Switching

    Misc/SS/Zerocrossing vs Preinsertion/Index Zerocrossing vs Preinsertion

  • 7/28/2019 Zero-Crossing Breaker vs Pre-Insertion Resistor

    3/11

    Method of Transient Control

    1.1. Zero-Crossing Breaker

    1.2. Pre-Insertion Resistor

    1

    Misc/SS/Zerocrossing vs Preinsertion/Index 1

  • 7/28/2019 Zero-Crossing Breaker vs Pre-Insertion Resistor

    4/11

    Method of Transient ControlZeroCrossing Breaker

    THREE MUST CONDITIONS :

    1. CLOSING of ALL 3 PHASES at a ZERO VOLTAGE is a MUST

    2. PRECISE TUNING and CONTROL of the 3 INDIVIDUAL POLES is a MUST

    3. NO DRIFT of TIMING CALIBRATION is a MUST

    Misc/SS/Zerocrossing vs Preinsertion/Zerocrossing Breaker (Rev.1)

    61

    3

    +

    Synchronous Closing Device

    1

    3

  • 7/28/2019 Zero-Crossing Breaker vs Pre-Insertion Resistor

    5/11

    Method of Transient ControlPre-Insertion Resistor

    RESISTORS (1) are typically inserted into the capacitive-energizing circuit through the closing of RESISTOto 15 ms, prior to the closing of the MAIN CONTACT (3).

    Misc/SS/Zerocrossing vs Preinsertion/Preinsertion Resistor (Rev. 1)

    1. Pre-Insertion Resistor2. Resistor Contact3. Main Contact4. Capacitor Bank5. Substation

    1

    25

    3

    4

    4

    1

    4

    2 3

    5

  • 7/28/2019 Zero-Crossing Breaker vs Pre-Insertion Resistor

    6/11

    Design & Reliability

    2.1. Zero-Crossing Breaker vs

    Pre-Insertion Resistor

    2

    Misc/SS/Zerocrossing vs Preinsertion/Index 2

  • 7/28/2019 Zero-Crossing Breaker vs Pre-Insertion Resistor

    7/11

    Design & Reliability

    Zero-Crossing Breaker vs Pre-Insertion Res

    D e s c r i p t i o n ZERO-CROSSING BREAKER P

    1. Specifically Designed and Tested for Capacitor Switching No

    2. Number of Operating Mechanisms(spring loaded systems, shunt trips, motor operators)

    3(one per phase)

    3. Allows Two or One Phase Closing of the Capacitor Bank

    (if one operating mechanism fails to operate)

    Yes

    4. Key Factor for Successful Transient Suppression Capacitor Bank must be switchedexactly when the voltage is crossingZERO.

    Electronic circuitry must successfullydetect when the voltage wave iscrossing ZERO and order themechanical mechanism that drivesthe interrupter to close.

    Complicated calculation are requiredto offset effects of external

    conditions, mechanical wear, etc.

    Simpin the

    Key f

    5. Reliability Factors Synchronous closing system is hardto maintain within required precision.

    A highly precise electronic systemtied to a mechanical device(interrupter) is not a guarantee forperformance.

    High

  • 7/28/2019 Zero-Crossing Breaker vs Pre-Insertion Resistor

    8/11

    Computer Simulation of

    Capacitor Switching Transients

    3.1. Zero-Crossing Breaker vs

    Pre-Insertion Resistor

    3.2. Summary & Conclusion

    3.3. Reference :

    Pre-Insertion Resistors inHV Capacitor Bank Switching

    3

    Misc/SS/Zerocrossing vs Preinsertion/Index 3

  • 7/28/2019 Zero-Crossing Breaker vs Pre-Insertion Resistor

    9/11

    3.1

    Misc/SS/Zerocrossing vs Preinsertion/Computer Simulation

    50.000k

    100.000k

    150.000k

    -50.000k

    -100.000k

    -150.000k

    -200.000k

    -250.000k

    -300.000k

    -350.000k

    -400.000k

    -450.000k

    -500.000k

    -550.000k

    -600.000k

    200.0

    0 15.000m 30.000m 45.000m 60.000m 75.000m 90.000m 105.000m 120.000m 135.000m

    00k

    600.000

    1.200k

    1.800k

    2.400k

    3.000k

    3.600k

    4.200k

    4.800k

    5.400k

    6.000k

    6.600k

    -600.000

    -1.200k

    -1.800k

    -2.400k

    7.200k

    0 15.000m 30.000m 45.000m 60.000m 75.000m 90.000m 105.000m 120.000m 135.000m

    Vc1

    Vc1

    Vc1

    Vc1

    Ic1Ic1 Ic1

    Ic1

    600.000

    1.200k

    1.800k

    2.400k

    3.000k

    3.600k

    4.200k

    4.800k

    5.400k

    6.000k

    6.600k

    -600.000

    -1.200k

    -1.800k

    -2.400k

    7.200k

    0 15.000m 30.000m 45.000m 60.000m 75.000m 90.000m 105.000m 120.000m 135.000m

    Vc2 Vc2

    Vc2

    Vc2

    Ic2 Ic2Ic2

    Ic2

    50.000k

    100.000k

    150.000k

    -50.000k

    -100.000k

    -150.000k

    -200.000k

    -250.000k

    -300.000k

    -350.000k

    -400.000k

    -450.000k

    -500.000k

    -550.000k

    -600.000k

    200.000k

    0 15.000m 30.000m 45.000m 60.000m 75.000m 90.000m 105.000m 120.000m 135.000m Voltage and Current for Energization of 2nd Bankat 80 OhmsVoltage and Current for Energization of 1

    st Bank at 80 Ohms

    Pre-insertion

    Resistor

    Peak

    Current

    Frequency Peak

    Voltage

    Bank 1

    Energization

    835A NA 97kV

    (1.03pu)

    Bank 1 Transient 404A 948Hz 101kV

    (1.07pu)

    Bank 2

    Energization

    1100A 809Hz 114kV(1.21pu)

    Bank 2 Transient 1520A 16,400Hz

    Bank 2 Ringing 235A 670Hz 97kV

    (1.03pu)

    In addition, the I2t for the 80 ohm pre-insertion

    resistor is 330A2s.

    600.000

    1.200k

    1.800k

    2.400k

    3.000k

    3.600k

    4.200k

    4.800k

    5.400k

    6.000k

    6.600k

    -600.000

    -1.200k

    -1.800k

    -2.400k

    7.200k

    0 15.000m 30.000m 45.000m 60.000m 75.000m 90.000m 105.000m 120.000m 135.000m

    Vc1

    Vc1

    Vc1

    Vc1

    Ic1

    Ic1Ic1

    Ic1

    600.000

    1.200k

    1.800k

    2.400k

    3.000k

    3.600k

    4.200k

    4.800k

    5.400k

    6.000k

    6.600k

    -600.000

    -1.200k

    -1.800k

    -2.400k

    7.200k

    0 15.000m 30.000m 45.000m 60.000m 75.000m 90.000m 105.000m 120.000m 135.000m

    Vc2 Vc2

    Vc2

    Vc2

    Ic2 Ic2

    Ic2

    Ic2

    50.000k

    100.000k

    150.000k

    -50.000k

    -100.000k

    -150.000k

    -200.000k

    -250.000k

    -300.000k

    -350.000k

    -400.000k

    -450.000k

    -500.000k

    -550.000k

    -600.000k

    200.000k

    0 15.000m 30.000m 45.000m 60.000m 75.000m 90.000m 105.000m 120.000m 135.000m Voltage and Current for Energization of 1st Bank

    50.000k

    100.000k

    150.000k

    -50.000k

    -100.000k

    -150.000k

    -200.000k

    -250.000k

    -300.000k

    -350.000k

    -400.000k

    -450.000k

    -500.000k

    -550.000k

    -600.000k

    200.000k

    0 15.000m 30.000m 45.000m 60.000m 75.000m 90.000m 105.000m 120.000m 135.000m Voltage and Current for Energization of 2nd Bank

    Zero-crossingBreaker

    PeakCurrent

    Frequency PeakVoltage

    Bank 2

    Energization5228A 16,667Hz 108kV

    (1.15pu)

    Bank 2 Ringing 420A 670Hz

    Zero-crossing

    Breaker

    Peak

    Current

    Frequency Peak

    Voltage

    Bank 1

    Energization

    942A 944Hz 120kV(1.28pu)

    Bank 2Transient

    5021A 16,807Hz 108kV

    (1.15pu)

    Bank 2 Ringing 419A 672Hz

    Pre-insertion

    Resistor

    Peak

    Current

    Frequency Peak

    Voltage

    Bank 2

    Energization1100A 892Hz 98.7kV

    (1.05pu)

    Bank2 Transient 1820A 16,529Hz

    Bank 2

    Ringing

    235A 672Hz 98.3kV

    (1.05pu)

    Computer Simulation of

    Capacitor Switching Transients

    Zero-Crossing Breaker

    Pre-Insertion Resistor

  • 7/28/2019 Zero-Crossing Breaker vs Pre-Insertion Resistor

    10/11

    Computer Simulation of Capacitor Switching Transie

    S u m m a r y

    S i n g l e - B a n k B a c k - t o -

    S i m u l a t i o n C a s e

    PEAK CURRENT FREQUENCY PEAK CURRENT

    ZERO-CROSSING BREAKER (1 ms error) 942 A 944 Hz 5021 A

    PRE-INSERTION RESISTOR (80) 835 A 948 Hz 1820 A

    Remarks : All above values are summarized from the most significant data.

    C o n c l u s i o n

    S i m u l a t i o n C a s eMitigation of

    CURRENT TRANSIENTS

    Mitigation of

    VOLTAGE TRANSIENTS

    ZERO-CROSSING BREAKER (1 ms error) Successful GoodT

    PRE-INSERTION RESISTOR (80 ) Successful Significant

    Misc/SS/Zerocrossing vs Preinsertion/Summary (Rev. 1)

  • 7/28/2019 Zero-Crossing Breaker vs Pre-Insertion Resistor

    11/11

    Pre-Insertion Resistor inHV Capacitor Bank Switching

    Prepared for :

    Western Protective Relay ConferenceOctober 19 - 21, 2004Spokane, WA

    Misc/SS/Zerocrossing vs Preinsertion/Reference

    3.3