Wyler Technical Document

100
INTRODUCTION INTRODUCTION to INCLINATION MEASUREMENT to INCLINATION MEASUREMENT INCLINATION MEASUREMENT INCLINATION MEASUREMENT Introduction in INCLINATION MEASUREMENT

Transcript of Wyler Technical Document

INTRODUCTION INTRODUCTION to

INCLINATION MEASUREMENTto

INCLINATION MEASUREMENTINCLINATION MEASUREMENTINCLINATION MEASUREMENT

Introduction in INCLINATION MEASUREMENT

P ibl li ti ith i li ti i i t tP ibl li ti ith i li ti i i t tPossible applications with inclination measuring instrumentsPossible applications with inclination measuring instruments

STRAIGHTNESSSTRAIGHTNESS INCLINATIONINCLINATION RECTANGULARITYRECTANGULARITYSTRAIGHTNESSGERADHEIT

STRAIGHTNESSGERADHEIT

INCLINATIONNEIGUNG

INCLINATIONNEIGUNG

RECTANGULARITYRECHTWINKLIGKEITRECTANGULARITY

RECHTWINKLIGKEIT

PARALLELISMPARALLELITÄTPARALLELISMPARALLELITÄT

FLATNESSEBENHEITFLATNESSEBENHEIT

MONITORINGÜBERWACHUNG

MONITORINGÜBERWACHUNG

Applications

VialsPrecision Spirit Levels for small angles

VialsPrecision Spirit Levels for small angles

Vi l / CLINOMETERVi l / CLINOMETER0 Vials / CLINOMETERAdjustable Precision Spirit Levels for anglesup to 360 degrees (CLINOMETERS)

Vials / CLINOMETERAdjustable Precision Spirit Levels for anglesup to 360 degrees (CLINOMETERS)

0

180

Capacitive systemsAnalogue systems

MINILEVEL / LEVELTRONIC / LEVELMATIC

Capacitive systemsAnalogue systems

MINILEVEL / LEVELTRONIC / LEVELMATIC/ O C / CDigital systems

ZEROTRONIC / CLINOTRONIC

/ O C / CDigital systems

ZEROTRONIC / CLINOTRONICC1 C2

Inductive systeme with pendulumsAnalogue systems

NIVELTRONIC

Inductive systeme with pendulumsAnalogue systems

NIVELTRONICDigital systems

ZEROMATIC 50Digital systems

ZEROMATIC 50

Grundsysteme

Vial for a standard precision spirit levelVial for a standard precision spirit level

Ground vial for precision spirit levelsGround vial for precision spirit levelsGround vial for precision spirit levelsradius = 5 ... 200 meterGround vial for precision spirit levelsradius = 5 ... 200 meter

Bent vial (low cost version)Bent vial (low cost version)

RR

Bent vial (low cost version)radius = 0.5 ... 1 MeterBent vial (low cost version)radius = 0.5 ... 1 Meter

VIALS

RR

Precision Spirit Levels WYLERPrecision Spirit Levels WYLERPrecision Spirit Levels WYLERPrecision Spirit Levels WYLER

Horizontal Spirit LevelHorizontal Spirit Level

Precision Spirit Levelwith magnetic insertsPrecision Spirit Levelwith magnetic inserts

Precision Frame Spirit LevelPrecision Frame Spirit LevelPrecision Frame Spirit LevelPrecision Frame Spirit LevelClinometer 80

0 ... 360°Clinometer 80

0 ... 360°

Spirit Levels I

NEW!!! Precision Spirit Levels WYLER „SPIRIT“NEW!!! Precision Spirit Levels WYLER „SPIRIT“NEW!!! Precision Spirit Levels WYLER „SPIRITNEW!!! Precision Spirit Levels WYLER „SPIRIT

Most important advantages of the t

Most important advantages of the tnew concept:

1. Simple adjustment system2. Excellent view on the vial3 M d d i

new concept:

1. Simple adjustment system2. Excellent view on the vial3 M d d i3. Modern design4. Fully in compliance to

DIN standards5. Stability of twist to +/- 5 degrees6 C f t bl h dli d t

3. Modern design4. Fully in compliance to

DIN standards5. Stability of twist to +/- 5 degrees6 C f t bl h dli d t6. Comfortable handling due to

the use of natural material6. Comfortable handling due to

the use of natural material

Spirit Levels II „SPIRIT“

Most common units used in inclination measurement/Most common units used in inclination measurement/description of an angle

αHeight H= 1µm1µm

x 10001

x 10001Basis length

1m1m x 1000 = 1kmx 1000 = 1km

= 1mm= 1mm

1. Angle α, e.g. in xx°xx‘xx‘‘ or in mRad

2 Height h refering to a basis length e g mm/m or µm/m2. Height h refering to a basis length, e.g. mm/m or µm/m

Example: 1µm/mExample: 1µm/m = 1mm/km= 1mm/km

mm / m ?

Most common units used in inclination measurementMost common units used in inclination measurementXX° XX' Degrees and ArcminXX' XX'' Arcmin and ArcsecXX , X µm/m 1 µm equivalent to 1/1'000'000 m

XX° XX' Degrees and ArcminXX' XX'' Arcmin and ArcsecXX , X µm/m 1 µm equivalent to 1/1'000'000 mXXX mRad 1 mRad equivalent to 206,26 Arcsec

1 Rad is equivalent to 57,29 °1 R d i i l t t 206 26 A

XXX mRad 1 mRad equivalent to 206,26 Arcsec

1 Rad is equivalent to 57,29 °1 R d i i l t t 206 26 A1 mRad is equivalent to 206,26 Arcsec

1 Degree is equivalent to approx. 17,45 mm/m or 17,45 mRad1 Arcsec is equivalent to approx. 4,85 µm/m

1 mRad is equivalent to 206,26 Arcsec1 Degree is equivalent to approx. 17,45 mm/m or 17,45 mRad

1 Arcsec is equivalent to approx. 4,85 µm/m

Display Minilevel "classic" in digits equivalent to µm/mDisplay Minilevel "NT" in units like mm/m and Arcsec

Display Minilevel "classic" in digits equivalent to µm/mDisplay Minilevel "NT" in units like mm/m and Arcsec

XX° XX'X,XXXX°XX,XX°XX'XX''

Units for +CLINO PLUS+ / CLINO 2000

UNITS

XX,XX mm/m,XXXX mm/mXX,XX mRad

Electronic inclination measurement in generalElectronic inclination measurement in general

Purpose of the instrument:Transformation of a mechanically measured value into an electronic signaly g

Existing SystemsInductive Systems (Niveltronic)y ( )Capacitive Systems (Minilevel, Leveltronic, Zerotronic, Clinotronic)Resistive Systems (e.g. by means of vials based on electrolysis)Laser

Capacitive Sensors:An inclination of 1 μm/m causes a pendulum movement of 10 up to 20 nm

Thickness of a hair

approx. 50 up to 70 μm/m

Thickness of a hair

approx. 50 up to 70 μm/m

(Measuring the thickness of a hair as an excercise)(Measuring the thickness of a hair as an excercise)

Basics

ExerciseExercise"diameter of a hair" ØHair ?

,044 ,430

140mmInstrument: Minilevel 1µm/m

Base length: 150mm

Heigth H = (+430 - +044) x sensitivity

H

Diameter hair ?

Di t f h i D

140mm1000mm

Diameter of a hair DH:

Diameter hair DH =(value 2 - value 1) x sens. instrument x distance “base ... hair”

base length 1000 mm

Diameter hair DH =base length 1000 mm

(+430 - +044) x 1 µm/m x 140 mm= 54 µm

Hair

Electronic Inclinometers WYLERElectronic Inclinometers WYLERElectronic Inclinometers WYLERElectronic Inclinometers WYLER

Summary ofElectronic Inclinometers

Overview el. instruments

Analogue and digital measuring systemsAnalogue and digital measuring systems

Analogue measuring system Digital measuring system

Measuring value:Voltage

Output

Measuring value:Voltage

Output

Measuring value :Frequency

Output

Measuring value :Frequency

OutputOutputin mV / unit (digit)

Outputin mV / unit (digit)

Outputfrequencies f1 and f2

Format RS485

Outputfrequencies f1 and f2

Format RS485

MINILEVEL „classic“LEVELTRONIC „classic“

NIVELTRONIC

CLINOTRONIC 15CLINO 2000

ZEROTRONIC

MINILEVEL „NT“LEVELTRONIC „NT

analogue / digital

NIVELTRONICLEVELMATIC

Sine, tangent and arcusSine, tangent and arcusin accordance with angles

tg α

arc αα

sin αI t tI t tImportant:1 µRad = 1 µm/mis valid for small angles only

Important:1 µRad = 1 µm/mis valid for small angles only

sin α tg α arc α

α = 0 5° 0 0087266 0 0087269 0 0087266α = 0,5 0,0087266 0,0087269 0,0087266

α = 45° 0,70711 1,00 0,78540

Einheitskreis

Linearity SensitivityLinearity

Angle

Sensitivitymechanical

input

10µm/m20µm/m

Measuredcharacteristic

Nominalcharacteristic

1µm/m

5µm/m

characteristicmaximumerror of linearity

Angle OutputAngle

DIN 2276Measured value below half the measuring rangeMaximum error 1% of the measured value

DIN 2276Measured value below half the measuring rangeMaximum error 1% of the measured value

Output(mV, digits, ...)

Maximum error 1% of the measured value,at least 0,05% of the measuring range

For measured values above half the measuring range

Maximum error 1% of the measured value,at least 0,05% of the measuring range

For measured values above half the measuring rangerangeMaximum error f max = 0,01 (2 x I Mv I - 0,5 x Mr)rangeMaximum error f max = 0,01 (2 x I Mv I - 0,5 x Mr)

Linearity

Part 2Part 2Part 2

I li ti i i t t

Part 2

I li ti i i t tInclination measuring instrumentsof

Inclination measuring instrumentsof

analogue (and digital)technique

analogue (and digital)techniquetechniquetechnique

Analogue Systems / TITEL

NIVELTRONIC 50NIVELTRONIC 50

Range II: +/- 0.150 mm/mRange I: +/- 0.750 mm/mRange II: +/- 0.150 mm/mRange I: +/- 0.750 mm/m

Excellent zero point stabilityExcellent zero point stability

induktiver

L1 L2

U1 U2

induktiverMesstaster

Measuring priciple:Pendulum with inductiveprobe system

Niveltronic

Analogue measuring priciple

t6 Vpp 2,9 kHz

Analogue measuring priciple

Amplifier Rectifier IntegratorU outUa Ug

tU1 U2

-2...0...+2 V DC

Pendulum closer to CLUa Ug Uout

Pendulum in neutral positionU U U tUa Ug Uout

Ua Ug UoutPendulum closer to CR

Prinzip I

Ua Ug Uout

Analogue / digital measuring principleAnalogue / digital measuring principle

Amplifier Rectifier IntegratorU outUa Ug4 Vpp 2.9kHz

U2

U1

t

U1 U2

-2...0...+2 V DC

U outA

U2

t

out

RS 485

Pendulum closer to CL

Ua Ug Uout AD

Pendulum closer to CL

Pendulum in neutral position

Ua Ug Uout

Ua Ug UoutPendulum closer to CR

Prinzip II ML/LT NT

Ua Ug

Form of the pendulumForm of the pendulum

Variables depending on the measuring rangeg g

- Thickness of pendulum50 ... 100μm

- Angle of spiral300 ... 630°

Form Pendulum

e.g. Pendulum with 420°

Movement of the pendulum depending on the angleMovement of the pendulum depending on the angle

X = Gravitation of pendulumY = sin α x XZ = movement of pendulum

X = Gravitation of pendulumY = sin α x XZ = movement of pendulum

Sine of angle in a range from 0... 45 degrees

αX

Y

Z

(Z)sin α

(Z)sin α0,0030

0,60,81,0

Y

0,0015

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90

0,20,4

1 2 3 4 5 6 7 8 9Arcmin degrees

10 20 30 40 50 60 70 80 90

Sine of angle in a range from 0...10 Arcmin

Pendelauslenkung

Movement of the pendulum depending on the angleMovement of the pendulum depending on the angle

X = Gravitation of pendulumY = sin α x XZ = movement of pendulum

X = Gravitation of pendulumY = sin α x XZ = movement of pendulum

αX

Y

Z

Movement of the pendulumin direction Y e.g. Minilevel A10:

Movement of the pendulumin direction Y e.g. Minilevel A10:

Y

For an inclination of 1µm/m ... 10 nm

For an inclination of 1µm/m ... 10 nm

Pendelauslenkung II

Reversal Measurement Interpretation of the results:Reversal MeasurementZero Point deviation

of the instrument

N = (A + B) / 2

Inclination of the measuredsurface in direction X

N = (A B) / 2

Interpretation of the results:

Measurement A Measurement B N = (A + B) / 2

The Zero Point deviationis +3 equivalent to ,3 digits

N = (A - B) / 2

The surface is absolutely horizontal

Measurement A Measurement B

is 3 equivalent to ,3 digitsN=[(+3) + (+3)] / 2 = +3

horizontalL = [(+3) - (+3)] / 2 = 0

The instrument has noZero Point deviation

N=[(-12) + (+12)] / 2 = 0

The measured surface is declining by -12 digits

L =[(-12) - (+12)] / 2 = -12

The Zero Point deviation The measured surface isThe Zero Point deviationis -3 equivalent to '3 Digits

N=[(+7) + (-13)] / 2 = -3

The measured surface is rising by +10 Digits

L =[(+7) - (-13)] / 2 = +10

Reversal measurement

MINILEVEL "classic" / A10MINILEVEL classic / A10

Position “0”: Instrument turned offP iti “B” B tt h k ( i i 700)

,1204

Position “B”: Battery check (minimum 700)Position “I”: Value effective = display in digits

x factor 10 x sensitivityPosition “II”: Value effective = display in digits

x sensitivity1 Digit = 1mV

1 µm/m 5 µm/m 10 µm/mIn position “I” 12’040 µm/m 60’200 µm/m 120’400 µm/mIn position “II” 1204 µm/m 6020 µm/m 12’040 µm/m

y

In position “II” 1204 µm/m 6020 µm/m 12’040 µm/m

1 µm/m 5 µm/m 10 µm/mSensitivities MINILEVEL / 1 Digit = 1 mV

1 µm/m 5 µm/m 10 µm/mIn position “I” 10 µm/m 50 µm/m 100 µm/mIn position “II” 1 µm/m 5 µm/m 10 µm/m

ML Overview

MINILEVEL "classic" / A10MINILEVEL classic / A10

005 means +5 Digits,005 means +5 Digits

Position II: Measured value = + 5 digits x sensitivity

Position I: Measured value = + 5 digits x005 Position I: Measured value = + 5 digits x sensitivity x 10

,005

'125 means -125 Digitsg

Position II: Measured value = - 125 digits x sensitivity

Position I: Measured value = - 125 digits xgsensitivity x 10`125

ML Overview

LEVELTRONIC "classic" / A40LEVELTRONIC classic / A40

'1204LEVELMETER

A B OUT

1 µm/m 5 µm/m 10 µm/mDisplay - 1204 µm/m - 6020 µm/m - 12040 µm/mDisplay 1204 µm/m 6020 µm/m 12040 µm/m

1 µm/m 5 µm/m 10 µm/mSensitivities MINILEVEL / 1 digit = 1 mV

1 µm/m 5 µm/m 10 µm/mDisplay 1 µm/m 5 µm/m 10 µm/m

LT Overview

LEVELTRONIC "classic" with Levelmeter 25,LEVELTRONIC classic with Levelmeter 25,Differential measurement

LevelmeterMeasuring direction Levelmeter

LEVELMETER

Measuring instrument

'1204

A B OUTMeasuring instrument

Redcable

Grey cable

Reference instrument

Grey cable

LT Overview

MINILEVEL “NT" / A11MINILEVEL NT / A111 µm/m: 5 µm/m 10 µm/m

Range 1: +/- 20 mm/m +/- 100 mm/m +/- 200 mm/mRange 2: +/- 2 mm/m +/- 10 mm/m +/- 20 mm/m

Output: 1mV / 1µm/m 1mV / 5µm/m 1mV / 10µm/m

or Angle in µm/m or Arcsec (Format RS485)

M

Messen / Measuring

Aus/OffWYLER AG SWITZERLAND

M+

Einstellung MessbereichChanging Range

Justierung NullpunktAdjustment ZeroRange II mm/m

MINILEVEL NT

M- + / -

+ / -

ML NT Display

Changing RangeMINILEVEL NT / > 5 sec> 60 min

Display / OutputDisplay / Output

MINILEVEL „classic“

Output: +/- 2000 mV

MINILEVEL NT“1 digit =LM C25

LEVELMETER

Display : Display :

MINILEVEL „NTg1 mV Output:

+/- 2000 mV

'1204

A B OUT

Range II: +/- 2000 digitsRange I: +/- 2000 digitsRange II: +/- 2000 digitsRange I: +/- 2000 digits and / or

Display: Range II: Angle in µm/m or ArcsecR I A l i / A

Display: Range II: Angle in µm/m or ArcsecR I A l i / A

Angle in format RS485

Display/Output

Range I: Angle in µm/m or ArcsecRange I: Angle in µm/m or Arcsec LM2000

MINILEVEL “NT" / A11MINILEVEL “NT" / A11MINILEVEL NT / A11MINILEVEL NT / A11

WYLERSEAL-TEC R

LCD-Print

Processor-+/-2V DC

orPrint RS485

ML NT Display

Sensor with pendulum / N2 (nitrogene)

MINILEVEL NT and LEVELTRONIC NTMINILEVEL NT and LEVELTRONIC NT

The new productline MINILEVEL NT / LEVELTRONIC NT is well suited fori i t f ll lprecision measurements of small angles.

- Large LCD digital display, two sensitivities can be selected(MINILEVEL NT only)

- Precise zero point adjustment by using the push buttons

MINILEVEL NT

j y g- Rugged precision aluminium housing for protecting against

external influences - State of the art digital technology combined with the use of

modern electronic components allows signal output i di it l d l fin digital and analogue form

- Possibility of connection to a Levelmeter C25 or Levelmeter 2000, as well as to the Leveladapterset 2000combined with the flatness measurement software “WYLER LEVELSOFT”WYLER LEVELSOFT

- Power supply with common 1,5 V-Batteries- Fulfils the CE requirements (immunity against

electromagnetic smog) - All standard measuring bases are available

LEVELTRONIC NT

g- Available with calibration in Arcsec or µm/m

ML vs LT

Choice of the ideal instrumentChoice of the ideal instrument- Installation and adjustment of machines- Measurement of surface flatness- No interference by magnetic

- Installation and adjustment of machines- Measurement of surface flatness- No interference by magnetic

MINILEVEL " l i "

fields (Electric motors etc.)- Highly shock resistant- Integrated display- 2 ranges of measurement, useful

fields (Electric motors etc.)- Highly shock resistant- Integrated display- 2 ranges of measurement, useful

MINILEVEL "classic" for coarse adjustmentfor coarse adjustment MINILEVEL "NT"

- Installation and adjustment of machines- No interference by magnetic

fields (Electric motors etc.)- Highly shock resistant

- Installation and adjustment of machines- No interference by magnetic

fields (Electric motors etc.)- Highly shock resistantg y- External display (Levelmeter)- More accurately than Minilevel when

differential mode is applied- Measurement of surface flatness

g y- External display (Levelmeter)- More accurately than Minilevel when

differential mode is applied- Measurement of surface flatness LEVELTRONIC "NT"

LEVELTRONIC "classic"

Auswahl ML-LT

LEVELTRONIC NT

WYLER PROGRAM LEVELSOFT / Introduction

Line / StraightnessLine / Straightness

Parallelswith/without twist

Parallelswith/without twist

Flatness WYLER Standardand U-Jack

Flatness WYLER Standardand U-Jack

Introduction SW LEVELSOFT

RectangularityRectangularity

Adjustment of Measuring resultsj g

The following methods of adjustments are used:

Adjustment - End points methodAdjustment - End points methodAdjustment End points method- ISO1101- Linear regression

Adjustment End points method- ISO1101- Linear regression

Example: Measurement of a line

+6Linear

0

-2

+2

+4regression9.5µm

-6

-4 End points10µmISO 1101

9µm

Adjustment ISO1101 Line

Adjustment of Measuring resultsj g

The following methods of adjustments are used:

Adjustment End points method

Example: Measurement of a line

+6

0

-2

+2

+4

-6

-4 End points10µm

Adjustment ISO1101 Line

Adjustment of Measuring resultsj g

The following methods of adjustments are used:

Adjustment ISO1101

Example: Measurement of a line

+6

0

-2

+2

+4

-6

-4ISO 1101

9µm

Adjustment ISO1101 Line

Adjustment of Measuring resultsj g

The following methods of adjustments are used:

Adj t t Li iAdjustment Linear regression

Example: Measurement of a line

+6Linear

0

2

+2

+4

Linearregression

9.5µm

-2

-6

-4

Adjustment ISO1101 Line

Measuring a lineMeasuring a line(as preparation for flatnessmeasurement)SW WYLER according to ISO1101

Moving direction '1204LEVELMETER

A B OUT

Example:Sensitivity of instrument: 1 µm/mBase length: 200 mmStep length: 180 mm

- + + ++16 +2 -4 -2 +7-4

Maximum error:

+16 +2 -42

+7

Maximum error:

13,5 µm x 180 mm1000 mm

= 2,43 µm =13,5µm0

-2

(reduced to the step length of 180 mm)-4

Linienmessung

Measuring a lineMeasuring a line(as preparation for flatness measurement)

Moving direction

- -4 Remark:When using theWYLER-Software for

0.72 µm

WYLER-Software formeasuremnt the effective value will be read in

- 4 µm/m

180 mm

Linienmessung II

1000 mm

Measurement of two guide waysg yExercise

Prosedure:1. Measuring the reference line2 Measuring the parallel guide way2. Measuring the parallel guide way3. Measuring the transversal lines

Remarks:The reliability of the measurement may be judged by the resulting closure error

Parallel guide way

Reference line

Vermessung von Führungsbahnen

Measurement of 90° angles ongmeasuring bases and workpieces

1 2

αα

+ - + -

2 1Referenz

+ -

+ -+ -

+ -2 1

B AD C

Correction = C + D2

A + B2-

α αReferenz

+ - + -

2 1

1 2

Referenz

B A

Vermessung von Messbasen und rechten Winkeln

Measurement of a 90° anglegExercise:

4µm 6µm

Vermessung eines rechten Winkels

Measurement of a 90° anglegwith Software LEVELSOFT

1. Step: Determining the angular error of the instrument using a master square with parallel sides

1. Step: Determining the angular error of the instrument using a master square with parallel sidessquare with parallel sidessquare with parallel sidesA B C D

Angular error = C + D2

A + B2

-

2. Step: Measurement of the 90 deg. angle of the object / 4 different possibilities2. Step: Measurement of the 90 deg. angle of the object / 4 different possibilities

1 21

12

2

Referenz

The Wyler LEVELSOFT is leading the way through the different software menus

Vermessung eines rechten Winkels

1

1

2

2

Measurement of a 90° anglegwith Software LEVELSOFT

3. Step: Alignment of the measuring object and determining the error 3. Step: Alignment of the measuring object and determining the error

a) Alignment of the reference line according to ENDPOINTSa) Alignment of the reference line according to ENDPOINTS

ANGLE / ENDPOINTS

Th f th d li i hTh f th d li i h

ANGLE / ENDPOINTS

0.3 µm

0 2 µm

0.4 µm

0.5 µm

The error of the second line is shown according to the various alignment methods:

- ISO 1101- ENPOINTS

The error of the second line is shown according to the various alignment methods:

- ISO 1101- ENPOINTS

0.2 µm

0.1 µm

0,0 µm

ERROR REFERENCE LINE 0.6 µm ENPOINTS- LINEAR REGRESSION

ENPOINTS- LINEAR REGRESSION

µ

ERROR 2ND LINE BASED ON ISO1101 0.6 µm

END POINTS 0.2 µm

LINEAR REGRESSION 0.1 µm

Vermessung eines rechten Winkels

CORRECTION OF INSTRUMENT -2,58 µm/m

Measurement of a 90° anglegwith Software LEVELSOFT

3. Step: Alignment of the measuring object and determining the error 3. Step: Alignment of the measuring object and determining the error

b) Alignment of the reference line according to ISO 1101b) Alignment of the reference line according to ISO 1101

ANGLE / ISO1101

Th f th d li i hTh f th d li i h

ANGLE / ISO1101

0.3 µm

0 2 µm

0.4 µm

0.5 µm

The error of the second line is shown according to the various alignment methods:

- ISO 1101- ENPOINTS

The error of the second line is shown according to the various alignment methods:

- ISO 1101- ENPOINTSERROR REFERENCE LINE 0.5 µm

0.2 µm

0.1 µm

0,0 µm

ENPOINTS- LINEAR REGRESSION

ENPOINTS- LINEAR REGRESSION

µ

ERROR 2ND LINE BASED ON ISO1101 0.7 µm

END POINTS 0.1 µm

LINEAR REGRESSION 0.2 µm

Vermessung eines rechten Winkels

CORRECTION OF INSTRUMENT -2,58 µm/m

Measurement of a 90° anglegwith Software LEVELSOFT

3. Step: Alignment of the measuring object and determining the error 3. Step: Alignment of the measuring object and determining the error

c) Alignment of the reference line according to LINEAR REGRESSIONc) Alignment of the reference line according to LINEAR REGRESSION

ANGLE / LINEAR REGRESSION

Th f th d li i hTh f th d li i h

ANGLE / LINEAR REGRESSION

0.3 µm

0 2 µm

0.4 µm

0.5 µm

The error of the second line is shown according to the various alignment methods:

- ISO 1101- ENPOINTS

The error of the second line is shown according to the various alignment methods:

- ISO 1101- ENPOINTSERROR REFERENCE LINE 0.5 µm

0.2 µm

0.1 µm

0,0 µm

ENPOINTS- LINEAR REGRESSION

ENPOINTS- LINEAR REGRESSION

µ

ERROR 2ND LINE BASED ON ISO1101 0.6 µm

END POINTS 0.0 µm

LINEAR REGRESSION 0.1 µm

Vermessung eines rechten Winkels

CORRECTION OF INSTRUMENT -2,58 µm/m

Adjustment of Measuring results at an object j g jwith a square angle

Adjusted measuring line

Reference measurement ( Reference line)

Original measurement

ReferenceISO 1101

9µmTilting the referenceline Adjusted

Original measurement

line

Linear Regression

djustedmeasuring line

Line

measurement

Procedure:1. Measuring the square object2. Tilting the reference line according to ISO 1101

(square line is tilting identically)Tilting the line the same way the reference line was tilted

(square line is tilting identically)3. Display of the total rectangular error

(in the example measuring line to reference line)a) according to “End points”b) according to “ISO 1101” End points 4.5µm

Ausrichtung rechtwinklige Objekte

c) according to “linear regression”

ISO 1101 9.6µm

Linear Regression2.1µm

Flatness Measurement with WYLER InclinometersFlatness Measurement with WYLER InclinometersFlatness Measurement with WYLER Inclinometersand WYLER SoftwareFlatness Measurement with WYLER Inclinometersand WYLER Software

SURFACE GRID WYLER

Length: 1200 mm Witdh: 800 mm

Maximum error: 4,0 μm Closure error: 0,3 μm

Graphic display of profile

As an option the connection to a PC is available:Options:

- Leveladapter - Measurement-Software

Operating Systems:Engineer Set consists of:

- 2 Minilevel "NT"

Ebenheitsmessungen mit WYLER Messgeräten und Mess-Software

Operating Systems:DOS / Win 3.11 / WIN 95 / Win NT 3.5 or higher - Levelmeter 2000

- Cable with „dongle“

Flatness measurement with LEVELTRONIC "classic"Moving direction

Personal Computer

Measuring instrument

'1204LEVELMETER

Leveladapter 2000

A B OUT

Reference instrument

ATTENTION: - Connect the red cable to the measuring instrument- Always measure in the direction of the cable

Flächenmessung mit LEVELTRONIC "classic"

Flatness measurement with MINILEVEL "classic"Moving direction

Personal Computer

Measuring instrument

Leveladapter 2000

Reference instrument

ATTENTION: - Remove batteries (MINILEVEL "classic" only)- Check the correct sensitivity- Connect the red cable to the measuring instrument

Al i th di ti f th bl- Always measure in the direction of the cable

Flächenmessung mit MINILEVEL "classic"

Flatness measurement with LEVELTRONIC NT

Measuring instrument Personal Computer

'1204LEVELMETER

Leveladapter 2000

A B OUT

Reference instrument

ATTENTION: - Check the sensitivity when using MINILEVEL NT- Connect the red cable to the measuring instrument- Always measure in the direction of the cabley

LT NT ML25/Leveladapter 2000

Flatness measurement with MINILEVEL NT

Personal Computer

Measuring instrument

Leveladapter 2000

Reference instrument

ATTENTION: - Check the sensitivity when using MINILEVEL NT- Connect the red cable to the measuring instrument- Always measure in the direction of the cabley

LT NT Leveladapter 2000

Flatness measurement with MINILEVEL NT orLEVELTRONIC NT with Levelmeter 2000

Measuringinstrument

Levelmeter 2000

R f i t t

Using a Levelmeter 2000 instead of a Levelmeter C25dditi l f t il bl lik

Reference instrument

additional features are available like:"ZERO"-Setting, various measuring units, and so on

LT NT Levelmeter 2000

NEW !!!„Remote Display“ for MINILEVEL and LEVELTRONIC „NT“

LT NT with remote display

Preparation for Flatness Measurement

1. Cleaning of the surface plate (on the previous day)2. Place the instruments on the surface plate for acclimatization3. Connecting the instruments (and Levelmeter) to the computer;

remove batteries (Levelmeter Minilevel “classic” only)

1. Cleaning of the surface plate (on the previous day)2. Place the instruments on the surface plate for acclimatization3. Connecting the instruments (and Levelmeter) to the computer;

remove batteries (Levelmeter Minilevel “classic” only)remove batteries (Levelmeter, Minilevel “classic” only)4. Turn on the Leveladapter 20005. Turn on the computer (after connecting the

instruments)6. Adjust surface plate to within +/- 50 µm/m with

remove batteries (Levelmeter, Minilevel “classic” only)4. Turn on the Leveladapter 20005. Turn on the computer (after connecting the

instruments)6. Adjust surface plate to within +/- 50 µm/m with j p µ

Spirit Level or Leveltronic/Minilevel.Attention: Loosen the safety supports first !

7. Prepare the software programme for the measurement with the necessary dataAttention: When measuring with 2 Leveltronics

j p µSpirit Level or Leveltronic/Minilevel.Attention: Loosen the safety supports first !

7. Prepare the software programme for the measurement with the necessary dataAttention: When measuring with 2 LeveltronicsAttention: When measuring with 2 Leveltronics

and Levelmeter, INPUT: "Measurement with one

instrument" Adjust correct sensitivity

Attention: When measuring with 2 Leveltronics and Levelmeter,

INPUT: "Measurement with oneinstrument"

Adjust correct sensitivity8. Calculation of the best fit grid and draw it on the

surface plate, after that cleaning of the plate again. Free space at edge minimum 1/2 base width.

9. Execute test measurement, line with approx. 20 steps without moving the instrument

8. Calculation of the best fit grid and draw it on the surface plate, after that cleaning of the plate again. Free space at edge minimum 1/2 base width.

9. Execute test measurement, line with approx. 20 steps without moving the instrumentapprox. 20 steps without moving the instrument

10. Start with flatness measurement, check correct switch position of MINILEVEL

11. After the measurement apply MICROPOLISH for conditioning the plate

approx. 20 steps without moving the instrument10. Start with flatness measurement, check correct

switch position of MINILEVEL11. After the measurement apply MICROPOLISH for conditioning the plate

Vorbereitungen Ebenheit

Basics on surface flatness measurement

Influence of temperature:A temperature difference of 1 degree Celsius between the upper and the lower side of a plate of 1m length results already in a deformation of the plate of 6 to 7 µm1m length results already in a deformation of the plate of 6 to 7 µm

Surface flatness according to DIN 876 / ISO1101:Flatness of granite surface plates (DIN 876 / ISO1101)Quality Maximum error in µm

SURFACE GRID WYLER

Length: 1200 mm Witdh: 800 mm

00 2 x ( 1 + Länge in [m] )0 4 x ( 1 + Länge in [m] )1 10 x ( 1 + Länge in [m] )2 20 x ( 1 + Länge in [m] )

Choice of measuring base:Ideal measuring base: Flat steel base with dust groves

Measuring step length:Maximum error: 4,0 μm Closure error: 0,3 μm

Length of the base Optimal step length Recommended step length110 mm 90 mm 85 ... 105 mm150 mm 126 mm 120 ... 145 mm200 mm 170 mm 160 ... 190 mm

Schrittlänge

Basics on surface flatness measurement

SURFACE GRID WYLER

Length: 1200 mm Witdh: 800 mm

Prerequisite:• Max. temp. difference top/bottom = 2°C• After cleaning: 2 hours drying time gAfter cleaning: 2 hours drying time

Grade t1 in µm

000

2 (1 + Länge in m)4 (1 + Lä i )

Maximum error: 4,0 μm Closure error: 0,3 μm

012

4 (1 + Länge in m)10 (1 + Länge in m)20 (1 + Länge in m)

Flatness error of a partial areaSize of area Max. tolerance t2 in µm

250 x 250 mm00 0 1 2

3µm 5µm 13µm 25µm250 x 250 mm 3µm 5µm 13µm 25µm

Accepted border zone:2% of width of plate, max. 20mm

Schrittlänge

2% of width of plate, max. 20mm

Preparation of a granite p gsurface plate for flatness measuring

22% of length 22% of length

Supporting points according to “Bessel”

% o

f wid

th

Size of granite plate: 1200 x 800 mmMeasuring system used::1 LEVELTRONIC 1 µm/m, Base length 200 mm1 LEVELTRONIC 1 µm/m, Base length 150 mm

22%

mm

Preparation:1. Preparation according to special

instructions, like e.g. set to level. cleaning, etc.

4 x

190m

cleaning, etc. 2. Defining the edge zone (about ½ of the

width of base, max. 20 to 30 mm)3. Definition of the measuring step length4. Drawing the grid on the plate

edge 30 mm

30 m

m6 x 190mm

For the example :Baselength: 200mm (recommended step length: 160 ... 190 mm)

edge

3

Vorbereitungen einer Mess- und Kontrollplattefür die Ebenheitsmessung

Step length:longitudinal 6 x 190 mm + 2 x 30 mm edgetransversal 4 x 190 mm + 2 x 20 mm edge

Remarks: Determining the maximum error is always according to ISO 1101Remarks: Determining the maximum error is always according to ISO 1101Remarks: Determining the maximum error is always according to ISO 1101Remarks: Determining the maximum error is always according to ISO 1101

Flatness according to ISO1101 withoutcorrection of the closure errorFlatness according to ISO1101 withoutcorrection of the closure error

SURFACE GRID WYLER

L th 1200 Witdh 800 correction of the closure error

The closure error should not exceed 20% to 25% of the max. error

correction of the closure error

The closure error should not exceed 20% to 25% of the max. error

Length: 1200 mm Witdh: 800 mm

Maximum error: 4,0 μm Closure error: 0,3 μm SURFACE GRID WYLER

Length: 1200 mm Witdh: 800 mm

Flatness according to ISO1101 withFlatness according to ISO1101 with

Vermessung von Messbasen und rechten WinkelnVermessung von Messbasen und rechten Winkeln

gcorrection of the closure error

gcorrection of the closure error

Maximum error: 4,0 μm Closure error: 0,3 μm

Geometrical inspection ofGeometrical inspection ofmachine tools

“ROLL” error

“PITCH” error

Roll / Pitch

Geometrical inspection of

I ti f

Geometrical inspection ofmachine tools

RInspection ofmachine tool table

R

R

M

R

M

Geometrical inspection ofan instable structure

RM

Vermessung Maschinen

LEVELMATICLEVELMATICPrecision transducer

Various transducers in different configurations available

e.g. precision transducers are availablealso in two axis configuration with LED bar display

Levelmatic 30 Levelmatic 31 Levelmatic 34

Measuring range +/- 2 mRad ... +/- 2 mRad... +/- 5 ... +/- 45 degrees +/- 30 degrees +/- 60 degrees

Linearity 0.5% FS 0.5% FS 0.5% FSOutput signal Levelmeter B25 +/- 2 V DC und +/- 2 V DC

Levelmeter C25

Levelmatic

Inclination measuring instruments based on

Inclination measuring instruments based onbased on

digital techniquebased on

digital technique

Part 3Part 3Part 3Part 3

Digitaltechnik Titel

ZEROTRONICZEROTRONIC

Objectives for the development of Objectives for the development of the new sensorthe new sensor

•High resolution, high accuracy•Low temperature dependency•Digital technique; use of microprocessors

•High resolution, high accuracy•Low temperature dependency•Digital technique; use of microprocessorsDigital technique; use of microprocessors•Measuring range from +/- 1 up to +/- 60 degrees•Measurement under dynamic conditionsDisplay for graphical analysis and on line monitoring

Digital technique; use of microprocessors•Measuring range from +/- 1 up to +/- 60 degrees•Measurement under dynamic conditionsDisplay for graphical analysis and on line monitoring•Display for graphical analysis and on-line monitoring

•Galvanic disconnection for outdoor applications•Display for graphical analysis and on-line monitoring•Galvanic disconnection for outdoor applications

Ziele ZERO

ZEROTRONIC / Housing gastightZEROTRONIC / Housing gastightDesign of ZEROTRONIC:- Sensor including pendulum held by Archimedes helical springs

Design of ZEROTRONIC:- Sensor including pendulum held by Archimedes helical springs

- RC - Oscillator- Voltage stabilisator with level-shifter- Digital frequency counter with calibration data

memory and asynchronous serial port

- RC - Oscillator- Voltage stabilisator with level-shifter- Digital frequency counter with calibration data

memory and asynchronous serial port- Voltage stabilisator- Housing and mounting bracket- Housing and mounting bracket - Voltage stabilisator- Digital frequency counter- Calibration data memory- Asynchronous serial port

Pendelum

Connectorfor RS 485

Aufbau ZERO

Housinggastight

RC-OscillatorElektrodes

Mounting bracket

ZEROTRONIC / Housing gastight

Design of ZEROTRONIC:- Sensor including pendulum held byArchimedes helical springs

Design of ZEROTRONIC:- Sensor including pendulum held byArchimedes helical springs

ZEROTRONIC / Housing gastight

Archimedes helical springs- RC - Oscillator- Voltage stabilisator with level-shifter- Digital frequency counter with

calibration data

Archimedes helical springs- RC - Oscillator- Voltage stabilisator with level-shifter- Digital frequency counter with

calibration data - Voltage stabilisatorcalibration datamemory and asynchronous serial port

- Housing and mounting bracket

calibration datamemory and asynchronous serial port

- Housing and mounting bracket

Pendelum- Digital frequency counter- Calibration data memory- Asynchronous serial port

Connectorfor RS 485

WYLERWYLERSEAL-TEC R

Housinggastight

RC-OscillatorElektrodes

Mounting bracketQuerschnitt ZERO mit 3 Prints gastight

ZEROTRONIC / OUTPUTZEROTRONIC / OUTPUT

TYPE 2OUT IN

F and F [Hz] Measuring rateTYPE 2 F1 and F2 [Hz] Measuring rateCalibration data

Temp [Hz]RS485

OUT IN

F1 and F2 [Hz] Measuring rateCalibration dataRS485

TYPE 3

Temp [Hz]

Angle in [Rad] Measuring rate(Angle calculatedRS485

in sensor)

0.5 ... 2.5 ... 4.5 [V] / 5.0 [V] VDDAnalogueOutput

ZERO gastight OUTPUT digital analog

4 ... 12 ... 20 [mA] / 12 ... 24 [V] VDDOutput

ZEROTRONICZEROTRONICComparison between ZEROTRONIC type 2 and type 3Comparison between ZEROTRONIC type 2 and type 3

ZEROTRONIC TYPE 2ZEROTRONIC TYPE 2 ZEROTRONIC TYPE 3ZEROTRONIC TYPE 3

Power consumptionPower consumption 50% 100%100%Power consumptionPower consumption

Interface electronicInterface electronic

Interface data formatInterface data format

50%

IdenticalIdentical

100%100%

IdenticalIdentical

IdenticalIdentical IdenticalIdentical

Data volume transmittedData volume transmitted

LARGELARGEWhen starting a measurement theWhen starting a measurement thecalibration data must be transmitted.calibration data must be transmitted.With every measurement theWith every measurement thefrequencies F1 & F2 as well as thefrequencies F1 & F2 as well as thecalibration data must be transmittedcalibration data must be transmitted

SMALLSMALLOnly the angle in RAD is Only the angle in RAD is transmitted from sensor to hosttransmitted from sensor to host

Host computerHost computerperformanceperformance

calibration data must be transmittedcalibration data must be transmitted

HIGHHIGHComputing the angle from frequencies Computing the angle from frequencies and calibration data receivedand calibration data received

LOWLOWAngle is computed in the sensorAngle is computed in the sensor

Internal measuring rateInternal measuring rate

VariousVarious

Depending on the host‘s sampling Depending on the host‘s sampling rate set:rate set:measurements of objects with lowmeasurements of objects with lowfrequency vibration is difficultfrequency vibration is difficult

The sampling rate in the sensor isThe sampling rate in the sensor is100/ sec.; this allows high quality100/ sec.; this allows high qualitymeasurements on objects with lowmeasurements on objects with lowfrequency vibrations.frequency vibrations.

- VI for LabVIEW (National Instr)- VI for LabVIEW (National Instr)

ZERO gastight OUTPUT digital analog

VariousVarious VI for LabVIEW (National Instr)VI for LabVIEW (National Instr)- Easy programming for customer- Easy programming for customer

Digital measuring pricipleg g p p(ZEROTRONIC / CLINO / CLINO 2000)

Voltage-stabilisator

Digital frequency counter

asynchronous serial port

PendelumSelector

Oscillator(EXT)

GND

+5V

RTA

RTB

PWM

RTS

ConnectorC1 C2

R

ConnectorC1 C2

RTS

(AUX)

R const

Frequency = f (C)

SIGNAL

1

2Position “Selector”

C var

Position “Selector”

Frequency

Messproinzip ZERO

Inverter

Digital measuring principleDigital measuring principleprinciple function of a RC-Oscillator / part 1

UAR UA

R

C var UCC var UC

UC

UA

UC

UAUA UA

Charge Discharge

Laden/Entladen Kondensator

t t

Digital measuring principleDigital measuring principleprinciple function of a RC-Oscillator / part 2

Schmitt-

U in U out

Simplified description of“principle function of a Schmittrigger”

Schmitt-trigger

U+U+

U-

t

U-

U+ positive thresholdU - negative threshold

Schmitt-Trigger

Digital measuring principle R constDigital measuring principleRC Oscillator

1 2 Inverter

C left C rigth

Funktion ZERO

Calibration of a digital measuring system

1. Calibration of the system Number of calibration points:

Clinotronic: 21

Calibration of a digital measuring systemF1/F2 (F1,F2)

2 Th lib ti i t

Clinotronic: 21Zerotronic: free to chose

2. The calibration points will be stored

Angle

F1/F2 (F1,F2)

Angle

Kalibrierung I

Calibration of a digital measuring systemCalibration of a digital measuring system

3. Calculation of the individualvalues between the calibrationpoints by means of interpolation

F1/F2 (F1,F2)

Calibration

p y p

Angle

point

T=40°CT=20°CT 0°C

F1/F2 (F1,F2)

T= 0°C

F1 30°F2 30°

Angle

4. Calibration at differenttemperatures

Angle

Setting of calibration devicee.g. -30 degrees

Kalibrierung II

Calibration of a digital measuring systemCalibration of a digital measuring system

T=40°C

F1/F2 (F1,F2)

T 40 CT=20°CT= 0°C

Angle-50° -40° -30° -20° -10° 10° 40°30°20° 50°

Calibration

Measurement

Kalibrierung II

Calibration of a digital measuring systemCalibration of a digital measuring systemTypical curves of the frequencies of +CLINO PLUS+

Frequency F1 Frequency F2Frequency in [Hz]

500‘000

Frequency F1 Frequency F2

480‘000

460‘000

440‘000

50° 20°40° 30° 10° 10° 40°30°20° 50°

420‘000

400‘000

Kalibrierung II

-50° -20°-40° -30° -10°0°

10° 40°30°20° 50°

Elimination of ZERO-OffsetElimination of ZERO OffsetAngle eff

45°45°

Angle nominalZERO-Offset

z.B. 45°

The ZERO-Offset canbe eliminated with areversal measurement

ZERO OffsetZERO Offset

Elimination of ZERO- and GAIN-OffsetElimination of ZERO and GAIN Offset1. ZERO- and Gain-Offset1. ZERO- and Gain-Offset

Angle eff.

G i Off t

2. Eliminating the ZERO-OffsetAngle eff.

Gain-Offset

Angle

45°

ZERO Offset

Gain-Offset

The ZERO-Offset canbe eliminated with areversal measurement(Zerotronic, Clino45

Angle

45°

Angle nominal e.g. 45°

ZERO-Offset and Clino2000) Angle nominal e.g. 45°

3. Eliminating Gain-Offset3. Eliminating Gain-OffsetggAngle eff.

45°

Th GAIN Off t

Angle nominal z.B. 45°

The GAIN-Offset canbe eliminated with a„stick calibration“(Clino2000 and ZEROTRONIC only)

Zero-/Gain-Offset

CLINOTRONICCLINOTRONIC

Most important features:- Digital measuring system

Easy to calibrate by the user

Most important features:- Digital measuring system

Easy to calibrate by the user- Easy to calibrate by the user- Various units to select- Standard: Measuring range +/- 45°

Options: +/-30° and +/-10 °

- Easy to calibrate by the user- Various units to select- Standard: Measuring range +/- 45°

Options: +/-30° and +/-10 °

Specifications:- Settling time / Display < 5 Seconds- Repetition < 20 Arcsec- Linearity < 2 Arcmin + 1 digit

Specifications:- Settling time / Display < 5 Seconds- Repetition < 20 Arcsec- Linearity < 2 Arcmin + 1 digit

Improvements compared to the existing version:Improvements compared to the existing version:

- Reinforced housing / greater stability- Sensor cell in SEALTEC-quality- Shorter response time

- Reinforced housing / greater stability- Sensor cell in SEALTEC-quality- Shorter response time

Clino 45 Uebersicht

- No loss of calibration date by battery change- Standard batteries 1,5V Size AA- Connection to RS 232 output of PC

- No loss of calibration date by battery change- Standard batteries 1,5V Size AA- Connection to RS 232 output of PC

CLINOTRONICCLINOTRONIC

Exercise:1. Change and store unit

of measurement2 Eliminating the zero offset

Exercise:1. Change and store unit

of measurement2 Eliminating the zero offset2. Eliminating the zero-offset

by means of a reversal measurement

3 HOLD function

2. Eliminating the zero-offset by means of a reversal measurement

3 HOLD function3. HOLD function4. Calibration

a) Calibration manuallyb) Calibration automatically

3. HOLD function4. Calibration

a) Calibration manuallyb) Calibration automaticallyb) Ca b at o auto at ca yb) Ca b at o auto at ca y

Clino Uebung

CLINO 2000 The new digital inclination measuringThe new digital inclination measuringCLINO 2000 The new digital inclination measuringinstrument for a great variety ofmeasuring tasks, fulfils all requirements

The new digital inclination measuringinstrument for a great variety ofmeasuring tasks, fulfils all requirements

Most important features:Most important features:Most important features:- Highest possible precision over the large measuring range of +/- 45° with integrated temperature compensation

- Effortless zero adjustment by using the integrated software and a reversal measurement

Most important features:- Highest possible precision over the large measuring range of +/- 45° with integrated temperature compensation

- Effortless zero adjustment by using the integrated software and a reversal measurement

- Most modern digital electronic components- Fulfils the strict CE requirements (immunity against electromagnetic smog)

- Easy to calibrate due to the implemented software guidance and the calibration aids

- Most modern digital electronic components- Fulfils the strict CE requirements (immunity against electromagnetic smog)

- Easy to calibrate due to the implemented software guidance and the calibration aidsand the calibration aids

- Most common units available- Standard: Measuring range +/- 45°Options: +/- 60°, +/- 30° und +/- 10 °

S ifi ti

and the calibration aids- Most common units available- Standard: Measuring range +/- 45°Options: +/- 60°, +/- 30° und +/- 10 °

S ifi tiSpecifications:- Settling time < 5 seconds- Resolution 5 Arcsec- Limits of error: < 5 Arcsec + 0.07% R.O.- Data connection: RS485, asynchr., 7 Bit, 2 Stopbits,

Specifications:- Settling time < 5 seconds- Resolution 5 Arcsec- Limits of error: < 5 Arcsec + 0.07% R.O.- Data connection: RS485, asynchr., 7 Bit, 2 Stopbits, , y , , p ,

no parity, 9600 Baud, y , , p ,

no parity, 9600 Baud

Clino 2000

ZEROTRONIC / „ANALOGUE“ OUTPUTZEROTRONIC / „ANALOGUE OUTPUT

Angle = 0Vcc=5V

OutputØ 2.5VAngle 0

Angle = +FS

0VØ 2.5V

Ø 4.5V

Analogue Output

Angle = -FS Ø 0.5V

100%=277.7µS

10%=27.77µSF=3.6kHz

Analogue Output(PWM)

10% 27.77µS

P l 12 24V+5V

GND

PWM

Power supply 12 ... 24V

4 ... 20mA

GNDR UR

Inte

rfac

e

ZERO gastight OUTPUT analog

GND GNDI

„Current loop“

ZEROTRONICZEROTRONIC

Angle 0 degrees

Angle positive;e.g. +10 degreesSensor-Type

xA - xxx 1° - SensorxB - xxx 5° - SensorxC - xxx 10° - Sensor

Angle negative;e.g. -10 degrees

xD - xxx 30° - SensorxE - xxx 60° - Sensor

Zero, Nummern

ZEROTRONICZEROTRONICExternal

power supply Transceiver/Converter

Transceiver/Converter

T

CRS232 C

RS485

ZEROTRONIC-Sensorswith T/C (Transceiver/Converter)connected to a Personal Computer

RS485

Zero mit T/C

ZEROTRONICZEROTRONICTransceiver/Converter

Transceiver/Converter

T

C

Levelmeter 2000

C

RS485

ZEROTRONIC-Sensorswith T/C (Transceiver/Converter)

RS485

connected to a Levelmeter 2000

Zero/TC/LM2000

ZEROTRONICZEROTRONICFrequencies f1 und f2Calibration dataMeasuring rate

RS 485

Angle andmeasuring unit

RS 485

RS 232

DDE /Dynamic RS 485

RS 232 Data Exchange)

F t f d t t f

RS 232

Format of data transfer

Header (4) Trailer (1)Check-sum (2)Address (3) Opcode (1) Data (8)

Transmission data format: asynchron / 7 Bit / 2 Stopbits / no parity

Bit-System

ZEROTRONICZEROTRONICASCII in RS232- and RS485-Format

Binary code "7 Bit"y

BINARY 20 21 22 23 24 25 26

DECIMAL 1 2 4 8 16 32 64

ASCII (Basic Code CCITT) - Display ofASCII (Basic Code CCITT) - Display of ...Number “3” 1 1 0 0 1 1 0Letter “F” 0 1 1 0 0 0 1

Basic Code

RS 232 - Format / V28V1 < -3V “1” OFFV1 > +3V “0” ON

RS 485 - Format / V11Delta Va ... Vb < -0.3V “1” OFFDelta Va Vb > +0 3V “0” ONV1 > +3V 0 ON

Number “3”

+ 3V

S 1 1 0 0 1 1 0 S S 1 1 0 0 1 1 0 SNumber “3”> +0.3V

< -0 3V

Delta Va ... Vb > +0.3V 0 ON

- 3V< -0.3V

Binär-System

ZEROTRONICSoftware-Structure DYNAM

Operating SystemsMS-DOS

Windows 3.11Windows 95

DYNAM Basic-Software- very flexible configured- Parameters like

WIN NT

DYNAM WYLER- Display on the monitor- Measuring rate- Selection of filters, and so on are free

selectable

S f

WYBASE RS 485-Driver WYANGLE

Sampler Display Printer Analyzer Sender Server

Additional SW for customer specific applicationsThe complete SW package will be prepared by WYLER according tocustomers requirements

Specific customer’s applications

q

DYNAM-Struktur

ZEROTRONIC Display on the monitorSoftware-Structure DYNAM

Display on the monitorof a measurement with 2 ZEROTRONIC-Sensors and continuous monitoring of allpreviously measured values

DISPLAYwith actual values

PANELPANELthe “cockpit”

ANALYZERwhich displays allmeasured measuringvalues

Panel/Display

ZEROTRONICSoftware-Structure DYNAM

ANALYZERTool to analyse allpreviously recorded p ymeasuring values stored in different files

Analyzer

ZEROTRONIC NEW !!!Software-Structure DYNAM NEW !!!

Measurements andAnalyzations withVI‘s from WYLER

forZEROTRONIC Type 3

LabVIEW

ZEROTRONIC Transceiver / Converter

Data transmission from short distancesup to several kilometers / 1

Sensor A

Sensor B

RS 485 BUS

PCRS 485 BUS

2 Sensors without externalLevelmeter 2000

Distance up to approx. 15 meters

2 Sensors without external power supply

With additional T/C´s and externalpower supply more than 2 sensors

b t d

Levelmeter 2000

Levelmeter 2000

can be connected

Distance up to approx. 15 meters

2 Sensors with external power supply

p pp

With additional T/C´s and externalpower supply more than 2 sensorscan be connected

Distance up to approx. 15 meters2 Sensors with external power supply and 1 T/C

Up to 31 T/C´s with 2 sensors eachRS 232 Up to 31 T/C s with 2 sensors eachcan be connected

Zero Konfig I

ZEROTRONIC Transceiver / Converter

Data transmission from short distancesup to several kilometers / 2

Sensor A

Sensor B

RS 485 BUS

PCRS 485 BUS

Up to 31 T/C´s with 2 sensors eachcan be connected

Distance up to 1000 m

Up to 31 T/C´s with Distance up to 1000 m

2 sensors eachcan be connected

Distance up to

Up to 30 OPTO transceivers can be connected

Distance up toseveral 1000 m

OPTO-Transceiver

Zero Konfig II

ZEROTRONICZEROTRONICApplicationsA few typical applications for ZEROTRONIC Sensors:A few typical applications for ZEROTRONIC Sensors:

Precision inclination measurement on unstable objects likeMachine toolsAdjustment of moving platforms on boats and vessels

Precision inclination measurement on unstable objects likeMachine toolsAdjustment of moving platforms on boats and vessels

Long term monitoring with data collection and -transferBuildingsConstruction sitesB id

Long term monitoring with data collection and -transferBuildingsConstruction sitesB idBridgesDamsTunnelsInclination measurement by driving on a road

BridgesDamsTunnelsInclination measurement by driving on a road

Various applicationsAdjustment of printing machinesMeasurement of profiles (aircrafts, racing cars “formula 1”, and so on)

Various applicationsAdjustment of printing machinesMeasurement of profiles (aircrafts, racing cars “formula 1”, and so on)

Anwendungen ZERO

ZEROTRONIC

Measuring range +/- 1 degrees +/- 10 degrees +/- 30 degrees +/- 60 degrees +/- 0.5 degrees

SpecificationsZEROTRONIC ZEROMATIC 50

Resolution1 Measurement/sec

without filter +/- 0.0128 % F.S. +/- 0.00315 % F.S. +/- 0.00454 % F.S. +/- 0.00430 % F.S. +/- 0.00286 % F.S.with filter +/- 0.00429 % F.S. +/- 0.00100 % F.S. +/- 0.00124 % F.S. +/- 0.00122 % F.S. +/- 0.00100 % F.S.

10 Measurements /secwithout filter +/- 0.0358 % F.S. +/- 0.00888 % F.S. +/- 0.01430 % F.S. +/- 0.01310 % F.S. +/- 0.00859 % F.S.with filter +/ 0 0128 % F S +/ 0 00315 % F S +/ 0 00454 % F S +/ 0 00430 % F S +/ 0 00286 % F Swith filter +/- 0.0128 % F.S. +/- 0.00315 % F.S. +/- 0.00454 % F.S. +/- 0.00430 % F.S. +/- 0.00286 % F.S.

Limits of error in Arcsec Null/Gain Null/Gain Null/Gain Null/Gain Null/GainRange incl. drift 0.017 % F.S. 0.0042 % F.S. 0.0046 % F.S. 0.0037 % F.S. 0.015 % F.S.within 24h/20°C + 0.07 % R.O. + 0.02 % R.O. + 0.01 % R.O. + 0.01 % R.O. + 0.04 % R.O.

Limits of error in ArcsecRange incl. drift 0.014 % F.S. 0.055 % F.S. 0.037 % F.S. 0.028 % F.S. 0.15 % F.S.within 6 months/20°C + 0.25 % R.O. + 0.15 % R.O. + 0.1 % R.O. + 0.06 % R.O. + 0.10 % R.O.

Temperatur stabilityin Arcsec/°C

Zero point 0.04 % F.S. 0.008 % F.S. 0.005 % F.S. 0.004 % F.S. 0.04 % F.S.Gain + 0 2 % R O + 0 03 % R O + 0 02 % R O + 0 01 % R O + 0 2 % R OGain + 0.2 % R.O. + 0.03 % R.O. + 0.02 % R.O. + 0.01 % R.O. + 0.2 % R.O.

Remarks: F.S. FullscaleR.O. Readout

Spezifikationen ZERO

ZEROTRONIC

Zerotronic Sensors

Possible concept for data transfer

Office Field

Zerotronic Sensors

PC with WYLER-SW DYNAM

Modem Modem

Transceiver / Converter

Transceiver / Converter

Data report Alarm Transmission to another

station

Uebermittlung Daten

ZEROTRONICAdjustment of platforms on boats with ZEROTRONIC

Reference platform

1 Step:1. Step:“ZERO-Setting” with both sensors

Platform to be adjusted

Reference platform

2. Step:Measuring the difference between the two platforms

Platform to be adjusted

3. Step:Adjustment of the platform according to the measured deviation until the display shows “ZERO”

Schiffs-Plattformen

ZEROTRONIC ZEROTRONIC PROJECT 50Easy finding of the 90 deg DeviationZEROTRONIC PROJECT 50Easy finding of the 90 deg Deviation

1. „Zero setting“ by means of reversal

Easy finding of the 90 deg. Deviationwhen swivelling the spindle from „horizontal“ to „vertical“.Easy finding of the 90 deg. Deviationwhen swivelling the spindle from „horizontal“ to „vertical“.

1. „Zero setting by means of reversalmeasurement on horizontalposition of the spindle.

saving values (manually or PC)

2. Swivelling spindle 90 deg.

3. „Zero setting“ by means of reversalmeasurement on vertical position

Levelmeter 2000

pof the spindle.

saving values (manually or PC)

4. Calculating angular difference between the two positions of the spindle by means of pocket calculator or PC.

Maschinen ZERO

ZEROTRONICReference plate situated at the forward end of the cargo floor

ZEROTRONIC PROJECT 51Adjustment of various platforms inlarge aircrafts during assembly andmaintenance

ZEROTRONIC PROJECT 51Adjustment of various platforms inlarge aircrafts during assembly andmaintenancemaintenancemaintenance

1. Easy simultaneous „zero setting“of 4 sensors

2. Angular difference between thepairs of sensors easily visualizedon the Levelmeter

Aircraft ZERO

Differential measurement easily possible at various positions.

ZEROTRONIC Measurement of a road profilep

Task: Continous measurement of inclination by driving on a road and taking the influence of acceleration into consideration

Z t i

β1 = f (f1 and f2)β1ASIC WYLER

f1, f2 ASIC WYLER

ZerotronicSensor β = β1 - β2 DYNAM

Device for measuring

the distance

s = f (t) a = f (s, t) β2 = f (arcsin a)β

ASIC WYLEREncoder DYNAM DYNAMβ2

the distance

Calculation of the effective inclination ββ = β1 - β2β = f (arcsin a) = f {arcsin [f (s t)]}β2 = f (arcsin a) = f {arcsin [f (s, t)]}

a: Acceleration [m/s2] (=dv/dt = v’ = s’’)s: Distance [m] f1, f2: Frequencies Sensors

EMPA

ZEROTRONIC Measurement of a road profilep

EMPA Analyzer