Yang 2014 International Journal of Refractory Metals and Hard Materials

download Yang 2014 International Journal of Refractory Metals and Hard Materials

of 4

Transcript of Yang 2014 International Journal of Refractory Metals and Hard Materials

  • 7/21/2019 Yang 2014 International Journal of Refractory Metals and Hard Materials

    1/4

    Short communication

    Fabrication of MoCu composites by a diffusion-rolling procedure

    Yihang Yang, Gaoyong Lin, Xiaoying Wang, Diandian Chen, Aokui Sun, Dezhi Wang

    Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, School of Material Science and Engineering, Central South University, Changsha 410083, PR China

    a b s t r a c ta r t i c l e i n f o

    Article history:

    Received 25 September 2013

    Accepted 9 November 2013

    Keywords:

    MoCu

    Refractory composite

    Laminates

    Microstructure

    Diffusion-rolling

    A plastic deformation approach to Mo matrix composites remains a longstanding challenge in the processing of

    refractory metal. Toward this objective, we explored a selective fabrication of the diffusion-rolling procedure.

    With diffusion bonding initially, a primary sandwich sheet was achieved. The interfacial strength of Mo/Cu

    was enhanced by the plastic deformation after rolling. Ultrathin Cu

    Mo

    Cu sheet and Mo

    Cu alloy sheet withCu matrix containing distributed uniformly brous Mo were fabricated. HR-TEM analysis revealed that atomic-

    level interdiffusion of Mo and Cu was present at the interface. Therefore, it is concluded that the diffusion-

    rolling procedure can be potentially employed as a joining method for the fabrication of Mo Cu composites.

    2013 Elsevier Ltd. All rights reserved.

    1. Introduction

    MoCu composites combinethe refractory properties of Mo withthe

    high conductivity of Cu and can be tailored to specic applications by

    adjusting therelative amounts of these constituents [1]. These materials

    that have high thermal conductivity and a low coefcient of thermal ex-

    pansion have become desirable. MoCu composites areused in industri-al applications as electrical contacts, electroerosion segments for hard

    metals and heat sinks for packaging microelectronic devices[16].

    In general, good solid solubility is essential for sound bond proper-

    ties[7,8]. In the case of low inter-solubility metals of Mo and Cu[911],

    well-designed bonding procedure remains a challenge. MoCu compos-

    ites are traditionally processed by Cu inltration of Mo preforms

    [4,5,12]. Laminated composites of MoCu are processed by explosion

    bonding [13]. In1998, Saito et al. invented a process, named accumulative

    roll bonding (ARB), to impose severe plastic strain ontometallic materials

    through the rolling process[14,15]. Different from ARB, the authors now

    propose an alternative plastic deformation procedure of diffusion-rolling

    [16]for refractory metal composite manufacturing at high productivity

    and quality. In this paper, the principle of the diffusion-rolling procedure

    and some convincing experimental results are presented.

    2. Experimental

    Fig. 1schematically represents the multi-stages of diffusion-rolling.

    In order to obtain one-body solid material and avoid cracks during

    rolling of refractory metal Mo, the diffusion bonding employed initially

    was not only a bonding process but also a constraint on its surface. First,

    a Mo sheet and two Cu sheets were stacked in the order of CuMoCu.

    Before stacking, the sheet surfaces were degreased with acetone and

    cloth polished. Then, the three sheets were bonded together by diffu-

    sion at 900 C and 10 MPa process pressure for a time of 30 min.

    Multi-pass rolling with a thickness reduction of 35% was conducted

    for thinner sheet fabrication and bonding strength improvement. At

    this stage, ultrathin CuMoCu sheets can be achieved. After that, the

    length of rolled composites was sectioned into three partitions. The sec-tioned sheets were again surface-treated, stacked, diffusion bonded and

    rolled. The whole process was repeated again and again. At last, MoCu

    alloy sheets can be achieved.

    As-received commercially pure Mo sheets with a thickness of

    3.6 mm and a purity of 99.95 wt.% were used as the core materials.

    Oxygen-free copper sheets with a thickness of 2.0 mm and a purity of

    99.99 wt.% were used as the cladding materials. The dimension of Mo

    sheet was 50 100 mm2, and two Cu sheets were 15 mm longer

    than Mo plate for the convenience of roll bite.

    Single lap shear specimens were prepared for the evaluation of inter-

    facial strength. Thesespecimenswere tested in tension using an Instron-

    3369 machine, such that the 1 mm long bond line was subjected to a

    shear stress. The tests were carried out at room temperature and at a

    loading rate of 1 103

    m/min. A scanning electron microscope (SEM,Quanta-200) was used to examine the interface. Image of highresolution

    transmission electron microscopy (HR-TEM) was collected on a FEI

    Tecnai G2 F20 operated at 200 kV. The cross-sectional TEM sample was

    prepared by tripod polishing and Ar ion beam thinned to perforation.

    3. Results and discussion

    3.1. Layer structures evolution

    The layer structures of all-stages of diffusion-rolling procedure were

    shown inFig. 2.Fig. 2a shows the diffusion bonded CuMoCu sheet.

    Int. Journal of Refractory Metals and Hard Materials 43 (2014) 121124

    Corresponding author. Tel.: +86 731 88877221; fax: +86 731 88830202.

    E-mail address:[email protected](D. Wang).

    0263-4368/$ see front matter 2013 Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.ijrmhm.2013.11.003

    Contents lists available atScienceDirect

    Int. Journal of Refractory Metals and Hard Materials

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / I J R M H M

    http://dx.doi.org/10.1016/j.ijrmhm.2013.11.003http://dx.doi.org/10.1016/j.ijrmhm.2013.11.003http://dx.doi.org/10.1016/j.ijrmhm.2013.11.003mailto:[email protected]://dx.doi.org/10.1016/j.ijrmhm.2013.11.003http://www.sciencedirect.com/science/journal/02634368http://www.sciencedirect.com/science/journal/02634368http://dx.doi.org/10.1016/j.ijrmhm.2013.11.003mailto:[email protected]://dx.doi.org/10.1016/j.ijrmhm.2013.11.003http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijrmhm.2013.11.003&domain=pdf
  • 7/21/2019 Yang 2014 International Journal of Refractory Metals and Hard Materials

    2/4

    After diffusion bonding, ultrathin sheets were achieved by multi-pass

    rolling.Fig. 2b shows the roll processed CuMoCu sheet with a thick-

    ness of 600 m. The interface of Mo/Cu was at.Fig. 2c shows the roll

    processed CuMoCu sheet with a thickness of 350 m. But the inter-

    face of Mo/Cu has a slightly wave-like structure.

    When the thickness of CuMoCu sheet approaches to the limit of

    rolling mill, the procedure of diffusion-rolling was repeated again and

    again.Fig. 2d shows the two-cycle processed MoCu laminate with a

    thickness of 230 m. The interface of Mo/Cu has a severe wave-like

    structure, but the layers were uniform and coherent. When the process

    repeated once again, Mo layers became fragmented, displaying multiple

    necking due to inhomogeneous deformation of layers and shear bands

    crossing the layers. Finally, a compositesheet with Cu matrix containing

    uniformly distributed brous Mo was fabricated, as shown inFig. 2e.

    3.2. Bond strength

    In order to evaluate the diffusion-rolling effect on the bond strength

    of CuMoCu clad sheet, the shear tensile test was conducted.Fig. 3

    shows the shear tensile specimen and bond strengths of two types of

    Mo/Cu interface. It reveals that the diffusion-rolling processed Mo/Cu

    interface was twice as strong as the diffusion bonded one, and that

    it reached a maximum tensile strength equivalent to 70% of that of

    Cu (about 250 MPa), which suggests that interfacial strength was

    Fig. 1.Schematic illustration of diffusion-rolling procedure.

    Fig. 2.Cu

    Mo

    Cu sheets and multi-stages processed Mo

    Cu alloy.

    122 Y. Yang et al. / Int. Journal of Refractory Metals and Hard Materials 43 (2014) 121124

    http://localhost/var/www/apps/conversion/tmp/scratch_9/image%20of%20Fig.%E0%B2%80
  • 7/21/2019 Yang 2014 International Journal of Refractory Metals and Hard Materials

    3/4

  • 7/21/2019 Yang 2014 International Journal of Refractory Metals and Hard Materials

    4/4

    [9] Sargent CI. The production of alloys of tungsten and of molybdenum in the electricfurnace. J Am Chem Soc 1980;22:78391.

    [10] Siedachlag E. Chromiummolybdenumand chromiummolybdenumcopper alloys.Z Anorg Chem 1923;131:191202.

    [11] Dreibholz L. Investigations of binary and ternary molybdenum alloys. Z Phys Chem1924;108:150.

    [12] Skorokhod VV, Solonin YM, Filippov NI. Solid-phase sintering of ultrane W(Mo)Cu composite powders. Soviet Powder Metall Met Ceram 1984;23:1924.

    [13] Yano S, Matsui H, Morozumi S. Structural observations of the interface of explosion-bonded Mo/Cu system. J Mater Sci 1998;33:485765.

    [14] Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG. Ultra-ne grained bulk aluminum

    produced by accumulative roll-bonding (ARB) process. Scr Mater 1998;39:1221

    7.[15] Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulkmaterialsdevelopment of the accumulative roll-bonding (ARB) process. ActaMater 1999;47:57983.

    [16] Yang YH, Lin GY, Chen DD, Zhang R, Wang DZ, Qi F. Fabrication of AlCu laminatedcomposites by diffusion rolling procedure. Mater Sci Technol Lond 2013.http://dx.doi.org/10.1179/1743284713Y.0000000397(in press).

    [17] Zhang RG, Acoff VL. Processing sheet materials by accumulative roll bondingand reaction annealing from Ti/Al/Nb elemental foils. Mater Sci Eng A2007;463:6773.

    [18] Hebert RJ, Perepezko JH. Deformation-induced synthesis and structural transforma-tions of metallic multilayers. Scr Mater 2004;50:80712.

    [19] Vaidyanath LR, Nicholas MG, Milner DR. Pressure welding by rolling. Br Weld J1959;6:1328.

    [20] Wright PK, Snow DA, Tay CK. Interfacial conditions and bond strength in cold pres-

    sure welding by rolling. Met Technol 1978;5:24

    31.[21] Yang YH, Lin GY, Chen DD, Wang XY, Wang DZ, Yu HC. Interfacial characteristics ofCuFe laminate fabricated by solid state welding. Mater Sci Technol Lond 2013.http://dx.doi.org/10.1179/1743284713Y.0000000383(in press).

    124 Y. Yang et al. / Int. Journal of Refractory Metals and Hard Materials 43 (2014) 121124

    http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0045http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0045http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0045http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0045http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0050http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0050http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0050http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0050http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0050http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0050http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0050http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0050http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0050http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0050http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0055http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0055http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0055http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0055http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0100http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0100http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0100http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0100http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0100http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0100http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0100http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0060http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0060http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0060http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0060http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0065http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0065http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0065http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0065http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0065http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0065http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0070http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0070http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0070http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0070http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0070http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0070http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0070http://dx.doi.org/10.1179/1743284713Y.0000000397http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0075http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0075http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0075http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0075http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0075http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0080http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0080http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0080http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0080http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0085http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0085http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0085http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0085http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0090http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0090http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0090http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0090http://dx.doi.org/10.1179/1743284713Y.0000000383http://dx.doi.org/10.1179/1743284713Y.0000000383http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0090http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0090http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0085http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0085http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0080http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0080http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0075http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0075http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0075http://dx.doi.org/10.1179/1743284713Y.0000000397http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0070http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0070http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0070http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0065http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0065http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0060http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0060http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0100http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0100http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0055http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0055http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0050http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0050http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0045http://refhub.elsevier.com/S0263-4368(13)00234-5/rf0045