Wronskians, Duality and Cardy Branes · Wronskians, Duality and Cardy Branes Author Hirotaka Irie1...

1
q‘QMbFBMb- .mHBiv M/ *‘/v "‘M2b >B‘QiF A‘B2 R M/ "2MDKBM LB2/M2‘ k R umFrAMbiBimi2 7Q‘ h?2Q‘2iB+H S?vbB+b- EvQiQ lMBp2‘bBiv- EvQiQ eye@38yk- CTM k _m/QH7 S2B2‘Hb AMbiBimi2 7Q‘ h?2Q‘2iB+H S?vbB+b- lMBp2‘bBiv Q7 Pt7Q‘/- R E2#H2 _Q/- Pt7Q‘/ PsR jLS- lE 1@JBH, B‘B2!vmFrXFvQiQ@mX+XDT - #2MDKBMXMB2/M2‘!T?vbB+bXQtX+XmF #bi‘+i q2 +H+mHi2 2tT2+iiBQMb Q7 T‘Q/m+ib Q7 +?‘+i2‘Bb@ iB+ TQHvMQKBHb BM i?2 /Qm#H2@b+H2/ ?2‘KBiBM irQ@ Ki‘Bt 2Mb2K#H2X q?2M HH bT2+i‘H T‘K2i2‘b +Q@ BM+B/2- i?2b2 ‘Bb2 b bQHmiBQMb iQ M 2ti2MbBQM Q7 i?2 ‘2/m+2/ ES ?B2‘‘+?v M/ ‘2 Mim‘HHv 2tT‘2bb2/ b ;2M2‘HBb2/ q‘QMbFBMX h?2 bQHmiBQMb ‘2 BM QM2@ iQ@QM2 +Q‘‘2bTQM/2M+2 rBi? 2Mi‘B2b BM i?2 E+ i#H2 Q7 +QM7Q‘KH KBMBKH KQ/2H M/ r2 /2‘Bp2 Gt bvbi2K i?i bbQ+Bi2b bT2+i‘H +m‘p2 iQ 2+? 2Mi‘vX q2 b?Qr i?i BM i?2 r2F@+QmTHBM; HBKBi- Qm‘ ‘2bmHib ‘2/m+2 iQ i?2 /2+QKTQbBiBQM Q7 *‘/v #‘M2b BMiQ T‘BM@ +BTH 6wwh #‘M2b +QMD2+im‘2/ #v a2B#2‘; M/ a?B? BM i?2 +QMi2ti Q7 KBMBKH bi‘BM; i?2Q‘vX >2‘KBiBM irQ@Ki‘Bt 2Mb2K#H2 q2 +QMbB/2‘ 2tT2+iiBQMb Q7 T‘Q/m+ib Q7 +?‘+i2‘BbiB+ TQHvMQKBHb (M ) n (x 1 ;:::x M )= * M Y i=1 /2i (x i X) + n n ; r?2‘2 i?2 p2‘;2 Bb iF2M BM i?2 ?2‘KBiBM irQ@Ki‘Bt 2Mb2K#H2 hOi n n = 1 Z Z 1 n N /X/Ye N i‘ [V 1 (X )+ V 2 (Y) XY ] O; rBi? bmBi#Hv +?Qb2M TQHvMQKBHb /2; V 1 = p- /2; V 2 = qX AM i?2 /Qm#H2 b+HBM; HBKBi- (M ) n +QKTmi2b i?2 T‘@ iBiBQM 7mM+iBQM Q7 M #‘M2b BM KBMBKH bi‘BM; i?2Q‘v rBi? i‘;2i bT+2 TQbBiBQMb x i (R)X i }MBi2N- i?2 2t@ +i- MiB@bvKK2i‘Bb2/ 2tT‘2bbBQM BM i2‘Kb Q7 Q‘i?Q;Q@ MH TQHvMQKBHb f (1) n n g N n=1 ‘2/b (k) (M ) n (x 1 ;:::x M )= /2i 1 a;b M n+1 a (x b ) /2i 1 a;b M x b1 a : a2iiBM;x i =x c +" i - n/ N = 2tT( " t) M/ iFBM; i?2 /Qm#H2 b+HBM; HBKBi N = 1/ g ! 1 -"! 0- i?2 _>a #2+QK2b (R) /2i 1 a;b M @ a 1 t (t; b ) /2i 1 a;b M b1 a ; @ t =g @ @t ; URV r?2‘2 i?2 rp2 7mM+iBQMQ7 i?2 bQ@+HH2/ T‘BM+BTH 6wwh #‘M2 bQHp2b i?2 p i? M/ q i? @Q‘/2‘ /Bz2‘2MiBH 2[miBQMb (t; ) = P(t;@ t ) (t; ) ; @ (t; ) = Q(t;@ t ) (t; ) ; UkV rBi? +QKTiB#BHBiv +QM/BiBQM [P;Q] = gUp i? ‘2/m+iBQM Q7 ES ?B2‘‘+?v (k- j)V M/ P(t;@ t )=2 p 1 g@ p t + p X n=2 u n (t)@ p n t ; Q(t;@ t )=2 q 1 g@ q t + q X n=2 v n (t)@ q n t : :2M2‘HHv- i?2 72‘KBQMB+ biiBbiB+b T‘2p2Mi mb 7‘QK iFBM; +QBM+B/2M+2 HBKBi Q7 KmHiBTH2 6wwh #‘M2b i ! j -i6 = j BM URVX >Qr2p2‘- MQMi‘BpBH bi‘m+im‘2 2K2‘;2b r?2M +QK#BMBM; i?2 p BM/2T2M/2Mi bQHmiBQMb iQ UkV- r?Qb2 H#2H b2‘p2b b M //BiBQMH [mMimK MmK#2‘X h?2 MHQ;Qmb MQiBQMb +M #2 /2}M2/ 7Q‘ i?2 Ki‘Bt Y BM i2‘Kb Q7 i?2 /mH bvbi2K b @ (t; )= P(t;@ t ) T (t; ) ; (t; ) = Q(t;@ t ) T (t; ) ; UjV r?2‘2 (f (t) @ n t ) T =( @ t ) n f (t)X :2M2‘HBb2/ q‘QMbFBM A G2if (j ) g p j =1 /2MQi2 i?2 b2i Q7 p BM/2T2M/2Mi bQHmiBQMb iQ UkVX :Bp2M T‘iBiBQM - r2 /2}M2 i?2 ;2M2‘HBb2/ q‘QMbFBM W (n) (t; ) = /2i 1 a;b n @ a 1+ a t (j b ) (t; b ) 1 = 2 = ::: r?B+? Bb MQMi‘BpBH 7Q‘ 1 n p 1X h?Bb Kv #2 2tT‘2bb2/ BM i2‘Kb Q7 i?2 a+?m‘ TQHvMQKBH S W (n) (t; ) = S (f @ k g n k=1 )W (n) ? (t; ) ; r?2‘2 ? /2MQi2b i?2 /B;‘K rBi? a = 0 8a M/ @ k (j b ) = bk @ t (j b ) X 6‘QK i?2 /2}MBM; 2[miBQMb- r2 Q#iBMp i? M/ q i? @Q‘/2‘ /Bz2‘2MiBH QT2‘iQ‘b bm+? i?i W (n) (t; ) = P (n) (t;@ t )W (n) ? (t; ) ; @W (n) (t; ) = Q (n) (t;@ t )W (n) ? (t; ) : h?2 p n BM/2T2M/2Mi bQHmiBQMb iQ i?2 #Qp2 2[miBQMb 7Q‘K i?2 p n p n HBM2‘ bvbi2K @ t ~ W (n) (t; ) = B (n) (t; ) ~ W (n) (t; ) ; @ ~ W (n) (t; ) = Q (n) (t; ) ~ W (n) (t; ) : 1X;X r?2Mp= 4-n = 2 #bBb Bb ~ W (2) = W (2) ? ;W (2) ;W (2) ;W (2) ;W (2) ;W (2) : h?2 bT2+i‘mK Q7 i?2 Gt TB‘ B (n) -Q (n) +M #2 ‘2@ i‘B2p2/ 7‘QK i?2 TQHvMQKBHb F (n) (t; P; z) = /2i 1 p n zB (n) (t;P) ; G (n) (t; P; Q) = /2i 1 p n QQ (n) (t;P) : q2 /2}M2 i?2 bT2+i‘H +m‘p2 Q7 i?2 bvbi2K #v C (n) p;q (t) = f (P; Q) 2 C 2 jG (n) (t; P; Q) = 0g ; r?B+? Bb mMB7Q‘KBb2/ #v i?2 bQHmiBQMb P(z) iQ G (n) (t; P; z) = 0X :2M2‘HBb2/ q‘QMbFBM AA qQ‘F BM T‘Q;‘2bb rBi? *?mM@hbmM; *?M UhmM;?B lXV M/ *?B@>bB2M u2? UL*haVX 6‘QK i?2 q bQHmiBQMb f (j ) g q j =1 Q7 i?2 /mH bvbi2K UjV- r2 /2}M2 ~ W (m) (t; )= /2i 1 a;b m @ a 1+ a t (j b ) (t; ) ; r?B+? Bb MQMi‘BpBH 7Q‘ 1 m q 1X h?2 bQHmiBQM b2i M/ Bib /mH ‘2 ‘2Hi2/ #v bBKTH2 GTH+2 i‘Mb7Q‘K, (t; ) = L[ ~ W (q 1) ]( ) ; (t; ) = L[W (p 1) ]( ) h?Bb H2/b mb iQ ;2M2‘H T‘QTQbH 7Q‘ (p 1)(q 1) 7mM+iBQMb- rBi? 1 n p 1 M/ 1 m q 1 W (njm) 0 (t; ) = L n 0 h ~ W (n(q m)) i (t; 1 ;::: n ) 1 = 2 = ::: rBi? ;2M2‘HBb2/ GTH+2 i‘Mb7Q‘KL n QMn p‘B@ #H2bX h?2b2 ‘2 BM QM2@iQ@QM2 +Q‘‘2bTQM/2M+2 rBi? 2Mi‘B2b Q7 i?2 E+ i#H2 7Q‘ i?2 (p;q) oB‘bQ‘Q KBMB@ KH KQ/2H- +7X h#H2 RX L[ ] W (r) [L[ ]] W (p 1) [L[ ]] L[ ~ W (q s) ] W (rjs) W (p 1js) W (r) W (p 1) h#H2 R, PM2@iQ@QM2 +Q‘‘2bTQM/2M+2 #2ir22M i?2 ;2M2‘HBb2/ q‘QMbFBMb M/ 2Mi‘B2b BM i?2 E+ i#H2 Q7 i?2 (p; q)@KQ/2H JBM _2bmHib q2 +QMbB/2‘2/ 2tT2+iiBQMb Q7 T‘Q/m+ib Q7 +?‘+i iB+ TQHvMQKBHb BM i?2 ?2‘KBiBM irQ@Ki‘Bt 2M rBi? +QBM+B/BM; bT2+i‘H T‘K2i2‘bX q2 RX 2tT‘2bb2/ i?2 p2‘;2b b ;2M2‘HBb2/ q‘QMbFBMc kX 7QmM/ i?2 bbQ+Bi2/ /Bz2‘2MiBH 2[miBQMb M/ p n p n Gt bvbi2Kc jX;2M2‘HBb2/ i?2 Q#b2‘piBQMb Q7 (9) iQ i?2 Hii2‘ 9X /2}M2/ i?2 [mMimK bT2+i‘H +m‘p2 M/ b?Qr2/ i?i b g! 0- i?2 bQHmiBQMb ‘2HBb2 i?2 *‘/v #‘M2b Q7 KBMBKH bi‘BM; i?2Q‘v MQM@T2‘im‘# 8X 7QmM/ 2pB/2M+2 7Q‘ E+ i#H2 Q7 (p 1)(q 1)/2 HHQr2/ Q#b2‘p#H2b i?i /2b+‘B#2 i?2 7mHH #‘M2 bT2+i‘mK- mbBM; /mHBivX a2KB+HbbB+H HBKBi Pm‘ +QMbi‘m+iBQM +?B2p2b i?2 HQM;@KBbbBM Q7 i?2 ‘2KBMBM; Q7 i?2 (p 1)(q 1)/2 #‘M2b UQM2 7Q‘ 2+? *‘/v bii2 Q7 i?2 KBMBKH KQ/2H- r?B+? b+‘B#2b i?2 Kii2‘ b2+iQ‘ Q7 KBMBKH bi‘BM; i?2Q BM i?2 Ki‘Bt KQ/2H, +QMbB/2‘ bQHmiBQMb iQ [P;Q] = g i?i /KBi TQr2‘ b2‘B2b 2tTMbBQM BM g = 1/ N u n (t) = X k 0 g k u [k] n (t) ; v n (t) = X k 0 g k v [k] n (t) ; bm+? i?i u [0] n (t)- v [0] n (t) ‘2 +QMbiMi UGBQmpBHH2 # ;‘QmM/- +7X 2X;X (j- 8)VX h?2M iQ H2/BM; Q g! 0- i?2 T‘BM+BTH 6wwh #‘M2 W (1j1) ? = Bb /2@ b+‘B#2/ #v i?2 bT2+i‘H +m‘p2 (e) 0=T p (Q) T q (P) : 6B;m‘2 R, a2KB+HbbB+H +m‘p2 7Q‘ (p; q) = (3; 4) AM i?2 HBKBi g! 0- i?2 bT2+i‘H +m‘p2 C (n) p;q (t) i?2M 7+iQ‘Bb2b BMiQ /Bb+QMM2+i2/ TB2+2bX 1X;X r n = 2- i?2 b2KB+HbbB+H bT2+i‘H +m‘p2 Bb ;Bp2M #v (P;Q) 2 C 2 bXiX 0= (p 1)/2 Y k=1 [T p (Q/d k ) T q (P)] 7Q‘ Q//p M/ 0=Q p/2 (p 2)/2 Y k=1 T p (Q/d k ) T q (( 1) k P) 7Q‘ 2p2M p- rBi? d k = 2 +Qb (2qk / p) ; T p (+Qb)= +Qbp : h?2 7+iQ‘bd k ‘2 T‘2+Bb2Hv i?2 #QmM/‘v 2Mi‘QTB2b bQ+Bi2/ rBi? MQM@i‘BpBH *‘/v bii2b Q7 i?2 KBM KQ/2H (e)X (R)CX JX JH/+2M- :X qX JQQ‘2- LX a2B#2‘;- M/ .X a?B?- 1t+i pbX b2KB+HbbB+H i‘;2i bT+2 Q7 i?2 KBMBKH bi‘BM;- C>1S- pQHX y9Ry- TX yky- kyy9X (k)X JQ‘QxQp- AMi2;‘#BHBiv M/ Ki‘Bt KQ/2Hb- S?vbXlbTX - pQHX jd- TTX R88- RNN9X (j) JX "2‘;‘2- :X "Q‘Qi- M/ "X 1vM‘/- _iBQMH /Bz2‘2MiBH bvbi2Kb- HQQT 2[miBQMb- M/ TTHB+iBQM iQ i?2 [@i? ‘2/m+iBQMb Q7 ES- ‘sBp 2@T‘BMib - .2+X kyRjX (9)JX "2‘iQH- "X 1vM‘/- M/ CX SX >‘M/- .mHBiv- #BQ‘i?Q;QMH TQHvMQKBHb M/ KmHiBKi‘Bt KQ/2Hb- *QKKmMXJi?XS?vbX - pQHX kkN- TTX djRky- kyykX (8)*X@hX *?M- >X A‘B2- M/ *X@>X u2?- .mHBiv *QMbi‘BMib QM ai‘BM; h?2Q‘v, AMbiMiQMb M/ bT2+i‘H M2irQ‘Fb- kyRjX (e)LX a2B#2‘; M/ .X a?B?- "‘M2b- ‘BM;b M/ Ki‘Bt KQ/2Hb BM KBMBKH UbmT2‘Vbi‘BM; i?2Q‘v- C>1S- pQHX y9yk- TX ykR- kyy9X

Transcript of Wronskians, Duality and Cardy Branes · Wronskians, Duality and Cardy Branes Author Hirotaka Irie1...

Page 1: Wronskians, Duality and Cardy Branes · Wronskians, Duality and Cardy Branes Author Hirotaka Irie1 and Benjamin Niedner2 Created Date 20141214160648Z ...

Wronskians, Duality and Cardy BranesHirotaka Irie1 and Benjamin Niedner2

1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan2Rudolf Peierls Institute for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK

E-Mail: [email protected], [email protected]

AbstractWe calculate expectations of products of characteris-tic polynomials in the double-scaled hermitian two-matrix ensemble. When all spectral parameters co-incide, these arise as solutions to an extension of thereduced KP hierarchy and are naturally expressed asa generalised Wronskian. The solutions are in one-to-one correspondence with entries in the Kac tableof a conformal minimal model and we derive a Laxsystem that associates a spectral curve to each entry.We show that in the weak-coupling limit, our resultsreduce to the decomposition of Cardy branes into prin-cipal FZZT branes conjectured by Seiberg and Shih inthe context of minimal string theory.

Hermitian two-matrix ensembleWe consider expectations of products of characteristicpolynomials

α(M)n (x1, . . . xM) =

⟨M∏i=1

det(xi −X)

⟩n×n

,

where the average is taken in the hermitian two-matrixensemble

〈O〉n×n =1

Z

∫1≤n≤N

dXdY e−Ntr[V1(X)+V2(Y )−XY ]O ,

with suitably chosen polynomials deg V1 = p, deg V2 =q. In the double scaling limit, α(M)

n computes the par-tition function of M branes in minimal string theorywith target space positions xi [1]. At finite N , the ex-act, anti-symmetrised expression in terms of orthogo-nal polynomials {α(1)

n ≡ αn}Nn=1 reads [2]

α(M)n (x1, . . . xM) =

det1≤a,b≤M αn+1−a(xb)

det1≤a,b≤M xb−1a

.

Setting xi = xc + εζi, n/N = exp(−εµt) and takingthe double scaling limit N = 1/g → ∞, ε → 0, theRHS becomes [1]

det1≤a,b≤M(∂a−1t ψ(t; ζb)

)det1≤a,b≤M ζb−1

a

, ∂t = g∂

∂t, (1)

where the wave function ψ of the so-called principalFZZT brane solves the pth and qth-order differentialequations

ζψ(t; ζ) = P(t; ∂t)ψ(t; ζ) ,

∂ζψ(t; ζ) = Q(t; ∂t)ψ(t; ζ) ,(2)

with compatibility condition [P,Q] = g (pth reductionof KP hierarchy [2, 3]) and

P(t; ∂t) = 2p−1g∂pt +

p∑n=2

un(t)∂p−nt ,

Q(t; ∂t) = 2q−1g∂qt +

q∑n=2

vn(t)∂q−nt .

Generally, the fermionic statistics prevent us fromtaking a coincidence limit of multiple FZZT branesζi → ζj, i 6= j in (1). However, a nontrivial structureemerges when combining the p independent solutionsto (2), whose label serves as an additional quantumnumber. The analogous notions can be defined for thematrix Y in terms of the dual system as

∂ηχ(t; ζ) = P(t; ∂t)Tχ(t; ζ) ,

ηχ(t; ζ) = Q(t; ∂t)Tχ(t; ζ) ,

(3)

where (f (t) ◦ ∂nt )T = (−∂t)n ◦ f (t).

Generalised Wronskian ILet {ψ(j)}pj=1 denote the set of p independent solutionsto (2). Given a partition λ, we define the generalisedWronskianW

(n)λ (t; ζ) = det

1≤a,b≤n

(∂a−1+λat ψ(jb)(t; ζb)

)∣∣∣ζ1=ζ2=...ζ

which is nontrivial for 1 ≤ n ≤ p − 1. This may beexpressed in terms of the Schur polynomial Sλ

W(n)λ (t; ζ) = Sλ({∂k}nk=1)W

(n)∅ (t; ζ) ,

where ∅ denotes the diagram with λa = 0 ∀a and∂kψ

(jb) = δbk∂tψ(jb). From the defining equations,

we obtain pth and qth-order differential operators suchthat

ζW(n)λ (t; ζ) = P

(n)λ (t; ∂t)W

(n)∅ (t; ζ) ,

∂ζW(n)λ (t; ζ) = Q

(n)λ (t; ∂t)W

(n)∅ (t; ζ) .

The(pn

)independent solutions to the above equations

form the(pn

)×(pn

)linear system

∂t ~W(n)(t; ζ) = B(n)(t; ζ) ~W (n)(t; ζ) ,

∂ζ ~W(n)(t; ζ) = Q(n)(t; ζ) ~W (n)(t; ζ) .

E.g. when p = 4, n = 2 a basis is

~W (2) =

(W

(2)∅ ,W

(2),W

(2),W

(2),W

(2),W

(2)

).

The spectrum of the Lax pair B(n), Q(n) can be re-trieved from the polynomials

F (n)(t;P, z) = det(1(p

n

)z − B(n)(t;P )),

G(n)(t;P,Q) = det(1(p

n

)Q−Q(n)(t;P )).

We define the spectral curve of the system byC(n)p,q (t) = {(P,Q) ∈ C2|G(n)(t;P,Q) = 0} ,

which is uniformised by the solutions P (z) toG(n)(t;P, z) = 0.

Generalised Wronskian IIWork in progress with Chuan-Tsung Chan (TunghaiU.) and Chi-Hsien Yeh (NCTS). From the q solutions{χ(j)}qj=1 of the dual system (3), we define

W̃(m)λ (t; η) = det

1≤a,b≤m

(∂a−1+λat χ(jb)(t; η)

),

which is nontrivial for 1 ≤ m ≤ q−1. The solution setand its dual are related by a simple Laplace transform:ψ(t; ζ) = L[W̃ (q−1)](ζ) , χ(t; η) = L[W (p−1)](η)

This leads us to a general proposal for (p− 1)(q − 1)functions, with 1 ≤ n ≤ p− 1 and 1 ≤ m ≤ q − 1

W (n|m)λ′λ (t; ζ) = L⊗n

λ′

[W̃

(n(q−m))λ

](t; ζ1, . . . ζn)

∣∣∣ζ1=ζ2=...ζ

with a generalised Laplace transform L⊗nλ on n vari-

ables. These are in one-to-one correspondence withentries of the Kac table for the (p, q) Virasoro mini-mal model, cf. Table 1.

L[χ] W (r)[L[χ]] W (p−1)[L[χ]]

L[W̃ (q−s)] W (r|s) W (p−1|s)

ψ W (r) W (p−1)

Table 1: One-to-one correspondence between the generalisedWronskians and entries in the Kac table of the (p, q)-model

Main ResultsWe considered expectations of products of characteris-tic polynomials in the hermitian two-matrix ensemblewith coinciding spectral parameters. We1. expressed the averages as a generalised Wronskian;2. found the associated differential equations and(

pn

(pn

)Lax system;

3. generalised the observations of [4] to the latter;4. defined the quantum spectral curve and showed that

as g → 0, the solutions realise the ”Cardybranes” of minimal string theory non-perturbatively;

5. found evidence for a Kac table of (p− 1)(q − 1)/2allowed observables that describe the full branespectrum, using duality.

Semiclassical limitOur construction achieves the long-missing realisationof the remaining of the (p − 1)(q − 1)/2 branes (onefor each Cardy state of the minimal model, which de-scribes the ”matter sector” of minimal string theory)in the matrix model: consider solutions to [P,Q] = gthat admit a power series expansion in g = 1/N

un(t) =∑k≥0

gku[k]n (t) , vn(t) =∑k≥0

gkv[k]n (t) ,

such that u[0]n (t), v[0]n (t) are constant (”Liouville back-ground”, cf. e.g. [3, 5]). Then to leading order asg → 0, the principal FZZT brane W (1|1)

∅ = ψ is de-scribed by the spectral curve [6]

0 = Tp(Q)− Tq(P ) .

Figure 1: Semiclassical curve for (p, q) = (3, 4)

In the limit g → 0, the spectral curve C(n)p,q (t) then

factorises into disconnected pieces. E.g. when n = 2,the semiclassical spectral curve is given by (P,Q) ∈C2 s.t.

0 =

(p−1)/2∏k=1

[Tp(Q/dk)− Tq(P )]

for odd p and

0 = Qp/2

(p−2)/2∏k=1

[Tp(Q/dk)− Tq((−1)kP )

]for even p, with

dk = 2 cos(2πqk/p) , Tp(cosφ) = cos pφ .The factors dk are precisely the boundary entropies as-sociated with non-trivial Cardy states of the minimalmodel [6].

[1] J. M. Maldacena, G. W. Moore, N. Seiberg, and D. Shih, “Exact vs. semiclassical target space of the minimal string,” JHEP, vol. 0410, p. 020, 2004.

[2] A. Morozov, “Integrability and matrix models,” Phys.Usp., vol. 37, pp. 1–55, 1994.

[3] M. Bergère, G. Borot, and B. Eynard, “Rational differential systems, loop equations, and application to the q-th reductions of KP,” ArXiv e-prints, Dec. 2013.

[4] M. Bertola, B. Eynard, and J. P. Harnad, “Duality, biorthogonal polynomials and multimatrix models,” Commun.Math.Phys., vol. 229, pp. 73–120, 2002.

[5] C.-T. Chan, H. Irie, and C.-H. Yeh, “Duality Constraints on String Theory: Instantons and spectral networks,” 2013.

[6] N. Seiberg and D. Shih, “Branes, rings and matrix models in minimal (super)string theory,” JHEP, vol. 0402, p. 021, 2004.