X2000 AIoT Application Processor

46
X2000 AIoT Application Processor Data Sheet Release Date: Jul 21, 2020

Transcript of X2000 AIoT Application Processor

Page 1: X2000 AIoT Application Processor

X2000

AIoT Application Processor Data Sheet

Release Date: Jul 21, 2020

Page 2: X2000 AIoT Application Processor

X2000 AIoT Application Processor

Data Sheet

Copyright © 2005-2021 Ingenic Semiconductor Co., Ltd. All rights reserved.

Disclaimer

This documentation is provided for use with Ingenic products. No license to Ingenic property rights is

granted. Ingenic assumes no liability, provides no warranty either expressed or implied relating to the

usage, or intellectual property right infringement except as provided for by Ingenic Terms and

Conditions of Sale.

Ingenic products are not designed for and should not be used in any medical or life sustaining or

supporting equipment.

All information in this document should be treated as preliminary. Ingenic may make changes to this

document without notice. Anyone relying on this documentation should contact Ingenic for the current

documentation and errata.

Ingenic Semiconductor Co., Ltd.

Ingenic Headquarters, East Bldg. 14, Courtyard #10,

Xibeiwang East Road, Haidian District, Beijing 100193, China

Tel: 86-10-56345000

Fax: 86-10-56345001

Http: //www.ingenic.com

Page 3: X2000 AIoT Application Processor

X2000 AIoT Application Processor Data Sheet

Copyright © 2005-2021 Ingenic Semiconductor Co., Ltd. All rights reserved.

Contents

1 Overview ......................................................................................................................................... 4

1.1 Block Diagram .......................................................................................................................... 4

1.2 Features ................................................................................................................................... 5

1.2.1 CPU Core .......................................................................................................................... 5

1.2.2 Video Process Unit(VPU) ................................................................................................. 5

1.2.3 MIPI-CSI ........................................................................................................................... 5

1.2.4 Video Input Control(VICx2) .............................................................................................. 6

1.2.5 Image Signal Processor(ISPx2) ......................................................................................... 6

1.2.6 Lite Camera ...................................................................................................................... 7

1.2.7 Memory Interface ............................................................................................................ 7

1.2.8 Audio ................................................................................................................................ 7

1.2.9 Display.............................................................................................................................. 8

1.2.10 System Functions ............................................................................................................. 8

1.2.11 Peripherals ..................................................................................................................... 10

1.2.12 Bootrom ......................................................................................................................... 12

2 PAD Information ............................................................................................................................ 13

2.1 Pin Map ................................................................................................................................. 13

2.2 Pin Description ...................................................................................................................... 15

2.2.1 GPIO Group A ................................................................................................................. 15

2.2.2 GPIO Group B ................................................................................................................. 16

2.2.3 GPIO Group C ................................................................................................................. 17

2.2.4 GPIO Group D ................................................................................................................ 19

2.2.5 GPIO Group E ................................................................................................................. 20

2.3 X2000 Analog PAD DESCRIPTION .......................................................................................... 21

2.4 X2000 Digital PAD DESCRIPTION ........................................................................................... 27

3 Electrical Specifications ................................................................................................................. 32

3.1 Absolute Maximum Ratings .................................................................................................. 32

3.2 Recommended operating conditions .................................................................................... 33

3.3 DC Specifications ................................................................................................................... 34

3.4 Audio codec ........................................................................................................................... 40

3.5 Power On, Reset and BOOT ................................................................................................... 41

3.5.1 Power-On Timing ........................................................................................................... 41

3.5.2 Reset procedure ............................................................................................................. 42

3.5.3 BOOT .............................................................................................................................. 43

4 Packaging Information .................................................................................................................. 45

4.1 Overview ............................................................................................................................... 45

4.2 Device Dimensions ................................................................................................................ 45

4.3 Solder Ball Materials ............................................................................................................. 46

4.4 Moisture Sensitivity Level ..................................................................................................... 46

Page 4: X2000 AIoT Application Processor

1 Overview X2000 is a low power consumption, high performance and high integrated application processor, the

application is focus on AIoT devices. And it can match the requirements of many other embedded

products.

1.1 Block Diagram

Figure 1-1 X2000 Diagram

Page 5: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 5

1.2 Features

1.2.1 CPU Core

XBurst® 2, at 1.2GHz, Dual Core, Dual-issue, high performance and low power

implementation of MIPS32 ISA R5

MIPS32 ISA R5 plus MIPS SIMD instruction set architecture:128bit MSA

Ingenic SIMD instruction set architecture: 128bit MXA

Dual-issue, superscalar, super pipeline with Simultaneous Multi-Threading (SMT)

– 2 hardware threads per physical core

– Quad instruction fetches per cycle

– Dual issue instructions per cycle per thread

32KB L1 D cache +32K L1 I cache ,512 KB L2 cache,32KB SRAM

High-performance Floating-point Unit and SIMD Engine: FSE

– 32 x 128-bit register set, 128-bit loads/stores to/from SIMD unit

– IEEE-754 2008 compliant

Programmable Memory Management Unit (MMU)

– 1st level mini-TLBs (MTLBs) – 8 x 2 entry instruction TLB, 16 x 2 entry data TLB

– 2nd level TLBs: 32 × 2 entry VTLB, 256 × 2 entry 4-way set associative FTLB

The XBurst® processor system supports little endian only

1.2.2 Video Process Unit(VPU)

H.264 Encoder

– Input data format NV12/NV21

– Encoding resolution and frame rate up to 1920x1080@30fps

– Support hardware RBSP bytes insertion

– Support auto-read of slice header

– Support reference frame lossless compression

H.264 Decoder

– Output data format NV12/NV21

– Decoding resolution and frame rate up to 1920x1080@30fps

– Support hardware RBSP bytes eliminate

JPEG Codec

– JPEG compressing/decompressing up to 70Mega-pixels per second

– Baseline ISO/IEC 10918-1 JPEG compliant

– 8-bit pixel depth support

– Up to four programmable Quantization tables

– Fully programmable Huffman tables

1.2.3 MIPI-CSI

MIPI-CSI2(v1.0) interface, resolution up to 1080P@120fps

– Support dual 2-lane mode and single 4-lane mode

– Support 1-lane, 2-lane and 4-lane mode

Page 6: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 6

1.2.4 Video Input Control(VICx2)

The VIC module is a video input image preprocessing module to reorder the different kinds of input

images to a uniform type then output to TIZIANO or write to DDR.

Work mode: image mode

Maximum working freq: 350Mhz

input interface: BT、DVP、MIPI

Maximum input image size:

MIPI: 8M@30fps、6M@30fps、1080p@60fps

BT/DVP: 1080p@30fps、720p@60fps

Minimum input image size: 128*128

Image format

sensor port support

DVP: RAW8、RAW10、RAW12、YUV422 (Serial 8bit)

BT601: YUV422 (Parallel 16bit)、YUV422 (Serial 8bit)

BT656: YUV422 (Serial 8bit)

BT1120: YUV422 (Parallel 16bit)、YUV422 (Serial 8bit)

MIPI: RAW8、RAW10、RAW12

VIC output port format

Tiziano: RAW8、RAW10、RAW12

Scaler: YUV422 (8bit)

DMA: RAW8、RAW10、RAW12、YUV422 (8bit)

MIPI: RAW8、RAW10、RAW12

Fault tolerance

– DVP、BT601: frame start reset、every line of data within a fixed

– BT656、BT1120: error reset、every line of data within a fixed

Support DVP8bit port flexible connection

VIC DMA output format : RAW16、NV12、NV21

1.2.5 Image Signal Processor(ISPx2)

Data stream feature

– DVP: raw8 / 10 / 12 / YUV422 input

– MIPI: up to 1080P@60fps

– Support dual-camera sync

– Frame data check, make up for lost data and drop redundant data

Advanced feature

– 2A(Auto Exposure/Auto White Balance) supported

– Advanced demosaic, color processing, lens shading, sharpen, static/dynamic defect

pixel and other modules provide high image quality

– 2-D noise reduction filter

Page 7: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 7

1.2.6 Lite Camera

Camera interface module(CIM)

– Support DVP 8bit / MIPI input ,resolution up to 1280x720@30fps

– Support snapshot control

– Supported data format: RGB888, RGB565, YCbCr 4:2:2

– Supports ITU656 (YCbCr 4:2:2) input

Support histogram output

1.2.7 Memory Interface

DDR Controller

– Support LPDDR3, 16Bit bus width, clock up to 800MHz

– 128MB memory in package.

SFC Controller

– 1 group clock and CE pad

– Two Quad SPI, one Octal SPI ( SFC0/1 )

– Support Standard, Dual, Quad SPI and Octal DDR protocol

– Clock frequency up to 80MHz in SDR mode

– Support multiple transfer modes, standard SPI, dual-output/dual-Input SPI, Quad-

Output/Quad-Input SPI, Dual-I/O SPI, Quad-I/O SPI, Full Dual-I/O SPI, Full Quad-I/O

SPI, and Octal-I/O

1.2.8 Audio

Digital Microphone Array Controller

– Support 8 channels digital MIC

– 24/16bit precision internal controller, sample rate support 8K, 16K, 32K, 48K and 96K

– SNR: 90dB, THD: -90dB @ FS -20dB

– Linear high pass filter included. Attenuation: -2.9dB@100Hz, -22dB@27Hz. -

36dB@10Hz

– Low power voice trigger when waiting to start talking.

– Support voice data pre-fetch when trigger enable and the data interface disable, but do

not increase the power dissipation.

– Support low power voice trigger enable

I2S(1~3) / I2S0

– DMA transfer mode supported

– Support share clock mode and split clock mode.

– I2S0: Internal I2S CODEC supported

– Support master mode and slave mode

– Support number of data pin from 1 to 4

– Support six modes of operation for TDM protocol

PCM interface

– Support master mode and slave mode

– Support four modes of operation for PCM

DSP NORMAL \ LEFT MODE

Page 8: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 8

PCM NORMAL \ LEFT MODE

S/PDIF(IN and OUT)

– Support IEC 60958-3 compliant, up to 2 channels

– Sample bit support 20-bit and 24-bit two mode

– Sample rate support, all of IEC60958-3 sample rate (44.1k up to 192k)

Internal Audio Codec (DAC and ADC working together)

– 24 bits DAC / ADC

– Sample rate supported: 8k, 12k, 16k, 24k, 32k, 44.1k,48k,96k

– Mono Differential input/output

– DAC : SNR: 90dB A-Weighted, THD: -80dB @FS,-1dB ; ADC: SNR 90dB

1.2.9 Display

MIPI-DSI2(v1.0) interface

Display size up to 1920x1080@40Hz

SLCD controller

– Display size up to 640x480@60Hz, 24BPP

– Supports different size of display panel

RGB controller

– Display size up to 1280x720@60Hz, 24BPP

– Support input format, ARGB8888, ARGB1555, RGB888, RGB565, RGB555, YUV422,

YUV420

– Support 4 modes parallel interface, 24-bit, 18-bit, 16-bit and 8-bit(third times)

– Support frame buffer crop and dither

1.2.10 System Functions

Clock generation and power management

– On-chip oscillator circuit (support 24MHz)

– Two phase-locked loops (PLL) with programmable multiplier

– CCLK, HHCLK, H2CLK, PCLK, H0CLK, DDR_CLK frequency can be changed

separately for software by setting registers

– Functional-unit clock gating

– Supply block power shut down

TCU

– 8 channels each channel has two pins

– Support posedge / negedge / dualedge clock counting

– Support gate counting(only count for gating signal)

– Support quadrature counting

– Support direction counting(add / sub because of input signal)

– Support counting after posedge / negedge signal

– Support capture counting, output signal high-level time and total cycle time

– Support exclk / pclk two clock source

PWM

Page 9: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 9

– 16 channels, output signal ~50MHz, signal precision ~500MHz

– CPU / dma mode to update config

OS timer

– One event timer for one logical core

– One global timer for system time

Interrupt controller

– Total 64 interrupt sources

– Each interrupt source can be independently enabled

Watchdog timer

– A 16-bit Data register and a 16-bit counter

– Programmable interrupt generation prior to timeout

– Counter clock uses the input clock selected by software

EXTAL / RTCCLK can be used as the clock for counter

The division ratio of the clock can be set to 1, 4, 16, 64, 256 and 1024 by software

PDMA Controller

– Support up to 32 independent DMA channels

– Descriptor or No-Descriptor Transfer mode

– Transfer data units: 1-byte, 2-byte, 4-byte, 16-byte, 32-byte, 64-byte, 128-byte

– Transfer number of data unit: 1 ~ 224 - 1

– Independent source and destination port width: 8-bit, 16-bit, 32-bit

– Fixed three priorities of channel groups: 0~3, highest; 4~11: mid; 12~31: lowest

SAR A/D Controller

– 6 Channels

– Resolution: 10-bit

RTC (Real Time Clock)

– Need external 32768Hz oscillator for 32KHz clock generation.

– 32-bits second counter

– Programmable and adjustable counter to generate accurate 1 Hz clock

– Alarm interrupt, 1Hz interrupt

– Stand alone power supply, work in hibernating mode

– Power down controller

– Alarm wakeup

– External pin wakeup with up to 2s glitch filter

– Power Detect to Shut down PMU (find Core without voltage then shut PMU other

voltage)

Page 10: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 10

1.2.11 Peripherals

General-Purpose I/O ports

– Input / output / function port configurable

– Low/high, rising/falling edge triggering. Every interrupt source can be masked

independent

Six I2C Controller (I2C0~5)

– Two-wire I2C serial interface – consists of a serial data line (SDA) and a serial clock

(SCL)

– Three speeds mode

Standard mode (100 Kb/s)

Fast mode (400 Kb/s)

High speed mode (3.4Mb/s)

– Programmable SCL generator

– Master or slave I2C operation

– 7-bit addressing/10-bit addressing

– The number of devices that you can connect to the same I2C-bus is limited only by the

maximum bus capacitance of 400pF

One Smart Card Controller (SCC)

– Supports normal card and UIM card.

– Supports asynchronous character (T=0) communication modes.

– Supports asynchronous block (T=1) communication modes.

– Supports setting of clock-rate conversion factor F (372, 512, 558, etc.), and bit-rate

adjustment factor D (1, 2, 4, 8, 16, 32, 12, 20, etc.).

– Supports extra guard time waiting.

– Auto-error detection in T=0 receive mode.

– Auto-character repeat in T=0 transmit mode.

– Transforms inverted format to regular format and vice versa.

– Support stop clock function in some power consuming sensitive applications.

Two Synchronous serial interfaces (SSI0~1)

– 3 protocols support: National’s Microwire, TI’s SSP, and Motorola’s SPI

– Full-duplex or transmit-only or receive-only operation

– Programmable transfer order: MSB first or LSB first

– Configurable normal transfer mode or Interval transfer mode

– Programmable clock phase and polarity for Motorola’s SSI format

– Two slave select signal (SSI0_CE0_ / SSI1_CE0_) supporting up to 2 slave devices

– Back-to-back character transmission/reception mode

– Loop back mode for testing

– Data transfer up to 30Mbits/s

Ten UARTs (UART0~9)

– Full-duplex operation

Page 11: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 11

– Baud rate supports 4800, 9600, 19200, 38400, 43000, 56000, 57600, 115200, 230400,

460800, 576000, 921600, 1000000, 1152000, 1500000, 2000000, 2500000, 3000000,

3500000, 4000000, 6000000, 8000000, 12000000

– 5-, 6-, 7- or 8-bit characters with optional no parity or even or odd parity and with 1, 1½,

or 2 stop bits

– Internal diagnostic capability Loopback control and break, parity, overrun and framing-

error is provided

– Separate DMA requests for transmit and receive data services in FIFO mode

– Supports modem flow control by software or hardware

Three MMC/SD/SDIO controllers (MSC0, SDIO, MSC2)

– All support eMMC 5.1 (command queueing)

– Support SD Specification 3.0

– Support SD I/O Specification 1.0 with 1 command channel and 4 data channels

– Maximum clock speed is 104MHz

– Both support MMC data width 1bit ,4bit, only MSC0 support 8bit

– Single or multi block access to the card including erase operation

– The maximum block length is 4096bytes

USB 2.0 OTG interface

– Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the

On-The-Go supplement to the USB 2.0 specification

– Support operating as USB peripheral, as USB host

– Support split transmission

– Support hub

– Support remote-wakeup

GMAC controller

– 10/100 Mbps and 1000Mbps operation

– Supports RMII and RGMII PHY interfaces

– Support IEEE 1588-2002

Security System

– XBurst®, 240MHz

– Secret ROM and RAM

– Up to 32KB SRAM

– True Random Number Generator

– Encryption Engine

MD5, SHA, SHA2

AES, support 256-bit, 192-bit, 128-bit key size Algorithm

RSA, support 1024/2048-bit key size

– Support secure boot

Page 12: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 12

OTP Slave Interface

– Total 2Kb.

1.2.12 Bootrom

16KB Boot ROM memory and 16KB Security Boot ROM

Page 13: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 13

2 PAD Information

2.1 Pin Map

Page 14: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A

MSC0_D6_SFC1_DQ2_WP__UART0_CTS__PD25

SDIO_CMD_SSI0_DT_PD09

SDIO_D1_I2C1_SCK_PD1

1

SDIO_D2_I2C1_SDA_PD12

UART3_TXD_PCM_DO_TCK_PD03

I2C5_SCK_PCM_DI_TMS_PD04

VSS VDDMEM VREF DDR_VDD1 DDRPLL_VCCA VSSUART3_RTS__I2C5_SDA_PC28

SD15_SSI0_CLK_UART9_TXD_

PB31

SD9_LCD_VSYNC_SLCD_DC_PB

25

SD3_LCD_D19_RGMAC1_MDC_P

B19

A

B

MSC0_CMD_SFC0_CE__SSI1_DT_P

D18

SDIO_CLK_SSI0_CLK_PD08

SDIO_D0_SSI0_DR_PD10

UART2_RXD_I2C3_SCK_PWM0_TCU0_IN0_

PD30

UART3_CTS__I2C4_SCK_

PD00

UART3_RXD_PCM_CLK_TDI_PD02

I2C5_SDA_PCM_SYNC_PD05

VDDMEM VDDMEM VSS DDR_VDD1 DDR_VSSA VSSUART3_RXD_I2C4_SCK_PC2

5

UART3_TXD_I2C4_SDA_PC26

SD10_LCD_HSYNC_SLCD_WR_P

B26

SD8_LCD_PCLK_SLCD_CE__PB

24

SD2_LCD_D18_RGMAC1_RX_DV

_PB18

B

C

MSC0_D1_SFC0_DQ1_I2C2_SCK_P

D20

MSC0_D0_SFC0_DQ0_SSI1_

DR_PD19

MSC0_D7_SFC1_DQ3_HOLD__UART0_RTS__PD26

SDIO_D3_SSI0_CE0__PD13

UART2_TXD_I2C3_SDA_PWM1_TCU0_IN1_PD31

UART3_RTS__I2C4_SDA_TDO_PD0

1

VSS VDDMEM VDDMEM ZQ VSS VDDMEM VDDMEMUART3_CTS__I2C5_SCK_PC

27

SD14_SSI0_DT_UART9_RXD_P

B30

SD0_LCD_D16_PB16

SD7_LCD_D23_I2C2_SDA_RGMAC1_PHY_CLK_

PB23

SD4_LCD_D20_RGMAC1_MDIO_

PB20

C

D

MSC0_CLK_SFC0_CLK_SSI1_CLK_

PD17

MSC0_D2_SFC0_DQ2_WP__I2C2_SDA_PD2

1

MSC0_D4_SFC1_DQ0_UART0_RXD_PD2

3

MSC0_D3_SFC0_DQ3_HOLD__SSI1_CE0__

PD22

AVDEFUSE TRST VSS VSS VSS VSS VSS VDDMEM VDDMEMSD12_SSI0_CE0__UART8_R

XD_PB28

SD13_SSI0_DR_UART8_TXD_P

B29

SD11_LCD_DE_SLCD_TE_PB27

WE__LCD_D14_SLCD_D14_RGMAC1_RXD2_PB1

4

SA12_LCD_D12_SLCD_D12_RGMAC1_RXD0_PB

12

D

E RTC32K_PE23EXCLK_CIM_VIC_MCLK_P

E24

MSC0_D5_SFC1_DQ1_UART0_TXD_PD24

WAIT__LCD_D15_SLCD_D15_RGMAC1_RXD3_P

B15

SD6_LCD_D22_I2C2_SCK_RGMAC1_RX_CLK_P

B22

RD__LCD_D13_SLCD_D13_RGMAC1_RXD1_PB1

3

E

F VDDIO_RTC WKUP__PE31 PWRONDRV_VBUS_PE

22VSS VSS VDD VDD VSS VDD VDD VSS

SD1_LCD_D17_RGMAC1_TX_EN

_PB17

SA11_LCD_D11_SLCD_D11_RGMAC1_TXD3_PB

11

SA10_LCD_D10_SLCD_D10_RGMAC1_TXD2_PB

10

SA9_LCD_D9_SLCD_D9_RGMAC1_TXD1_PB09

F

G OSC32_XO OSC32_XI PPRST_ TEST_TE VDDIO VSS VDD VDD VSS VDD VDD VSSSA6_LCD_D6_SLCD_D6_PB06

SA3_LCD_D3_SLCD_D3_PB03

SD5_LCD_D21_RGMAC1_TX_CL

K_PB21

SA8_LCD_D8_SLCD_D8_RGMAC1_TXD0_PB08

G

H PLL_AVDD VDD_RTC VSS_RTC VDDIO VSS VSS VSS VSS VDD VDD VDDIO33SA5_LCD_D5_SLCD_D5_PB05

SA1_LCD_D1_SLCD_D1_PB01

SA2_LCD_D2_SLCD_D2_PB02

H

J EXCLK_XI EXCLK_XO PLL_VDD PLL_AVSS VSS VSS VSS VSS VSS VDDIO18SA7_LCD_D7_SLCD_D7_PB07

SA4_LCD_D4_SLCD_D4_PB04

TX_DATAP1 TX_DATAN1 J

K

I2C3_SCK_I2S3_TX_BCLK_PA16

BOOT_SEL2_PE27

PLL_VSSBOOT_SEL1_P

E26VSS VDD VDD VDD VDD VSS

SA0_LCD_D0_SLCD_D0_PB00

TX_DATAP0 TX_CLKP TX_CLKN K

LCIM_EXPOSUR

E_PA15

I2C3_SDA_I2S2_RX_BCL

K_PA17

BOOT_SEL0_PE25

VSS VDD VDD VSS VSS VDD VDD VSS DSI_AVSS DSI_AVD09 TX_DATAN0 L

M

CIM_VIC_VSYNC_I2S2_RX_DATA3

_PA13

CIM_VIC_HSYNC_I2S2_RX_DATA2_PA12

CIM_VIC_PCLK_PA14

VIC_D10_I2S2_RX_DATA0_

PA10

VDDIO33_CIM

VSS VSS VSS VSS VDD VDD VSS CSI_AVSS DSI_AVD18 RX_DATAP0 RX_DATAN0 M

N

VIC_D11_I2S2_RX_DATA1_PA11

VIC_D9_UART7_TXD_I2S2_RX_LRCK_PA0

9

VIC_D8_UART7_RXD_PA0

8

CIM_VIC_D7_UART6_TXD_I2S2_RX_MCLK

_PA07

VDDIO18_CIM

VSSVDDIO18_

SDVDDIO33_

SDVSS VSS VDDIO18 VDDIO33 CSI_AVD09 RX_CLKP0 RX_DATAP1 RX_DATAN1 N

P

CIM_VIC_D4_UART5_RXD_I2S3_TX_DATA

1_PA04

CIM_VIC_D5_UART5_TXD_I2S3_TX_DATA2_PA05

CIM_VIC_D6_UART6_RXD_I2S3_TX_DATA

3_PA06

PWM0_TCU0_IN0_PC00

CSI_AVD18 RX_CLKN0 P

R

CIM_VIC_D3_UART4_TXD_I2S3_TX_DATA0_P

A03

CIM_VIC_D2_UART4_RXD_I2S3_TX_LRCK

_PA02

CIM_VIC_D1_UART4_RTS

__PA01

CIM_VIC_D0_UART4_CTS__I2S3_TX_MCL

K_PA00

USB_AVSS USB_ID USB_BIASCODEC_AV

SS

MSC2_D3_PWM7_TCU3_IN1_PE

05

MSC2_CLK_PWM2_TCU1_IN0_P

E00

PWM4_TCU2_IN0_RGMAC0_TXD2_I2S1_RX_DATA_SCC_SDA_P

C04

PWM10_TCU5_IN0_RGMAC0_TX_EN_SSI1_DR_UART4_RT

S__PC10

PWM11_TCU5_IN1_RGMAC0_RX_DV_SSI1_DT_UART4_RX

D_PC11

PWM9_TCU4_IN1_RGMAC0_RXD3_SSI1_CE0__UART4_CT

S__PC09

PWM12_TCU6_IN0_RGMAC0_MDC_SSI1_CLK_UART4_TXD_PC1

2

DMIC_IN3_UART1_TXD_I2C1_SDA_NEMC_CS2

__PC24

RX_DATAN2 RX_DATAP2 R

T AUX4 AUX2 AUX0 SADC_AVSS USB_VBUS USB_AVD33CODEC_MICBIAS

CODEC_HPOUTN

MSC2_D2_PWM6_TCU3_IN0_PE

04

SFC0_CLK_SSI1_CLK_PE16

SFC0_DQ0_SSI1_DR_PE18

PWM14_TCU7_IN0_RGMAC0_TX_CLK_SPDIF_OUT_I2C0_SDA_PC14

PWM7_TCU3_IN1_RGMAC0_RXD1_I2S1_TX_DATA_UART6_RXD_PC07

PWM6_TCU3_IN0_RGMAC0_RXD0_I2S1_TX_LRCK_UART5_TXD_PC06

PWM13_TCU6_IN1_RGMAC0_MDIO_SPDIF_IN_I2C0_SCK_PC1

3

DMIC_IN2_UART1_RXD_I2C1_SCK_NEMC_CS1

__PC23

RX_DATAP3 RX_DATAN3 T

USADC_VREF

PAUX3 AUX5 USB_DM0 USB_AVD18

CODEC_MICLN

CODEC_AVDD

CODEC_HPOUTP

MSC2_D1_PWM5_TCU2_IN1_PE

03

SFC0_CE__SSI1_DT_PE17

SFC0_DQ1_I2C2_SCK_PE19

SFC0_DQ3_HOLD__SSI1_CE

0__PE21

PWM3_TCU1_IN1_RGMAC0_TXD1_I2S1_RX_LRCK_SCC_S

CK_PC03

PWM5_TCU2_IN1_RGMAC0_TXD3_I2S1_TX_BCLK_UART5_RXD_PC05

PWM8_TCU4_IN0_RGMAC0_RXD2_I2S1_TX_MCLK_UART6_TXD

_PC08

DMIC_IN0_UART1_CTS__PC21

RX_CLKN1 RX_CLKP1 U

V AUX1 SADC_AVDD USB_DP0 USB_AVD09CODEC_MIC

LPCODEC_VC

M

MSC2_D0_PWM4_TCU2_IN0_PE

02

MSC2_CMD_PWM3_TCU1_IN1_P

E01

SFC0_DQ2_WP__I2C2_SDA_

PE20

PWM2_TCU1_IN0_RGMAC0_TXD0_I2S1_RX_BCLK_UART7_TXD_PC02

PWM15_TCU7_IN1_RGMAC0_RX_CLK_CIM_VIC_MCLK_PC15

PWM1_TCU0_IN1_RGMAC0_PHY_CLK_I2S1_RX_MCLK_UART7_

RXD_PC01

DMIC_CLK_PC20

DMIC_IN1_UART1_RTS__PC22

V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

X2000 Ball Assignment Ver1.0

BGA270, 12mm X 12mm X 1.2mm, 0.65pitch, top view

Page 15: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 15

2.2 Pin Description

2.2.1 GPIO Group A

Ball No.

Ball Name In/Out

Pull Slew Rate

Schmitt GPIO Func0 Func1 Func2 Power

R4 CIM_VIC_D0_ UART4_CTS__

I2S3_TX_MCLK_PA00 IO PU Yes Yes GPA[0] CIM/VIC_D0 UART4_CTS_ I2S3_TX_MCLK VDDIO33_CIM

R3 CIM_VIC_D1_UART4_RTS__PA01 IO PU Yes Yes GPA[1] CIM/VIC_D1 UART4_RTS_ VDDIO33_CIM

R2 CIM_VIC_D2_UART4_RXD_I2S3_TX_LRCK_PA02 IO PU Yes Yes GPA[2] CIM/VIC_D2 UART4_RXD I2S3_TX_LRCK VDDIO33_CIM

R1 CIM_VIC_D3_UART4_TXD_I2S3_TX_DATA0_PA03 IO PU Yes Yes GPA[3] CIM/VIC_D3 UART4_TXD I2S3_TX_DATA0 VDDIO33_CIM

P2 CIM_VIC_D4_UART5_RXD_I2S3_TX_DATA1_PA04 IO PU Yes Yes GPA[4] CIM/VIC_D4 UART5_RXD I2S3_TX_DATA1 VDDIO33_CIM

P3 CIM_VIC_D5_UART5_TXD_I2S3_TX_DATA2_PA05 IO PU Yes Yes GPA[5] CIM/VIC_D5 UART5_TXD I2S3_TX_DATA2 VDDIO33_CIM

P4 CIM_VIC_D6_UART6_RXD_I2S3_TX_DATA3_PA06 IO PU Yes Yes GPA[6] CIM/VIC_D6 UART6_RXD I2S3_TX_DATA3 VDDIO33_CIM

N4 CIM_VIC_D7_UART6_TXD_I2S2_RX_MCLK_PA07 IO PU Yes Yes GPA[7] CIM/VIC_D7 UART6_TXD I2S2_RX_MCLK VDDIO33_CIM

N3 VIC_D8_UART7_RXD_PA08 IO PU Yes Yes GPA[8] VIC_D8 UART7_RXD VDDIO33_CIM

N2 VIC_D9_UART7_TXD_I2S2_RX_LRCK_PA09 IO PU Yes Yes GPA[9] VIC_D9 UART7_TXD I2S2_RX_LRCK VDDIO33_CIM

M4 VIC_D10_I2S2_RX_DATA0_PA10 IO PU Yes Yes GPA[10] VIC_D10 I2S2_RX_DATA0 VDDIO33_CIM

N1 VIC_D11_I2S2_RX_DATA1_PA11 IO PU Yes Yes GPA[11] VIC_D11 I2S2_RX_DATA1 VDDIO33_CIM

M2 CIM_VIC_HSYNC_I2S2_RX_DATA2_PA12 IO PD Yes Yes GPA[12] CIM_VIC_HSYNC I2S2_RX_DATA2 VDDIO33_CIM

M1 CIM_VIC_VSYNC_I2S2_RX_DATA3_PA13 IO PD Yes Yes GPA[13] CIM_VIC_VSYNC I2S2_RX_DATA3 VDDIO33_CIM

M3 CIM_VIC_PCLK_PA14 IO PD Yes Yes GPA[14] CIM/VIC_PCLK VDDIO33_CIM

L2 CIM_EXPOSURE_PA15 IO PD Yes Yes GPA[15] CIM_EXPOSURE VDDIO33_CIM

K1 I2C3_SCK_I2S3_TX_BCLK_PA16 IO PU Yes Yes GPA[16] I2C3_SCK I2S3_TX_BCLK VDDIO33_CIM

L3 I2C3_SDA_I2S2_RX_BCLK_PA17 IO PU Yes Yes GPA[17] I2C3_SDA I2S2_RX_BCLK VDDIO33_CIM

Page 16: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 16

2.2.2 GPIO Group B

Ball No.

Ball Name In/Out

Pull Slew Rate

Schmitt

GPIO Func0 Func1 Func2 Func3 Power

K15 SA0_LCD_D0_SLCD_D0_PB00 IO PD No Yes GPB[0] SA0 LCD_D0 SLCD_D0 VDDIO33

H16 SA1_LCD_D1_SLCD_D1_PB01 IO PD No Yes GPB[1] SA1 LCD_D1 SLCD_D1 VDDIO33

H17 SA2_LCD_D2_SLCD_D2_PB02 IO PD No Yes GPB[2] SA2 LCD_D2 SLCD_D2 VDDIO33

G16 SA3_LCD_D3_SLCD_D3_PB03 IO PD No Yes GPB[3] SA3 LCD_D3 SLCD_D3 VDDIO33

J16 SA4_LCD_D4_SLCD_D4_PB04 IO PD No Yes GPB[4] SA4 LCD_D4 SLCD_D4 VDDIO33

H15 SA5_LCD_D5_SLCD_D5_PB05 IO PD No Yes GPB[5] SA5 LCD_D5 SLCD_D5 VDDIO33

G15 SA6_LCD_D6_SLCD_D6_PB06 IO PD No Yes GPB[6] SA6 LCD_D6 SLCD_D6 VDDIO33

J15 SA7_LCD_D7_SLCD_D7_PB07 IO PD No Yes GPB[7] SA7 LCD_D7 SLCD_D7 VDDIO33

G18 SA8_LCD_D8_SLCD_D8_RGM

AC1_TXD0_PB08 IO PD No Yes GPB[8] SA8 LCD_D8 SLCD_D8 RGMAC1_TXD0 VDDIO33

F18 SA9_LCD_D9_SLCD_D9_RGM

AC1_TXD1_PB09 IO PD No Yes GPB[9] SA9 LCD_D9 SLCD_D9 RGMAC1_TXD1 VDDIO33

F17 SA10_LCD_D10_SLCD_D10_R

GMAC1_TXD2_PB10 IO PD No Yes GPB[10] SA10 LCD_D10 SLCD_D10 RGMAC1_TXD2 VDDIO33

F16 SA11_LCD_D11_SLCD_D11_R

GMAC1_TXD3_PB11 IO PD No Yes GPB[11] SA11 LCD_D11 SLCD_D11 RGMAC1_TXD3 VDDIO33

D18 SA12_LCD_D12_SLCD_D12_R

GMAC1_RXD0_PB12 IO PD No Yes GPB[12] SA12 LCD_D12 SLCD_D12 RGMAC1_RXD0 VDDIO33

E17 RD__LCD_D13_SLCD_D13_RG

MAC1_RXD1_PB13 IO PU No Yes GPB[13] RD_ LCD_D13 SLCD_D13 RGMAC1_RXD1 VDDIO33

D17 WE__LCD_D14_SLCD_D14_R

GMAC1_RXD2_PB14 IO PU No Yes GPB[14] WE_ LCD_D14 SLCD_D14 RGMAC1_RXD2 VDDIO33

E15 WAIT__LCD_D15_SLCD_D15_

RGMAC1_RXD3_PB15 IO PU No Yes GPB[15] WAIT_ LCD_D15 SLCD_D15 RGMAC1_RXD3 VDDIO33

C16 SD0_LCD_D16_PB16 IO PU No Yes GPB[16] SD0 LCD_D16 SLCDRD VDDIO33

F15 SD1_LCD_D17_RGMAC1_TX_

EN_PB17 IO PU No Yes GPB[17] SD1 LCD_D17 RGMAC1_TX_EN VDDIO33

B18 SD2_LCD_D18_RGMAC1_RX_

DV_PB18 IO PU No Yes GPB[18] SD2 LCD_D18

RGMAC1_RX_DV

VDDIO33

A18 SD3_LCD_D19_RGMAC1_MDC

_PB19 IO PU No Yes GPB[19] SD3 LCD_D19 RGMAC1_MDC VDDIO33

C18 SD4_LCD_D20_RGMAC1_MDI IO PU No Yes GPB[20] SD4 LCD_D20 RGMAC1_MDIO VDDIO33

Page 17: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 17

O_PB20

G17 SD5_LCD_D21_RGMAC1_TX_

CLK_PB21 IO PU No Yes GPB[21] SD5 LCD_D21

RGMAC1_TX_CLK_O

VDDIO33

E16 SD6_LCD_D22_I2C2_SCK_RG

MAC1_RX_CLK_PB22 IO PU No Yes GPB[22] SD6 LCD_D22 I2C2_SCK

RGMAC1_RX_CLK_I

VDDIO33

C17 SD7_LCD_D23_I2C2_SDA_RG

MAC1_PHY_CLK_PB23 IO PU No Yes GPB[23] SD7 LCD_D23 I2C2_SDA

RGMAC1_PHY_CLK_O

VDDIO33

B17 SD8_LCD_PCLK_SLCD_CE__P

B24 IO PU No Yes GPB[24] SD8 LCD_PCLK SLCD_CE_ VDDIO33

A17 SD9_LCD_VSYNC_SLCD_DC_

PB25 IO PU No Yes GPB[25] SD9 LCD_VSYNC SLCD_DC VDDIO33

B16 SD10_LCD_HSYNC_SLCD_WR

_PB26 IO PU No Yes GPB[26] SD10 LCD_HSYNC SLCD_WR VDDIO33

D16 SD11_LCD_DE_SLCD_TE_PB2

7 IO PU No Yes GPB[27] SD11 LCD_DE SLCD_TE VDDIO33

D14 SD12_SSI0_CE0__UART8_RX

D_PB28 IO PU No Yes GPB[28] SD12 SSI0_CE0_

UART8_RXD

VDDIO33

D15 SD13_SSI0_DR_UART8_TXD_

PB29 IO PU No Yes GPB[29] SD13 SSI0_DR

UART8_TXD

VDDIO33

C15 SD14_SSI0_DT_UART9_RXD_

PB30 IO PU No Yes GPB[30] SD14 SSI0_DT

UART9_RXD

VDDIO33

A16 SD15_SSI0_CLK_UART9_TXD_

PB31 IO PU No Yes GPB[31] SD15 SSI0_CLK

UART9_TXD

VDDIO33

2.2.3 GPIO Group C

Ball No.

Ball Name In/Out

Pull Slew Rate

Schmitt

GPIO Func0 Func1 Func2 Func3 Power

P15 PWM0_TCU0_IN0_PC00 IO PD No Yes GPC[0] PWM0_TCU0_IN0 VDDIO33

V16 PWM1_TCU0_IN1_RGMAC0_P IO PU No Yes GPC[1] PWM1_TCU0_IN1 UART7_RXD VDDIO33

Page 18: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 18

HY_CLK_I2S1_RX_MCLK_UART7_RXD_PC01

RGMAC0_PHY_CLK

I2S1_RX_MCLK

V13 PWM2_TCU1_IN0_RGMAC0_TXD0_I2S1_RX_BCLK_UART7_

TXD_PC02 IO PU No Yes GPC[2] PWM2_TCU1_IN0

RGMAC0_TXD0

I2S1_RX_BCLK

UART7_TXD VDDIO33

U13 PWM3_TCU1_IN1_RGMAC0_TXD1_I2S1_RX_LRCK_SCC_SC

K_PC03 IO PU No Yes GPC[3] PWM3_TCU1_IN1

RGMAC0_TXD1

I2S1_RX_LRCK

SCC_SCK VDDIO33

R11 PWM4_TCU2_IN0_RGMAC0_TXD2_I2S1_RX_DATA_SCC_SD

A_PC04 IO PU No Yes GPC[4] PWM4_TCU2_IN0

RGMAC0_TXD2

I2S1_RX_DATA

SCC_SDA VDDIO33

U14 PWM5_TCU2_IN1_RGMAC0_TXD3_I2S1_TX_BCLK_UART5_

RXD_PC05 IO PU No Yes GPC[5] PWM5_TCU2_IN1 RGMAC0_TXD3

I2S1_TX_BCLK

UART5_RXD VDDIO33

T14 PWM6_TCU3_IN0_RGMAC0_RXD0_I2S1_TX_LRCK_UART5_

TXD_PC06 IO PU No Yes GPC[6] PWM6_TCU3_IN0

RGMAC0_RXD0

I2S1_TX_LRCK

UART5_TXD VDDIO33

T13 PWM7_TCU3_IN1_RGMAC0_RXD1_I2S1_TX_DATA_UART6_

RXD_PC07 IO PU No Yes GPC[7] PWM7_TCU3_IN1

RGMAC0_RXD1

I2S1_TX_DATA

UART6_RXD VDDIO33

U15 PWM8_TCU4_IN0_RGMAC0_RXD2_I2S1_TX_MCLK_UART6_

TXD_PC08 IO PU No Yes GPC[8] PWM8_TCU4_IN0

RGMAC0_RXD2

I2S1_TX_MCLK

UART6_TXD VDDIO33

R14 PWM9_TCU4_IN1_RGMAC0_RXD3_SSI1_CE0__UART4_CTS

__PC09 IO PU No Yes GPC[9] PWM9_TCU4_IN1

RGMAC0_RXD3

SSI1_CE0_ UART4_CTS_

VDDIO33

R12 PWM10_TCU5_IN0_RGMAC0_TX_EN_SSI1_DR_UART4_RTS

__PC10 IO PU No Yes GPC[10] PWM10_TCU5_IN0

RGMAC0_TX_EN

SSI1_DR UART4_RTS_

VDDIO33

R13 PWM11_TCU5_IN1_RGMAC0_RX_DV_SSI1_DT_UART4_RXD

_PC11 IO PU No Yes GPC[11] PWM11_TCU5_IN1

RGMAC0_RX_DV

SSI1_DT UART4_RXD VDDIO33

R15 PWM12_TCU6_IN0_RGMAC0_MDC_SSI1_CLK_UART4_TXD_

PC12 IO PU No Yes GPC[12] PWM12_TCU6_IN0 RGMAC0_MDC SSI1_CLK UART4_TXD VDDIO33

T15 PWM13_TCU6_IN1_RGMAC0_MDIO_SPDIF_IN_I2C0_SCK_P

IO PU No Yes GPC[13] PWM13_TCU6_IN1 RGMAC0_MDIO SPDIF_IN I2C0_SCK VDDIO33

Page 19: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 19

C13

T12 PWM14_TCU7_IN0_RGMAC0_TX_CLK_SPDIF_OUT_I2C0_S

DA_PC14 IO PU No Yes GPC[14] PWM14_TCU7_IN0

RGMAC0_TX_CLK

SPDIF_OUT

I2C0_SDA VDDIO33

V15 PWM15_TCU7_IN1_RGMAC0_RX_CLK_CIM_VIC_MCLK_PC1

5 IO PU No Yes GPC[15] PWM15_TCU7_IN1

RGMAC0_RX_CLK

CIM/VIC_MCLK

VDDIO33

V17 DMIC_CLK_PC20 IO PD No Yes GPC[20] DMIC_CLK VDDIO33

U16 DMIC_IN0_UART1_CTS__PC2

1 IO PU No Yes GPC[21] DMIC_IN0 UART1_CTS_ VDDIO33

V18 DMIC_IN1_UART1_RTS__PC2

2 IO PU No Yes GPC[22] DMIC_IN1 UART1_RTS_ VDDIO33

T16 DMIC_IN2_UART1_RXD_I2C1_

SCK_NEMC_CS1__PC23 IO PU No Yes GPC[23] DMIC_IN2 UART1_RXD I2C1_SCK NEMC_CS1_ VDDIO33

R16 DMIC_IN3_UART1_TXD_I2C1_

SDA_NEMC_CS2__PC24 IO PU No Yes GPC[24] DMIC_IN3 UART1_TXD I2C1_SDA NEMC_CS2_ VDDIO33

B14 UART3_RXD_I2C4_SCK_PC25 IO PU No Yes GPC[25] UART3_RXD I2C4_SCK VDDIO33

B15 UART3_TXD_I2C4_SDA_PC26 IO PU No Yes GPC[26] UART3_TXD I2C4_SDA VDDIO33

C14 UART3_CTS__I2C5_SCK_PC2

7 IO PU No Yes GPC[27] UART3_CTS_ I2C5_SCK VDDIO33

A15 UART3_RTS__I2C5_SDA_PC2

8 IO PU No Yes GPC[28] UART3_RTS_ I2C5_SDA VDDIO33

2.2.4 GPIO Group D

Ball No.

Ball Name In/ Out

Pull Slew Rate

Schmitt

GPIO Func0 Func1 Func2 Func

3 Power

B5 UART3_CTS__I2C4_SCK_PD00 IO PU No No GPD[0] UART3_CTS_ I2C4_SCK VDDIO

C6 UART3_RTS__I2C4_SDA_TDO_PD01 IO PU No No GPD[1] UART3_RTS_ I2C4_SDA TDO VDDIO

B6 UART3_RXD_PCM_CLK_TDI_PD02 IO PU No No GPD[2] UART3_RXD PCM_CLK TDI VDDIO

A6 UART3_TXD_PCM_DO_TCK_PD03 IO PU No No GPD[3] UART3_TXD PCM_DO TCK VDDIO

A7 I2C5_SCK_PCM_DI_TMS_PD04 IO PU No No GPD[4] I2C5_SCK PCM_DI TMS VDDIO

B7 I2C5_SDA_PCM_SYNC_PD05 IO PU No No GPD[5] I2C5_SDA PCM_SYNC VDDIO

Page 20: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 20

B2 SDIO_CLK_SSI0_CLK_PD08 IO PU No No GPD[8] SDIO_CLK SSI0_CLK VDDIO

A2 SDIO_CMD_SSI0_DT_PD09 IO PU No No GPD[9] SDIO_CMD SSI0_DT VDDIO

B3 SDIO_D0_SSI0_DR_PD10 IO PU No No GPD[10] SDIO_D0 SSI0_DR VDDIO

A3 SDIO_D1_I2C1_SCK_PD11 IO PU No No GPD[11] SDIO_D1 I2C1_SCK VDDIO

A4 SDIO_D2_I2C1_SDA_PD12 IO PU No No GPD[12] SDIO_D2 I2C1_SDA VDDIO

C4 SDIO_D3_SSI0_CE0__PD13 IO PU No No GPD[13] SDIO_D3 SSI0_CE0_ VDDIO

D1 MSC0_CLK_SFC0_CLK_SSI1_CLK_PD17 IO PU No No GPD[17] MSC0_CLK SFC0_CLK SSI1_CLK VDDIO

B1 MSC0_CMD_SFC0_CE__SSI1_DT_PD18 IO PU No No GPD[18] MSC0_CMD SFC0_CE_ SSI1_DT VDDIO

C2 MSC0_D0_SFC0_DQ0_SSI1_DR_PD19 IO PU No No GPD[19] MSC0_D0 SFC0_DQ0 SSI1_DR VDDIO

C1 MSC0_D1_SFC0_DQ1_I2C2_SCK_PD20 IO PU No No GPD[20] MSC0_D1 SFC0_DQ1 I2C2_SCK VDDIO

D2 MSC0_D2_SFC0_DQ2_WP__I2C2_SDA_PD21 IO PU No No GPD[21] MSC0_D2 SFC0_DQ2_WP_ I2C2_SDA VDDIO

D4 MSC0_D3_SFC0_DQ3_HOLD__SSI1_CE0__PD22 IO PU No No GPD[22] MSC0_D3 SFC0_DQ3_HOLD_ SSI1_CE0_ VDDIO

D3 MSC0_D4_SFC1_DQ0_UART0_RXD_PD23 IO PU No No GPD[23] MSC0_D4 SFC1_DQ0 UART0_RXD VDDIO

E4 MSC0_D5_SFC1_DQ1_UART0_TXD_PD24 IO PU No No GPD[24] MSC0_D5 SFC1_DQ1 UART0_TXD VDDIO

A1 MSC0_D6_SFC1_DQ2_WP__UART0_CTS__PD25 IO PU No No GPD[25] MSC0_D6 SFC1_DQ2_WP_ UART0_CTS_ VDDIO

C3 MSC0_D7_SFC1_DQ3_HOLD__UART0_RTS__PD26 IO PU No No GPD[26] MSC0_D7 SFC1_DQ3_HOLD_ UART0_RTS_ VDDIO

B4 UART2_RXD_I2C3_SCK_PWM0_TCU0_IN0_PD30 IO PU No No GPD[30] UART2_RXD I2C3_SCK PWM0_TCU0_IN0 VDDIO

C5 UART2_TXD_I2C3_SDA_PWM1_TCU0_IN1_PD31 IO PU No No GPD[31] UART2_TXD I2C3_SDA PWM1_TCU0_IN1 VDDIO

2.2.5 GPIO Group E

Ball No.

Ball Name In/ Out

Pull Slew Rate Schmitt GPIO Func0 Func1 Power

R10 MSC2_CLK_PWM2_TCU1_IN0_PE00 IO PU Yes Yes GPE[0] MSC2_CLK PWM2/TCU1_IN0 VDDIO33_SD

V10 MSC2_CMD_PWM3_TCU1_IN1_PE01 IO PU Yes Yes GPE[1] MSC2_CMD PWM3/TCU1_IN1 VDDIO33_SD

V9 MSC2_D0_PWM4_TCU2_IN0_PE02 IO PU Yes Yes GPE[2] MSC2_D0 PWM4/TCU2_IN0 VDDIO33_SD

U9 MSC2_D1_PWM5_TCU2_IN1_PE03 IO PU Yes Yes GPE[3] MSC2_D1 PWM5/TCU2_IN1 VDDIO33_SD

T9 MSC2_D2_PWM6_TCU3_IN0_PE04 IO PU Yes Yes GPE[4] MSC2_D2 PWM6/TCU3_IN0 VDDIO33_SD

Page 21: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 21

R9 MSC2_D3_PWM7_TCU3_IN1_PE05 IO PU Yes Yes GPE[5] MSC2_D3 PWM7/TCU3_IN1 VDDIO33_SD

T10 SFC0_CLK_SSI1_CLK_PE16 IO PU No Yes GPE[16] SFC0_CLK SSI1_CLK VDDIO33

U10 SFC0_CE__SSI1_DT_PE17 IO PU No Yes GPE[17] SFC0_CE_ SSI1_DT VDDIO33

T11 SFC0_DQ0_SSI1_DR_PE18 IO PU No Yes GPE[18] SFC0_DQ0 SSI1_DR VDDIO33

U11 SFC0_DQ1_I2C2_SCK_PE19 IO PU No Yes GPE[19] SFC0_DQ1 I2C2_SCK VDDIO33

V12 SFC0_DQ2_WP__I2C2_SDA_PE20 IO PU No Yes GPE[20] SFC0_DQ2_WP_ I2C2_SDA VDDIO33

U12 SFC0_DQ3_HOLD__SSI1_CE0__PE21 IO PU No Yes GPE[21] SFC0_DQ3_HOLD_ SSI1_CE0_ VDDIO33

F4 DRV_VBUS_PE22 IO PD No No GPE[22] DRV_VBUS VDDIO

E2 RTC32K_PE23 IO PD No No GPE[23] RTC32K VDDIO

E3 EXCLK_CIM_VIC_MCLK_PE24 IO PD No No GPE[24] EXCLK CIM/VIC_MCLK VDDIO

L4 BOOT_SEL0_PE25 IO PD No No GPE[25] BOOT_SEL0 VDDIO

K4 BOOT_SEL1_PE26 IO PD No No GPE[26] BOOT_SEL1 VDDIO

K2 BOOT_SEL2_PE27 IO PD No No GPE[27] BOOT_SEL2 VDDIO

F2 WKUP_PE31 IO PU No No GPE[31] WKUP_PE31 VDDIO_RTC

2.3 X2000 Analog PAD DESCRIPTION

Table 2-1 X2000 function pin description

Ball No.

Pin Names IO Power Pin Description

Debug

D6 TRST I VDDIO JTAG reset

Memory

A11 DDR_VDD1 P DDR_VDD1 For DDR supply

B11 DDR_VDD1 P - For DDR supply

A12 DDRPLL_VCCA P - DDR PHY PLL supply 1.8v

Page 22: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 22

B12 DDR_VSSA P - ground

A10 VREF P for DDR, reference voltage

C10 ZQ I for DDR, external reference resistor for output calibrating

Power and Ground

A9 VDDMEM P - DDR PHY LPDDR2/3 IO 1.2v supply

B8 VDDMEM P - DDR PHY LPDDR2/3 IO 1.2v supply

B9 VDDMEM P - DDR PHY LPDDR2/3 IO 1.2v supply

C8 VDDMEM P - DDR PHY LPDDR2/3 IO 1.2v supply

C9 VDDMEM P - DDR PHY LPDDR2/3 IO 1.2v supply

C12 VDDMEM P - DDR PHY LPDDR2/3 IO 1.2v supply

C13 VDDMEM P - DDR PHY LPDDR2/3 IO 1.2v supply

D12 VDDMEM P - DDR PHY LPDDR2/3 IO 1.2v supply

D13 VDDMEM P - DDR PHY LPDDR2/3 IO 1.2v supply

G6 VDDIO P - GPIO 1.8v supply

H6 VDDIO P - GPIO 1.8v supply

J13 VDDIO18 P - GPIO 1.8V supply for 3.3v PAD

N12 VDDIO18 P - GPIO 1.8V supply for 3.3v PAD

N6 VDDIO18_CIM P - CIM Type PAD1.8V supply

N8 VDDIO18_SD P - Connect to 1uf capacity for SD type PAD

H13 VDDIO33 P - GPIO 3.3V supply for 3.3v PAD

N13 VDDIO33 P - GPIO 3.3V supply for 3.3v PAD

M6 VDDIO33_CIM P - CIM GPIO 3.3V /1.8Vsupply

N9 VDDIO33_SD P - SD GPIO 3.3V/1.8V supply

A8 VSS P - Digital Ground

A13 VSS P - Digital Ground

B10 VSS P - Digital Ground

B13 VSS P - Digital Ground

C7 VSS P - Digital Ground

C11 VSS P - Digital Ground

D7 VSS P - Digital Ground

D8 VSS P - Digital Ground

D9 VSS P - Digital Ground

Page 23: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 23

D10 VSS P - Digital Ground

D11 VSS P - Digital Ground

F6 VSS P - Digital Ground

F7 VSS P - Digital Ground

F10 VSS P - Digital Ground

F13 VSS P - Digital Ground

G7 VSS P - Digital Ground

G10 VSS P - Digital Ground

G13 VSS P - Digital Ground

H7 VSS P - Digital Ground

H8 VSS P - Digital Ground

H9 VSS P - Digital Ground

H10 VSS P - Digital Ground

J6 VSS P - Digital Ground

J7 VSS P - Digital Ground

J8 VSS P - Digital Ground

J11 VSS P - Digital Ground

J12 VSS P - Digital Ground

K6 VSS P - Digital Ground

K13 VSS P - Digital Ground

L6 VSS P - Digital Ground

L9 VSS P - Digital Ground

L10 VSS P - Digital Ground

L13 VSS P - Digital Ground

M7 VSS P - Digital Ground

M8 VSS P - Digital Ground

M9 VSS P - Digital Ground

M10 VSS P - Digital Ground

M13 VSS P - Digital Ground

N7 VSS P - Digital Ground

N10 VSS P - Digital Ground

N11 VSS P - Digital Ground

F8 VDD P - CORE digital power, 0.9V

Page 24: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 24

F9 VDD P - CORE digital power, 0.9V

F11 VDD P - CORE digital power, 0.9V

F12 VDD P - CORE digital power, 0.9V

G8 VDD P - CORE digital power, 0.9V

G9 VDD P - CORE digital power, 0.9V

G11 VDD P - CORE digital power, 0.9V

G12 VDD P - CORE digital power, 0.9V

H11 VDD P - CORE digital power, 0.9V

H12 VDD P - CORE digital power, 0.9V

K7 VDD P - CORE digital power, 0.9V

K8 VDD P - CORE digital power, 0.9V

K11 VDD P - CORE digital power, 0.9V

K12 VDD P - CORE digital power, 0.9V

L7 VDD P - CORE digital power, 0.9V

L8 VDD P - CORE digital power, 0.9V

L11 VDD P - CORE digital power, 0.9V

L12 VDD P - CORE digital power, 0.9V

M11 VDD P - CORE digital power, 0.9V

M12 VDD P - CORE digital power, 0.9V

Audio Codec

U7 CODEC_AVDD P CODEC_AVDD 1.8v supply

R8 CODEC_AVSS P Ground

T7 CODEC_MICBIAS AO CODEC_AVDD Electric microphone biasing voltage

T8 CODEC_HPOUTN AO CODEC_AVDD DAC Differential output N

U8 CODEC_HPOUTP AO CODEC_AVDD DAC Differential output P

U6 CODEC_MICLN AI CODEC_AVDD ADC Differential input N end

V6 CODEC_MICLP AI CODEC_AVDD ADC Differential input P end

V7 CODEC_VCM AO CODEC_AVDD Reference voltage output

SADC

T3 AUX0 AI SADC_AVDD Analog input 0

V1 AUX1 AI SADC_AVDD Analog input 1

T2 AUX2 AI SADC_AVDD Analog input 2

Page 25: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 25

U2 AUX3 AI SADC_AVDD Analog input 3

T1 AUX4 AI SADC_AVDD Analog input 4

U3 AUX5 AI SADC_AVDD Analog input 5

U1 SADC_VREFP AI SADC_AVDD Positive reference voltage input

T4 SADC_AVSS P - ground

V2 SADC_AVDD P SADC_AVDD 1.8v supply

DSI

L17 TX_DATAN0 AO DSI_AVD18 Lane0 negative end

K16 TX_DATAP0 AO DSI_AVD18 Lane0 positive end

J18 TX_DATAN1 AO DSI_AVD18 Lane1 negative end

J17 TX_DATAP1 AO DSI_AVD18 Lane1 positive end

K18 TX_CLKN AO DSI_AVD18 CLK negative end

K17 TX_CLKP AO DSI_AVD18 CLK positive end

L15 DSI_AVSS P - ground

L16 DSI_AVD09 P DSI_AVD09 0.9V Analog supply

M16 DSI_AVD18 P DSI_AVD18 1.8V Analog supply

CSI

M18 RX_DATAN0 AI CSI_AVD18 Lane0 negative end

M17 RX_DATAP0 AI CSI_AVD18 Lane0 positive end

N18 RX_DATAN1 AI CSI_AVD18 Lane1 negative end

N17 RX_DATAP1 AI CSI_AVD18 Lane1 positive end

R17 RX_DATAN2 AI CSI_AVD18 Lane2 negative end

R18 RX_DATAP2 AI CSI_AVD18 Lane2 positive end

T18 RX_DATAN3 AI CSI_AVD18 Lane3 negative end

T17 RX_DATAP3 AI CSI_AVD18 Lane3 positive end

P17 RX_CLKN0 AI CSI_AVD18 CLK lane0 negative end

N16 RX_CLKP0 AI CSI_AVD18 CLK lane0 positive end

U17 RX_CLKN1 AI CSI_AVD18 CLK lane1 negative end

U18 RX_CLKP1 AI CSI_AVD18 CLK lane0 positive end

M15 CSI_AVSS P - ground

N15 CSI_AVD09 P CSI_AVD09 0.9V Analog supply

P16 CSI_AVD18 P CSI_AVD18 1.8V Analog supply

Page 26: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 26

USB OTG

V3 USB_DP0(OTG_DP) AIO USB_AVD33 USB OTG data plus

U4 USB_DM0(OTG_DM) AIO USB_AVD33 USB OTG data minus

T5 USB_VBUS(OTG_VBUS) AI USB_AVD18 USB 3V power supply pin for USB OTG. An external charge pump must provide power to this pin.

R6 USB_ID(OTG_ID) AI USB_AVD18 Used to identify the device attached to the PHY. The state of the pin is one of: high impedance (>1M Ω), or low impedance (<10Ω to ground).

R7 USB_BIAS AIO USB_AVD09 Connect to 135 ohm +/- 1% resistor, all internal bias base on it

R5 USB_AVSS P - USB analog ground

V4 USB_AVD09 P USB_AVD09 USB analog power.0.9V

U5 USB_AVD18 P USB_AVD18 USB analog power.1.8V

T6 USB_AVD33 P USB_AVD33 USB analog power.3.3V

EFUSE

D5 AVDEFUSE P AVDEFUSE EFUSE programming power, 0V/1.8V

CPM

G2 OSC32_XI AI VDDIO_RTC RTC OSC input.

G1 OSC32_XO AO VDDIO_RTC RTC OSC output.

J1 EXCLK_XI AI VDDIO EXCLK OSC Input

J2 EXCLK_XO AO VDDIO EXCLK OSC Output

J3 PLL_VDD P - PLL digital power

K3 PLL_VSS P - PLL digital ground

H2 PLL_AVDD P - PLL analog power

J4 PLL_AVSS P - PLL analog ground

RTC

F3 PWRON O VDDIO_RTC Power on/off control of main power

G3 PPRST_ I VDDIO_RTC RTC power on reset and RESET-KEY reset input

G4 TEST_TE I VDDIO_RTC Manufacture test enable, program readable

F1 VDDIO_RTC P VDDIO_RTC 1.8v supply to RTC IO

H3 VDD_RTC P - 0.9v supply to RTC

H4 VSS_RTC P - Ground

Page 27: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 27

2.4 X2000 Digital PAD DESCRIPTION

Table 2-2 X2000 Function Description

Signal Name In/Out Description

SLCD(Smart LCD)

SLCD_D0 Output Smart LCD data output bit 0

SLCD_D1 Output Smart LCD data output bit 1

SLCD_D2 Output Smart LCD data output bit 2

SLCD_D3 Output Smart LCD data output bit 3

SLCD_D4 Output Smart LCD data output bit 4

SLCD_D5 Output Smart LCD data output bit 5

SLCD_D6 Output Smart LCD data output bit 6

SLCD_D7 Output Smart LCD data output bit 7

SLCD_D8 Output Smart LCD data output bit 8

SLCD_D9 Output Smart LCD data output bit 9

SLCD_D10 Output Smart LCD data output bit 10

SLCD_D11 Output Smart LCD data output bit 11

SLCD_D12 Output Smart LCD data output bit 12

SLCD_D13 Output Smart LCD data output bit 13

SLCD_D14 Output Smart LCD data output bit 14

SLCD_D15 Output Smart LCD data output bit 15

SLCD_RD Output Smart LCD read signal

SLCD_WR Output Smart LCD write signal

SLCD_CE_ Output Smart LCD chip select signal

SLCD_TE Input Smart LCD tearing effect signal

SLCD_DC Output Smart LCD data/command select signal

LCD

LCD_Dn Output LCD data output bit n

LCD_PCLK Output LCD pixel clock

LCD_VSYNC Output LCD frame sync

LCD_HSYNC Output LCD line sync

Page 28: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 28

LCD_DE Output LCD data enable

CIM(Camera Interface)

CIM_EXPOSURE Output CIM exposure signal to sensor to generate snapshot

CIM_VIC_PCLK Input CIM pixel clock input

CIM_VIC_HSYNC Input CIM line horizontal sync input

CIM_VIC_VSYNC Input CIM vertical sync input

CIM_VIC_MCLK Output CIM master clock output

VIC_D11 Input CIM data input bit 11

VIC_D10 Input CIM data input bit 10

VIC_D9 Input CIM data input bit 9

VIC_D8 Input CIM data input bit 8

CIM_VIC_D7 Input CIM/VIC data input bit 7

CIM_VIC_D6 Input CIM/VIC data input bit 6

CIM_VIC_D5 Input CIM/VIC data input bit 5

CIM_VIC_D4 Input CIM/VIC data input bit 4

CIM_VIC_D3 Input CIM/VIC data input bit 3

CIM_VIC_D2 Input CIM/VIC data input bit 2

CIM_VIC_D1 Input CIM/VIC data input bit 1

CIM_VIC_D0 Input CIM/VIC data input bit 0

I2S

I2Sn_MCLK Output I2S n master clock out

I2Sn_BCLK Bidirection I2S n bit clock

I2Sn_LRCLK Bidirection I2S n LR clock

I2Sn_DI Input I2S n data input

I2Sn_DO Output I2S n data output

PCM

PCM_CLK Bidirection PCM clock

PCM_DO Output PCM data out

PCM_DI Input PCM data in

PCM_SYN Bidirection PCM sync

DMIC

DMIC_IN0 Input DMIC data in for DMIC 0/1

Page 29: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 29

DMIC_IN1 Input DMIC data in for DMIC 2/3

DMIC_IN2 Input DMIC data in for DMIC 4/5

DMIC_IN3 Input DMIC data in for DMIC 6/7

DMIC_CLK Output Digital MIC clock output

SFC

SFC0_CLK Output Serial Flash clock output

SFC0_CE_ Output Serial Flash chip enable

SFCn_DQ0 Bidirection Serial Flash data (n=0,1)

SFCn_DQ1 Bidirection Serial Flash data

SFCn_DQ2_WP_ Bidirection Serial Flash n write protect signal

SRCn_DQ3_HOLD_ Bidirection Serial Flash n hold signal

PWM

PWM0/TCU0_IN0 Bidirection PWM/TCU data output/input

PWM1/TCU0_IN1 Bidirection PWM/TCU data output/input

PWM2/TCU1_IN0 Bidirection PWM/TCU data output/input

PWM3/TCU1_IN1 Bidirection PWM/TCU data output/input

PWM4/TCU2_IN0 Bidirection PWM/TCU data output/input

PWM5/TCU2_IN1 Bidirection PWM/TCU data output/input

PWM6/TCU3_IN0 Bidirection PWM/TCU data output/input

PWM7/TCU3_IN1 Bidirection PWM/TCU data output/input

PWM8/TCU4_IN0 Bidirection PWM/TCU data output/input

PWM9/TCU4_IN1 Bidirection PWM/TCU data output/input

PWM10/TCU5_IN0 Bidirection PWM/TCU data output/input

PWM11/TCU5_IN1 Bidirection PWM/TCU data output/input

PWM12/TCU6_IN0 Bidirection PWM/TCU data output/input

PWM13TCU6_IN1 Bidirection PWM/TCU data output/input

PWM14/TCU7_IN0 Bidirection PWM/TCU data output/input

PWM15/TCU7_IN1 Bidirection PWM/TCU data output/input

RTC

RTC32K Output 32768Hz clock output

I2C

I2Cn_SCK Bidirection I2C n serial clock

Page 30: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 30

I2Cn_SDA Bidirection I2C n serial data

SCC

SCC_SCK Bidirection Smart Card clock

SCC_SDA Bidirection Smart Card data

SSI

SSIn_CLK Output SSI n clock output

SSIn_CE0_ Output SSI n chip enable 0

SSIn_DT Output SSI n data output

SSIn_DR Input SSI n data input

UART

UARTn_RXD Input UART n receiving data

UARTn_TXD Output UART n transmitting data

UARTn_CTS_ Input UART Clear to send control

UARTn_RTS_ Output UART Request to send control

MSC

MSCn_D7 Bidirection MSC(MMC/SD) n data bit 7

MSCn_D6 Bidirection MSC(MMC/SD) n data bit 6

MSCn_D5 Bidirection MSC(MMC/SD) n data bit 5

MSCn_D4 Bidirection MSC(MMC/SD) n data bit 4

MSCn_D3 Bidirection MSC(MMC/SD) n data bit 3

MSCn_D2 Bidirection MSC(MMC/SD) n data bit 2

MSCn_D1 Bidirection MSC(MMC/SD) n data bit 1

MSCn_D0 Bidirection MSC(MMC/SD) n data bit 0

MSCn_CLK Output MSC(MMC/SD) n clock output

MSCn_CMD Bidirection MSC(MMC/SD) n command

USB 2.0 OTG

DRV_VBUS Output USB OTG VBUS driver control signal

RGMAC

RGMACn_PHY_CLK Output Ethernet n PHY clock (50MHz) (n=0,1)

RGMACn_RX_DV Input Rx data valid

RGMACn_RX_CLK Input Rx clk

RGMACn_RXD3 Input receive data bit 3

Page 31: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 31

RGMACn_RXD2 Input receive data bit 2

RGMACn_RXD1 Input receive data bit 1

RGMACn_RXD0 Input receive data bit 0

RGMACn_TX_CLK Output Tx clk

RGMACn_TX_EN Output Ethernet n transmit enable

RGMACn_TXD3 Output tx data bit 3

RGMACn_TXD2 Output tx data bit 2

RGMACn_TXD1 Output tx data bit 1

RGMACn_TXD0 Output tx data bit 0

RGMACn_MDC Output Ethernet n management clock

RGMACn_MDIO Bidirection Ethernet n management data

NEMC

SAn Output NEMC Address (n=12)

SDn Bidirection NEMC Data (n=16)

RD_ Output NEMC read enable, low active

WE_ Output NEMC write enable, low active

NEMC_CS1_ Output NEMC chip select1

NEMC_CS2 Output NEMC chip select2

WAIT_ Input NEMC wait for external memory

DEBUG

TDO Output JTAG serial data output

TDI Input JTAG serial data input

TCK Input JTAG clock

TMS Input JTAG mode select

NOTES:

1 The meaning of phases in IO cell characteristics are:

a PU: The IO cell contains a pull-up resistor.

b PD: The IO cell contains a pull-down resistor.

c Schmitt: The IO cell is Schmitt trig input.

2 All GPIO shared pins are reset to GPIO input.

Page 32: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 32

3 Electrical Specifications

3.1 Absolute Maximum Ratings

The absolute maximum ratings for the processors are listed in Table 3-1. Do not exceed these

parameters or the part may be damaged permanently. Operation at absolute maximum ratings is not

guaranteed.

Table 3-1 Absolute Maximum Ratings

Parameter Min Max Unit

Storage Temperature -65 150 C

Operation Temperature -40 85 C

VDDMEM power supplies voltage -0.3 1.32 V

DDR_VDD1 power supplies voltage -0.5 1.98 V

DDRPLL power supplies voltage -0.5 1.98 V

VDDIO power supplies voltage -0.5 1.98 V

VDDIO33 power supplies voltage -0.5 3.63 V

VDDIO18 power supplies voltage -0.5 1.98 V

VDDIO33_CIM power supplies voltage -0.5 3.63 V

VDDIO18_CIM power supplies voltage -0.5 1.98 V

VDDIO33_SD power supplies voltage -0.5 3.63 V

VDD core power supplies voltage -0.2 1.1 V

PLLVDD power supplies voltage -0.2 1.1 V

PLLAVDD power supplies voltage -0.5 1.98 V

AVDEFUSE power supplies voltage -0.5 1.98 V

VDDIORTC power supplies voltage -0.5 1.98 V

VDDRTC power supplies voltage -0.2 1.1 V

USB_AVD33 power supplies voltage -0.5 3.6 V

USB_AVD18 power supplies voltage -0.5 1.98 V

USB_AVD09 power supplies voltage -0.2 1.1 V

CODEC_AVDD power supplies voltage -0.5 1.98 V

SADC_AVDD -0.5 1.98 V

CSI_AVD18 -0.5 1.98 V

CSI_AVD09 -0.2 1.1 V

DSI_AVD18 -0.5 1.98 V

DSI_AVD09 -0.2 1.1 V

Input voltage to VDDMEM supplied non-supply pins -0.3 1.32 V

Input voltage to VDDIO supplied non-supply pins -0.3 1.98 V

Input voltage to VDDIO33 supplied non-supply pins -0.3 3.6 V

Input voltage to VDDIO33_CIM supplied non-supply pins -0.3 3.6 V

Input voltage to VDDIO33_SD supplied non-supply pins -0.3 3.6 V

Input voltage to VDDIORTC supplied non-supply pins -0.3 1.98 V

Input voltage to USB_AVD33 supplied non-supply pins -0.3 3.6 V

Input voltage to CODEC_AVDD supplied non-supply pins -0.3 1.98 V

Input voltage to SADC_AVDD supplied non-supply pins -0.3 1.98 V

Input voltage to CSI_AVD18 supplied non-supply pins -0.3 1.98 V

Output voltage from VDDMEM supplied non-supply pins -0.3 1.32 V

Output voltage from VDDIO supplied non-supply pins -0.3 1.98 V

Output voltage from VDDIO33 supplied non-supply pins -0.3 3.6 V

Output voltage from VDDIO33_CIM supplied non-supply pins -0.3 3.6 V

Output voltage from VDDIO18_CIM supplied non-supply pins -0.3 1.98 V

Output voltage from VDDIORTC supplied non-supply pins -0.3 1.98 V

Page 33: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 33

Output voltage from USB_AVD33 supplied non-supply pins -0.3 3.6 V

Output voltage from CODEC_AVDD supplied non-supply pins -0.3 1.98 V

Output voltage from DSI_AVD18 supplied non-supply pins -0.3 1.98 V

Maximum ESD stress voltage, Human Body Model; Any pin to any supply pin, either polarity, or Any pin to all non-supply pins together, either polarity. Three stresses maximum.

2000 V

3.2 Recommended operating conditions

Table 3-2 Recommended operating conditions for power supplies

Symbol Description Min Typical Max Unit

VMEM VDDMEM voltage for LPDDR3 1.14 1.2 1.3 V

VDDMEM voltage for LPDDR2 1.08 1.2 1.32 V

VDDR DDR_VDD1 voltage 1.7 1.8 1.95 V

VDDRPLL DDRPLL voltage 1.62 1.8 1.98 V

VIO(1.8V) VDDIO voltage 1.71 1.8 1.89 V

VIO18 VDDIO18 voltage 1.71 1.8 1.89 V

VIO33 VDDIO33 voltage 3.135 3.3 3.465 V

VCIM33(3.3V) VDDIO33_CIM voltage, use as 3.3V 3.135 3.3 3.465 V

VCIM33(1.8V) VDDIO33_CIM voltage, use as 1.8V 1.71 1.8 1.89

VCIM18 VDDIO18_CIM voltage 1.71 1.8 1.89 V

VSD33(3.3V) VDDIO33_SD voltage, use as 3.3V 3.135 3.3 3.465 V

VSD33(1.8V) VDDIO33_SD voltage, use as 1.8V 1.71 1.8 1.89 V

VCORE VDD core voltage 0.9 0.9 1 V

VPLLVDD PLLVDD voltage 0.9 0.9 1 V

VPLLAVDD PLLAVDD voltage 1.71 1.8 1.89

VEFUSE AVDEFUSE voltage 1.71 1.8 1.89 V

VRTCIO18 VDDIORTC voltage 1.71 1.8 1.89 V

VRTC VDDRTC voltage 0.9 0.9 1

VUSB33 USB_AVD33 voltage 3.135 3.3 3.465 V

VUSB18 USB_AVD18 voltage 1.71 1.8 1.89

VUSB09 USB_AVD09 voltage 0.9 0.9 1 V

VCDC CODEC_AVDD voltage 1.71 1.8 1.89 V

VADC SADC_AVDD voltage 1.71 1.8 1.89 V

VCSI18 CSI_AVD18 voltage 1.62 1.8 1.98 V

VCSI09 CSI_AVD09 voltage 0.9 0.9 1 V

VDSI18 DSI_AVD18 voltage 1.71 1.8 1.89 V

VDSI09 DSI_AVD09 voltage 0.9 0.9 1 V

Table 3-3 Recommended operating conditions for

VDDIO/VDDIO33/VDDIO33_SD/VDDIO33_CIM/VDDIO33_SD/VDDIORTC supplied pins

Symbol Parameter Min Typical Max Unit

VIH18 Input high voltage for 1.8V I/O application 1.17 1.8 1.98 V

VIL18 Input low voltage for 1.8V I/O application –0.3 0 0.63 V

VIH33 Input high voltage for 3.3V I/O application 2.0 3.3 3.465 V

VIL33 Input low voltage for 3.3V I/O application –0.3 0 0.8 V

Table 3-4 Recommended operating conditions for others

Page 34: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 34

Symbol Description Min Typical Max Unit

TA Ambient temperature –40 85 C

3.3 DC Specifications

The DC characteristics for each pin include input-sense levels and output-drive levels and currents.

These parameters can be used to determine maximum DC loading, and also to determine maximum

transition times for a given load. All DC specification values are valid for the entire temperature range

of the device.

Table 3-5 DC characteristics for VREF

Symbol Parameter Min Typical Max Unit

VREF Reference voltage supply

0.49 0.5 0.51 VMEM

Table 3-6 DC characteristics for VDDIO/VDDIORTC supplied pins for 1.8V application

Table 3-7 DC characteristics for VDDIO33_SD supplied pins for 1.8V application

Symbol Parameter Min Typical Max Unit

VT Threshold point 0.82 0.89 0.97 V

VT+ Schmitt trig low to high threshold point 0.96 1.03 1.1 V

VT– Schmitt trig high to low threshold point 0.64 0.75 0.86 V

VTPU Threshold point with pull-up resistor enabled 0.81 0.88 0.97 V

VTPD Threshold point with pull-down resistor enabled 0.82 0.89 0.98 V

VTPU+ Schmitt trig low to high threshold point with pull-up resistor enabled

0.95 1.02 1.09 V

VTPU– Schmitt trig high to low threshold point with pull-down resistor enabled

0.63 0.75 0.85 V

VTPD+ Schmitt trig low to high threshold point with pull-down resistor enabled

0.96 1.05 1.11 V

VTPD– Schmitt trig high to low threshold point with pull-up resistor enabled

0.65 0.76 0.86 V

IL Input Leakage Current @ VI=1.8V or 0V ±10 μA

IOZ Tri-State output leakage current @ VI=1.8V or 0V ±10 μA

RPU Pull-up Resistor 60 89 137 kΩ

RPD Pull-down Resistor 61 104 196 kΩ

VOL Output low voltage 0.45 V

VOH Output high voltage 1.35 V

IOL Low level output current @ VOL(max) 11.1 18.2 25.6 mA

IOH High level output current @ VOH(min) 13.1 19.1 26.2 mA

Symbol Parameter Min Typical Max Unit

Page 35: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 35

Table 3-8 DC characteristics for VDDIO33_SD supplied pins for 3.3V application

VT Threshold point 0.76 0.94 1.24 V

VT+ Schmitt trig low to high threshold point 0.94 1.09 1.36 V

VT– Schmitt trig high to low threshold point 0.68 0.89 1.2 V

VTPU Threshold point with pull-up resistor enabled 0.74 0.92 1.22 V

VTPD Threshold point with pull-down resistor enabled 0.76 0.95 1.25 V

VTPU+ Schmitt trig low to high threshold point with pull-up resistor enabled

0.93 1.07 1.34 V

VTPU– Schmitt trig high to low threshold point with pull-down resistor enabled

0.66 0.88 1.18 V

VTPD+ Schmitt trig low to high threshold point with pull-down resistor enabled

0.95 1.1 1.388 V

VTPD– Schmitt trig high to low threshold point with pull-up resistor enabled

0.68 0.9 1.22 V

IL Input Leakage Current @ VI=1.8V or 0V ±10 μA

IOZ Tri-State output leakage current @ VI=1.8V or 0V ±10 μA

RPU Pull-up Resistor 33 59 91 kΩ

RPD Pull-down Resistor 34 61 108 kΩ

VOL Output low voltage 0.4 V

VOH Output high voltage 2.475 V

IOL Low level output current @ VOL(max)

(DS2,DS1,DS0) = 000 4.5 7.7 11.3 mA

(DS2,DS1,DS0) = 001 6.7 11.4 16.7 mA

(DS2,DS1,DS0) = 010 9 15.2 22.1 mA

(DS2,DS1,DS0) = 011 11.2 18.8 27.3 mA

(DS2,DS1,DS0) = 100 13.4 22.6 32.7 mA

(DS2,DS1,DS0) = 101 15.6 26.2 37.8 mA

(DS2,DS1,DS0) = 110 17.7 29.7 42.8 mA

(DS2,DS1,DS0) = 111 19.9 33.2 47.7 mA

IOH High level output current @ VOH(min)

(DS2,DS1,DS0) = 000 2.6 6.3 11.9 mA

(DS2,DS1,DS0) = 001 3.8 9.4 17.7 mA

(DS2,DS1,DS0) = 010 5.1 12.6 23.7 mA

(DS2,DS1,DS0) = 011 6.4 15.7 29.4 mA

(DS2,DS1,DS0) = 100 7.6 18.8 35.2 mA

(DS2,DS1,DS0) = 101 8.9 21.8 40.9 mA

(DS2,DS1,DS0) = 110 10.1 24.9 46.6 mA

(DS2,DS1,DS0) = 111 11.4 27.9 52.2 mA

Symbol Parameter Min Typical Max Unit

VT Threshold point 1.39 1.5 1.65 V

Page 36: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 36

VT+ Schmitt trig low to high threshold point 1.62 1.75 1.9 V

VT– Schmitt trig high to low threshold point 1.18 1.29 1.44 V

VTPU Threshold point with pull-up resistor enabled 1.36 1.48 1.64 V

VTPD Threshold point with pull-down resistor enabled 1.4 1.52 1.66 V

VTPU+ Schmitt trig low to high threshold point with pull-up resistor enabled

1.62 1.75 1.89 V

VTPU– Schmitt trig high to low threshold point with pull-down resistor enabled

1.16 1.28 1.43 V

VTPD+ Schmitt trig low to high threshold point with pull-down resistor enabled

1.64 1.77 1.91 V

VTPD– Schmitt trig high to low threshold point with pull-up resistor enabled

1.19 1.31 1.45 V

IL Input Leakage Current @ VI=1.8V or 0V ±10 μA

IOZ Tri-State output leakage current @ VI=1.8V or 0V ±10 μA

RPU Pull-up Resistor 34 51 81 kΩ

RPD Pull-down Resistor 35 51 88 kΩ

VOL Output low voltage 0.4 V

VOH Output high voltage 2.4 V

IOL Low level output current @ VOL(max)

(DS2,DS1,DS0) = 000 2.8 5.4 9.8 mA

(DS2,DS1,DS0) = 001 4.1 8.0 14.6 mA

(DS2,DS1,DS0) = 010 5.5 10.7 19.4 mA

(DS2,DS1,DS0) = 011 6.8 13.2 23.9 mA

(DS2,DS1,DS0) = 100 8.2 15.9 28.7 mA

(DS2,DS1,DS0) = 101 9.6 18.4 33.2 mA

(DS2,DS1,DS0) = 110 10.9 20.9 37.6 mA

(DS2,DS1,DS0) = 111 12.2 23.4 42.0 mA

IOH High level output current @ VOH(min)

(DS2,DS1,DS0) = 000 4.4 7.6 13.5 mA

(DS2,DS1,DS0) = 001 6.6 11.4 20.2 mA

(DS2,DS1,DS0) = 010 8.8 15.2 26.9 mA

(DS2,DS1,DS0) = 011 10.9 18.9 33.5 mA

(DS2,DS1,DS0) = 100 13.1 22.6 40.1 mA

(DS2,DS1,DS0) = 101 15.2 26.3 46.7 mA

(DS2,DS1,DS0) = 110 17.4 30.1 53.3 mA

(DS2,DS1,DS0) = 111 19.6 23.7 59.7 mA

Page 37: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 37

Table 3-9 DC characteristics for VDDIO33/VDDIO18 supplied pins for 3.3V application

Symbol Parameter Min Typical Max Unit

VT Threshold point 1.02 1.17 1.36 V

VT+ Schmitt trig low to high threshold point 1.22 1.34 1.5 V

VT– Schmitt trig high to low threshold point 0.96 1.13 1.33 V

VTPU Threshold point with pull-up resistor enabled 1 1.15 1.34 V

VTPD Threshold point with pull-down resistor enabled 1.03 1.19 1.38 V

VTPU+ Schmitt trig low to high threshold point with pull-up resistor enabled

1.21 1.32 1.47 V

VTPU– Schmitt trig high to low threshold point with pull-down resistor enabled

0.94 1.1 1.3 V

VTPD+ Schmitt trig low to high threshold point with pull-down resistor enabled

1.23 1.35 1.52 V

VTPD– Schmitt trig high to low threshold point with pull-up resistor enabled

0.97 1.14 1.34 V

IL Input Leakage Current @ VI=1.8V or 0V ±10 μA

IOZ Tri-State output leakage current @ VI=1.8V or 0V ±10 μA

RPU Pull-up Resistor 26 46 71 kΩ

RPD Pull-down Resistor 27 48 103 kΩ

VOL Output low voltage 0.4 V

VOH Output high voltage 2.4 V

IOL Low level output current @ VOL(max)

(DS2,DS1,DS0) = 000 4 6.3 8.9 mA

(DS2,DS1,DS0) = 001 6 9.4 13.3 mA

(DS2,DS1,DS0) = 010 8 12.5 17.6 mA

(DS2,DS1,DS0) = 011 9.9 15.5 21.8 mA

(DS2,DS1,DS0) = 100 11.9 18.6 26.1 mA

(DS2,DS1,DS0) = 101 13.9 21.6 30.2 mA

(DS2,DS1,DS0) = 110 15.8 24.5 34.2 mA

(DS2,DS1,DS0) = 111 17.7 27.4 38.1 mA

IOH High level output current @ VOH(min)

(DS2,DS1,DS0) = 000 5.9 9.3 14.2 mA

(DS2,DS1,DS0) = 001 8.8 13.9 21.2 mA

(DS2,DS1,DS0) = 010 11.7 18.5 28.2 mA

(DS2,DS1,DS0) = 011 14.6 23.1 35.2 mA

(DS2,DS1,DS0) = 100 17.5 27.7 42.2 mA

(DS2,DS1,DS0) = 101 20.3 32.2 49.1 mA

(DS2,DS1,DS0) = 110 23.2 36.8 56 mA

(DS2,DS1,DS0) = 111 26.1 41.3 62.8 mA

Page 38: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 38

Table 3-10 DC characteristics for VDDIO33_CIM/VDDIO18_CIM supplied pins for 3.3V

application

Symbol Parameter Min Typical Max Unit

VT Threshold point 0.76 0.94 1.24 V

VT+ Schmitt trig low to high threshold point 0.94 1.09 1.37 V

VT– Schmitt trig high to low threshold point 0.68 0.89 1.21 V

VTPU Threshold point with pull-up resistor enabled 0.74 0.93 1.22 V

VTPD Threshold point with pull-down resistor enabled 0.76 0.95 1.26 V

VTPU+ Schmitt trig low to high threshold point with pull-up resistor enabled

0.93 1.08 1.34 V

VTPU– Schmitt trig high to low threshold point with pull-down resistor enabled

0.67 0.88 1.18 V

VTPD+ Schmitt trig low to high threshold point with pull-down resistor enabled

0.95 1.1 1.38 V

VTPD– Schmitt trig high to low threshold point with pull-up resistor enabled

0.68 0.9 1.22 V

IL Input Leakage Current @ VI=1.8V or 0V ±10 μA

IOZ Tri-State output leakage current @ VI=1.8V or 0V ±10 μA

RPU Pull-up Resistor 33 59 91 kΩ

RPD Pull-down Resistor 34 61 108 kΩ

VOL Output low voltage 0.4 V

VOH Output high voltage 2.4 V

IOL Low level output current @ VOL(max)

(DS1,DS0) = 00 2.8 5.4 9.8 mA

(DS1,DS0) = 01 4.1 8.0 14.6 mA

(DS1,DS0) = 10 5.5 10.6 19.3 mA

(DS1,DS0) = 11 6.8 13.2 23.8 mA

IOH High level output current @ VOH(min)

(DS1,DS0) = 00 4.4 7.6 13.5 mA

(DS1,DS0) = 01 6.6 11.4 20.2 mA

(DS1,DS0) = 10 8.8 15.2 26.9 mA

(DS1,DS0) = 11 10.9 18.9 33.6 mA

Page 39: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 39

Table 3-11 DC characteristics for VDDIO33_CIM/VDDIO18_CIM supplied pins for 1.8V

application

Symbol Parameter Min Typical Max Unit

VT Threshold point 0.85 0.95 1.08 V

VT+ Schmitt trig low to high threshold point 0.97 1.06 1.17 V

VT– Schmitt trig high to low threshold point 0.7 0.82 0.94 V

VTPU Threshold point with pull-up resistor enabled 0.85 0.95 1.07 V

VTPD Threshold point with pull-down resistor enabled 0.86 0.96 1.09 V

VTPU+ Schmitt trig low to high threshold point with pull-up resistor enabled

0.97 1.06 1.16 V

VTPU– Schmitt trig high to low threshold point with pull-down resistor enabled

0.69 0.81 0.93 V

VTPD+ Schmitt trig low to high threshold point with pull-down resistor enabled

0.98 1.07 1.18 V

VTPD– Schmitt trig high to low threshold point with pull-up resistor enabled

0.7 0.82 0.95 V

IL Input Leakage Current @ VI=1.8V or 0V ±10 μA

IOZ Tri-State output leakage current @ VI=1.8V or 0V ±10 μA

RPU Pull-up Resistor 33 59 90 kΩ

RPD Pull-down Resistor 34 61 95 kΩ

VOL Output low voltage 0.45 V

VOH Output high voltage 1.4 V

IOL Low level output current @ VOL(max)

(DS1,DS0) = 00 4.5 7.6 11.2 mA

(DS1,DS0) = 01 6.7 11.4 16.6 mA

(DS1,DS0) = 10 8.9 15.1 22 mA

(DS1,DS0) = 11 11.1 18.7 27.2 mA

IOH High level output current @ VOH(min)

(DS1,DS0) = 00 2.6 6.3 11.9 mA

(DS1,DS0) = 01 3.8 9.5 17.8 mA

(DS1,DS0) = 10 5.1 12.6 23.7 mA

(DS1,DS0) = 11 6.4 15.7 29.4 mA

Page 40: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 40

3.4 Audio codec

Measurement conditions: T = 25°C, AVDD = 1.8 V, DVDD = 0.9V, 1KHz Sine Input, FS = 48KHZ

Parameter Test conditions Min. Type Max. Unit

Analog Supply 1.62 1.8 1.98 V

Digital Supply 0.81 0.9 0.99 V

Temperature -40 125

ADC

SNR A-weighted 92

THD -81

Bias Voltage 0.5*A

VDD

0.85*AVDD

V

Bias Current 3 mA

Mic Gain 0 20 dB

ALC Gain -18 28.5 dB

Gain Step Size 1.5 dB

input Resistance 8 88 KΩ

input Capacitance 10 pF

DAC

SNR A-weighted 93 dB

THD

60mWΩ -70 dB

30mWΩ -75 dB

600Ω -80 dB

Programmable Gain -39 6 dB

Gain Step Size 1.5

Output Resistance 1 Ω

Output Capacitance 20 pF

Power Supply Rejection

1KHZ 55 dB

Power Consumption

Standby 0.1 mA

Page 41: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 41

3.5 Power On, Reset and BOOT

3.5.1 Power-On Timing

The external voltage regulator and other power-on devices must provide the X2000 processor with a

specific sequence of power and reset to ensure proper operation. Figure 3-1 shows this sequence

and Table 3-12 gives the timing parameters. Following are the name of the power.

VDDIORTC: VDDIORTC

VDDRTC: VDDRTC

VDDIO18: all other 1.8V power supplies, include VDDIO, VDDIO18, PLLAVDD, VDDIO18_CIM,

CSI_AVD18, DSI_AVD18, USB_AVD18, CODEC_AVDD, SADC_AVDD, DDRPLL, DDR_VDD1

VMEM: VDDMEM

VDDIO33: all 3.3V power supplies, include VDDIO33, VDDIO33_CIM, VDDIO33_SD,

AVDUSB33

VDD: all other 0.9V power supplies: VDD, PLLVDD, DSI_AVD09, CSI_AVD09, USB_AVD09

AVDEFUSE: AVDEFUSE

Table 3-12 Power-On Timing Parameters

Symbol Parameter Min Max Unit

tD_VDDRTC Delay between VDDIORTC arriving 50% to VDDRTC

arriving 90%[1] 0 – ms

tD_VDDIO18 Delay between VDDIORTC arriving 50% to VDDIO18

arriving 50%[1] 0 – ms

tD_VMEM Delay between VDDIO18 arriving 90% to VMEM to be turned on

0 – ms

tD_VDDIO33 Delay between VDDIO18 arriving 90% to VDDIO33 to be turned on

20 – us

tD_VDD Delay between VDDIO18 arriving 50% to VDD arriving 90%[1]

0 – ms

tD_PPRST_ Delay between all power rails get stable and power-on reset PPRST_ de-asserted[2]

TBD[3] – ms[2]

tD_AVDEFUSE Delay between PPRST_ finished and E-fuse programming power apply

0 – ms

tH_AVDEFUSE E-fuse programming time – 200 ms

NOTES:

1 The power rails have same skew.

2 The PPRST_ must be kept at least 1ms. After PPRST_ is deasserted, the corresponding

chip reset will be extended at least 10ms.

3 It must make sure the EXCLK is stable and all power(except AVDEFUSE) is stable.

Page 42: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 42

Figure 3-1 Power-On Timing Diagram

3.5.2 Reset procedure

There 3 reset sources: 1 PPRST_ pin reset; 2 WDT timeout reset; and 3 hibernating reset when

exiting hibernating mode. After reset, program start from boot.

1 PPRST_ pin reset.

This reset is trigged when PPRST_ pin is put to logic 0. It happens in power on RTC power

and RESET-KEY pressed to reset the chip from unknown dead state. The reset end time is

about 10ms (512 clock whose frequence is exclk/512) after rising edge of PPRST_.

2 WDT reset.

This reset happens in case of WDT timeout.

3 Hibernating reset.

This reset happens in case of wakeup the main power from power down. The reset keeps for

about 125ms as default and can be programed up to 1s, plus 10ms (512 clock whose

frequence is exclk/512), start after WKUP_ signal is recognized.

After reset, all GPIO shared pins are put to GPIO input function,except JTAG relate TCK/TMS/TDI

/TDO which reset to function mode, and most of their internal pull-up/down resistor are set to on. The

PWRON is output 1. The oscillators are on.

VDDIO18

VDDIO33

VDD

VMEM

VDDIORTC

VDDRTC

PPRST_

AVDEFUSE

Page 43: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 43

3.5.3 BOOT

The boot sequence of the X2000 is controlled by boot_sel [2:0], GPIO PE27/26/25 PAD

Table 3-13 Boot Configuration of X2000

boot_sel[2] boot_sel[1] boot_sel[0] Boot configuration

0 0 0 SFC0@PE 3.3v

0 0 1 MSC2@PE 3.3v

X 1 0 USB

0 1 1 Nor

1 0 0 SFC0@PD 1.8v

1 0 1 MSC0@PD 1.8v

1 1 1 MSC2@PE 1.8v

X: means "Don't Care"

After reset, the boot program on the internal boot ROM executes as follows:

1 Disable all interrupts, prepare the program running environment.

2 Read and save efuse values, efuse values to determine whether to improve system clock

frequency, set MSC 4bit transmission data, gpio HI-Z, USB eye diagram.

3 Initialize clock and read boot_sel[2:0] to determine the boot method.

4 If it is boot from MMC/SD card at MSC0/MSC2, its function pins MSC_D0, MSC_CLK,

MSC_CMD are initialized, the boot program loads the 24KB data from MMC/SD card to

SRAM and jump to it. Only one data bus which is MSC_D0 is used. The clock EXTCLK/122

is used initially. When reading data, the clock EXTCLK/4 is used. If the msc_bus_width_4

efuse values is set to 1, function pins MSC_D0, MSC_D1, MSC_D2, MSC_D3 are initialized

for 4bit data transmission.

5 If it is boot from USB, a block of code will be received through USB cable connected with

host PC and be stored in tcsm. Then branch to this area in tcsm.

6 If it is boot from SPI nor/nand at SFC, its function pins SFC_CLK, SFC_CE, SFC_DR,

SFC_DT, SFC_WP, SFC_HOL are initialized, the boot program loads the spl size bytes code

from nor/nand to SRAM and jump to it.

NOTE: The X2000's SRAM is 32KB, its address is from 0xB2400000 to 0xB2408000.

Page 44: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 44

Page 45: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 45

4 Packaging Information

4.1 Overview

X2000 processor is offered in 270-pin BGA package, which is 12mm x 12mm x 1.2mm outline, 18 x

18 matrix ball grid array and 0.65mm ball pitch, show in Figure 4-1.

4.2 Device Dimensions

Page 46: X2000 AIoT Application Processor

Lumissil Microsystems – www.lumissil.com CONFIDENTIAL - 46

Figure 4-1 X2000 package outline drawing

Notes:

1. BALL PAD OPENING: 0.270mm;

2. PRIMARY DATUM C AND SEATING PLANE ARE THE SOLDER BALLS;

3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER,PARALLEL

TO PRIMARY DATUM C;

4. SPECIAL CHARACTERISTICS C CLASS: bbb, ddd;

5. THE PATTERN OF PIN 1 FIDUCIAL IS FOR REFERENCE ONLY;

6. BAN TO USE THE LEVEL 1 ENVIRONMENT-RELATED SUBSTANCES;

4.3 Solder Ball Materials

Both the top (joint) and bottom solder ball materials of X2000 are SAC125.

4.4 Moisture Sensitivity Level

X2000 package moisture sensitivity is level 3.