Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview •...

35
1 1 EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS) Wright State University Wright State University EE480/680 Micro-Electro-Mechanical Systems (MEMS) Summer 2006 LaVern Starman, Ph.D. Assistant Professor Dept. of Electrical and Computer Engineering Email: [email protected] 2 EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS) Transducers: Actuators Transducers: Actuators

Transcript of Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview •...

Page 1: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

1

1EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Wright State UniversityWright State University

EE480/680Micro-Electro-Mechanical Systems

(MEMS)Summer 2006

LaVern Starman, Ph.D.Assistant Professor

Dept. of Electrical and Computer EngineeringEmail: [email protected]

2EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Transducers: ActuatorsTransducers: Actuators

Page 2: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

2

3EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

OverviewOverview

• Transducers• Basic Mechanics• Actuators

• Electrostatic• Electro-Thermal• Bimorph Electro-Thermal• Residual Stress• Mechanical Components

4EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

TransducersTransducers

• Transducer: a device that transfers power from one form to another

• Transducers can be divided into two categories• Sensors – reacts to environment• Actuators – acts on environment

• Can you think of common examples of sensors and actuators?

Page 3: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

3

5EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

TransducersTransducers

• Transducer Schemes• One or more of the below components may or may not be

utilized• A transducer can perform a dual role as sensor and

actuator

Sensor Processor ActuatorInput Signal Output Signal

(measureand) (input transducer) (output transducer)

6EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Transducers: Examples from the Transducers: Examples from the Human BodyHuman Body

Rods & Cones

Retina

Sigh

t

Hea

ring

Tou

ch

Smel

l

Taste

Human Senses

Choclea NervesOlfactory

Receptor CellsTaste Buds

Sign

al C

lassi

ficat

ion

Mea

sura

nd

Radiant

Mechanical/Thermal Chemical

Biological

Mechanical

Light inten

sity

and wavelength

Pressure intensity

and frequencyPressure/Force/Heat Transfer Odorants

Proteins

Actuators Muscles, Glands, Mind

Sensor

s

Page 4: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

4

7EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

TransducersTransducers

• Sensor Classification

Sugars, proteins, hormones, antigens, and etc.Biological

Humidity, pH level and ions, concentration of gases, vapors and odors, toxic and flammable materials, pollutants, and etc.

Chemical

Magnetic field, flux, magnetic moment, magnetization, magnetic permeability, and etc.

Magnetic

Position, displacement, velocity, acceleration, force, torque, pressure, mass, flow, acoustic wavelength and amplitude, and etc.

Mechanical

Gamma rays, X-rays, ultra-violet, visible, infra-red, micro-waves, radio waves, phase, and etc.

Radiation

Temperature, heat, heat flow, entropy, heat capacity, and etc.Thermal

Charge, current, voltage, resistance, conductance, capacitance, inductance, dielectric permittivity, phase, frequency, and etc.

Electrical

MeasurandsSignal Classification

After Gardner, Microsensors, 1994.

8EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

TransducersTransducers

• Actuator Classification

Provide mechanical actuation, computing, etc.Biological

Change/Provide humidity, pH level and ions, concentration of gases, vapors and odors, muscle stimulation, and etc.

Chemical

Provide magnetic field, flux, magnetic moment, magnetization, magnetic permeability, etc.

Magnetic

Provide displacement, velocity, acceleration, force, torque, pressure, mass, flow, and etc.

Mechanical

emit light and other radiationRadiation

heat, cool, radiate, and etc.Thermal

Provide charge, current, voltage, and etc.Electrical

ActionSignal Classification

Page 5: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

5

9EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

TransducersTransducers

• Ideal Sensor Characteristics• Linear Operation• Noise Free Response• Zero Baseline• Fast Response Time• Large Frequency Bandwidth• No Saturation• High Sensitivity• High Resolution• Reliable and Rugged• No Performance Drift• Intolerant to Interference• No Hysteresis, Repeatable• Low Power Consumption• Simple Construction

• Ideal Actuator Characteristics• Aforementioned, plus ….

• High Force Per Unit Volume• Large Deflections• Simplicity of Drive and Control• Simple Interface

10EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

OverviewOverview

• Transducers• Basic Mechanics• Actuators

• Electrostatic• Electro-Thermal• Bimorph Electro-Thermal• Residual Stress• Mechanical Components

Page 6: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

6

11EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Axial Stress & StrainAxial Stress & Strain

• Strain, ε, is the deformation of a solid (ΔL/L) due to stress• Stress, σ, is the force acting on a unit area of a solid (F/A)• The Young’s Modulus, E, is the ratio of stress over strain

• describes the “firmness” of a material (hard, E Large, soft, E small)

F

Lo + ΔL

F

D Lo

stressEstrain

σε

= = (typically in N/m2)

Micromachined Transducers Sourcebook G. Kovacs ©1997

12EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Shear Stress & StrainShear Stress & Strain

• Shear stress is force applied to an object in the plane of an opposing force• Such as an anchor point

• The shear modulus of elasticity, G, represents the degree of displacement an object will allow under shear stress.

• Shear strain, γ, is related to the angle that a deformed element’s sides make with respect to its original shape

FAG XL

τγ

= =Δ

FAG XL

τγ

= =Δ

shear stressshear displacement angle (rad) (typically in N/m2)

Micromachined Transducers Sourcebook G. Kovacs ©1997

Page 7: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

7

13EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

FAK VV

FAK VV

Shear Stress & Strain Cont. Shear Stress & Strain Cont.

2 (1 ) 3 (1 2 )E G Kμ μ= + = −

For isotropic materials (those having identical properties in every direction, generally not the case for most single-crystal materials, Shear modulus, G, is related to the elastic modulus, E, by

µ is Poisson’s ratioK is the bulk modulus

The bulk modulus is defined as the ratio of hydrostatic stress to volume compression

The bulk modulus of a material represents its volume change under uniform pressure. In general, solids are less compressible than liquids due to their rigid atomic lattices

Water – K = 2.0 x 109 N/m2

Aluminum – K = 7 x 1010 N/m2

Steel – K = 14 x 1010 N/m2

For Ex.

hydrostatic stressvolume compression in N/m2

Micromachined Transducers Sourcebook G. Kovacs ©1997

14EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

PoissonPoisson’’s Strains Strain

ao

to

LLD

D

ε

ε

Δ=

Δ=

axial strain

transverse strain

t o

a

o

DD

LL

εμε

Δ

= − = −Δ

Poisson’s ratio ν or µ always defined as a positive value

t o

a

o

DD

LL

εμε

Δ

= − = −Δ

transverse strainlongitudinal strain

Typical values are 0.2 to 0.5 for most materialsFor most metals, Poisson’s ratio is ~ 0.3Rubber’s have a Poisson’s ratio closer to 0.5Cork has a Poisson’s ratio close to 0 Micromachined Transducers Sourcebook G. Kovacs ©1997

Page 8: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

8

15EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Advantages• Simple Designs• Simple Fabrication• High Frequency Operation• Low Power

• Disadvantages• Low Force Per Unit Volume• High Drive Voltages• Nonlinear Operation

16EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Parallel Plate• Two plate like structures facing each other, with a potential

difference between them, will be drawn together due to the force of electrostatic attraction.

L

d

Top Electrode

Ab

a

Flexure

Bottom ElectrodeAnchor V

Page 9: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

9

17EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Parallel Plate ExamplesW. D. Cowan, AFIT

Piston Mirror

100

µm

Vertical Switch

N.O.

Attraction Plate

Contact Plates

N.C.

Attr

actio

n Pl

ate

Solder Joint

200 µm

N.O. N.O. N.C.

18EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Parallel Plate Examples: Texas Instruments Digital Micromirror DeviceTM

SXGA device with black aperture: 1280x1024; 1,310,720 mirrors

16 µm

Page 10: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

10

19EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Notes:• Displacement vs. Actuation Voltage• Spring Constants• Damping Coefficient• Lumped Element Dynamic Model

20EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Rotary

Cross section of motorCronos

Pin RotorStator

1 2 3

1

1

1

2

2

2

3

3 3 Cronos Torque Motor

Wobble Motor

1 2

3

4

5

6

78

9

10

11

12

Page 11: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

11

21EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Comb Drive

Anchor

Folded Spring Suspension

Truss

Moveable Comb

Stationary Combn = 30

Drive Line

Sense Line Ground

Stationary Comb

Bumper/Limiter

22EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Comb Drive• Sandia Example

Anchor

Folded Spring Suspension

Truss

Moveable Comb

Stationary Comb

Ground

Stationary Comb

Bumper

Page 12: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

12

23EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Comb Drive Notes:• Displacement vs. Actuation Voltage• Spring Constants

24EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Scratch Drive• First demonstrated by:

• T Akiyama and K. Shono, “Controlled Stepwise Motion in Polysilicon Microstructures, Journal of Microelectromechanical Systems, vol. 2, pp. 106-110, Sept 1993.

+

~-

Δx ~ few nmstrong force

Page 13: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

13

25EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Scratch Drive

26EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Scratch Drive

75 V0-P

150 V0-P

30 V0-P

30 V0-P

V0-P

1/fDrive

Function Generator & Amplifier

Probe

Page 14: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

14

27EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• When driving with a zero-bias input signal, the frequency of operation is twice the input signal frequency!

Drive Voltage

1/fDrive +

~-

VActuator Displacement

1/2fDrive

28EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectrostaticActuators: Electrostatic

• Cantilever• Simpler Structure• Modeling Voltage vs. Deflection more

complicated.

K. E. Petersen, “Dynamic Micromechanics on Silicon: Techniques and Devices,” IEEE Transactions on Electron Devices, vol. ED-25, no. 10, 1978.

Page 15: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

15

29EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: Resonant Actuators: Resonant FrequencyFrequency

• Best and Easiest: By Eye• 2nd Best: Electrically (Network/Spectrum Analyzer/Impedance Analyzer)

W. D. Cowan, V. M. Bright, and G. C. Dalton, “Measuring Frequency Response of Surface-Micromachined Resonators,” The Proceedings of SPIE, vol. 3225, pp. 32-43, 1997. Figures formatted by Victor Bright.

Ch 1

Ch 2

1570A O’Scope

S2 R2 T2

4195A Network/Spectrum Analyzer

- +

6C3000 DC Power Supply

205B Instrumentation Amp

In Out

In Out

SR560 Low Noise Preamp

Vac

uum

Cha

mbe

r

Ch 1

Ch 2

1570A O’Scope

S2 R2 T2

4195A Network/Spectrum Analyzer

- +

6C3000 DC Power Supply

205B Instrumentation Amp

In Out

In Out

SR560 Low Noise Preamp

Cantilever

Comb Setup Cantilever Setup

Com

b R

eson

ator

Vacuum Chamber

30EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

ActuatorsActuators

• Transducers• Actuators

• Electrostatic• Electro-Thermal• Bimorph Electro-Thermal• Residual Stress• Mechanical Components

Page 16: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

16

31EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Advantages• Simple Designs• Simple Fabrication• High Force Per Unit Volume• Low Voltage

• Disadvantages• Temperature Dependent• High Electric Power Consumption• Low Frequency Operation

32EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Material expands due to Ohmic or Joule Heating causing motion of actuator structure.

L

t

t

AT(0) = T1

T(L) = T2

x0

I+ V -

02

2

=+∂∂ q

xTk &

( ) ( ) ( ) 1122 1

21 TxTT

LxLx

kqxT +−+−=&

Heat Transfer

( ) ( )( )[ ]∫ −+=x

new dTTxL0

01 χχα

Thermal Expansion

q&

ρρ

LAV

RV

ALIRIq

2222 -or - Power ====

ρρ

2

2

2

2

-or - VolumePower

LV

AIq ==&

Page 17: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

17

33EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Laterally/Horizontally Deflecting• Motion that is parallel to the

plane of the substrate

d

h

Lc Lf

Lh Electrically Insulated Substrate

Wc

Whg

anchors

hot armcold arm

direction of actuation

polysiliconWf

200 μm

Example properties needed for modeling an electro-thermal actuator:ρ = electrical resistivity = 2.3 × 10-5 Ωmα = coefficient of thermal expansion = 29 × 10-7 K-1

αr = temperature coefficient of resistance = 1.25 × 10-3 K-1

k = thermal conductivity = 32 W/mKE = Young’s modulus = 169 GPaν = Poisson’s ratio = 0.22

Comtois et al., 1995 Optimum Dimensions:1. g = as small as possible2. h = as tall as possible3. Wc/Wh = 74. Wh = as small as possible5. Lf ≈ Lh/46. Increasing the temp. difference between the cold and hot arm increases deflection.

34EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Laterally (Horizontally) Deflecting35 μm 200 μm

14 μ

m

V. Bright et al., AFIT, 1996

Comtois et al., 1995

Lh = 200 µmWh = Wf = g = 2 µmLf = 35 µmWc = 14 µmR = 1558 ΩForce ≈ 20 µN

Page 18: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

18

35EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Low resistance wiring and Si/Au eutectic

Eutectic Compound 18.6%Si/81.4%Au with melting temperature of 363 °C

“Burned out” electro-thermal actuator hot arm

36EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

conduction through airTsub = 293 K

Air

Actuators: ElectroActuators: Electro--ThermalThermal

• Temperature Distribution (Relative Magnitude)

0

6.7 V, 293 K

0 V, 293 Kx

hot arm

cold arm

|200

Tem

pera

ture

(Kel

vin)

1050.95

0 x (μm) 2000 x (μm)200

Cold Arm

Hot Arm

293110.9

584.1

adiabatic top and vertical sides

Page 19: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

19

37EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermalYokeDimple TabActuatorWiring

R. Reid, AFIT, 1996

R. Reid, AFIT

AFIT

AFIT

38EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

R. Reid, AFIT, 1996

V. Bright, AFIT

Page 20: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

20

39EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

D. Burns et al., AFIT

252 µm

Actuators: ElectroActuators: Electro--ThermalThermal

• Double Hot Arm

dimple

current path

cold armflexure

outer hot arm

anchor

substrate contact

inner hot arm anchor

Design measurements for thermal actuators

Comparison of single hot-arm (1-H) and double hot-arm (2-H) actuator operating properties

direction of movement

40EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Double Hot Arm

D. Burns et al., AFIT

Page 21: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

21

41EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Vertically Deflecting

cold arm (Poly1)

anchors hot arms (Poly2)

actuator tip

Poly0 former

V

V

4 µm

W. D. Cowan, AFIT

R. Reid, AFIT, 1996

42EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Piston Mirrors

W. D. Cowan, AFIT

An actuator

Page 22: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

22

43EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Assembled Devices: Micro-Robot Leg

270 µm

44EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Low resistance wire necessary for electro-thermal actuation

Chains are very high resistance, but will provide potential for electrostatic actuators

Spring wire is a good low resistance electrical path

5 µm

2 µm

Does not work for electro-thermal

Page 23: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

23

45EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Assembled Devices: Mirror & Micro-Grippers

W. D. Cowan, AFIT J. Comtois, AFIT

46EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Back bending• The permanent plastic

deformation of a “hot arm”.• Performed once before

beginning normal operation.

W. D. Cowan, AFIT

R. Reid, AFIT, 1996

Page 24: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

24

47EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• The design of an electro-thermal actuator is a compromise between thermal and mechanical efficiency!

• Optimized design by J. Jonsmann et al., “Compliant Electro-thermal Microactuators,” 1999.• Design domain size• Location of electrodes• Location of work point• Electrical resistance• Amount of material used• Available voltage

500 µm

48EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: ElectroActuators: Electro--ThermalThermal

• Optional:• Analytical modeling of the temperature distribution of a laterally deflecting electro-thermal

actuator.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10-4

0

200

400

600

800

1000

1200

1400

1600

Distance along actuator (m)

Tem

pera

ture

(Cel

sius

)

Tmax = 1523.7436

xTmax = 130.3 µm

Page 25: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

25

49EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

OverviewOverview

• Transducers• Actuators

• Electrostatic• Electro-Thermal• Bimorph Electro-Thermal• Residual Stress• Mechanical Components

50EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: Bimorph ElectroActuators: Bimorph Electro--Thermal Thermal

Vanderbilt

• An actuator made up of a sandwich of at least two layers with different coefficients of thermal expansion and an internal electric heater.

• Ex. M. Ataka, S. Omofsks, N. Takeshima, and H. Fujita, "Fabrication and operation of polyimide bimorph actuators for a ciliary motion," IEEE/ASME Journal of Microelectromechanical Systems, vol. 2, no. 4, pp. 146-150, Dec. 1993.

Page 26: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

26

51EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: Bimorph ElectroActuators: Bimorph Electro--ThermalThermal

polyimide 2, α2

metal heater (gold & nickel)

direction of actuation

500 µm

100 µm

6 µm

21021

221

))((6)(

ttTTttR−−

+=

ααpolyimide 1, α1

R = Radius of Curvaturet = thicknessα = coefficient of thermal expansionT = temperatureT0 = reference temperature

Actively moves when heated by an internal electric heater.

Kovacs

α2 > α1T < T0

Error!

52EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

OverviewOverview

• Transducers• Actuators

• Electrostatic• Electro-Thermal• Bimorph Electro-Thermal• Residual Stress• Mechanical Components

Page 27: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

27

53EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: Residual Stress Actuators: Residual Stress

• A passive actuator, usually in the form of a cantilever, made up of a sandwich of at least two layers with different coefficients of thermal expansion.

Assembled with residual stress cantilevers.

Possibly assisted by unintentional agitation during release, rinse, and/or dry.

270 µm

stressed cantilevers

54EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: Residual StressActuators: Residual Stress

microrobot leg

270 µm

stressed cantilever

20-23 µmAssembled with intentional agitation during release and rinse.

Assisted by stressed cantilevers.

Page 28: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

28

55EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: OtherActuators: Other

• Most other actuators are further extensions of the basic examples covered in the previous slides.

• Other types of actuation include:• Piezoelectric• Magnetic / Electro-Magnetic• Pneumatic• Shape Memory Alloy

56EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: PiezoelectricActuators: Piezoelectric• In a piezoelectric material, an applied voltage induces

an internal stress, resulting in an expansion of the material.

• Conversely, for sensor use, the application of an external force induces an electric field across the material.

• Ex. M. J. Mescher et al., “A Novel High-speed Piezoelectric Deformable Varifocal Mirror For Optical Applications,” 2002.

PZT

Page 29: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

29

57EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: Magnetic / ElectroActuators: Magnetic / Electro--MagneticMagnetic

• Ex. H. Rothuizen et al., “Compact Copper/epoxy-based Electromagnetic Scanner for Scanning Probe Applications,” 2002

58EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: PneumaticActuators: Pneumatic

• Ex. Y. K. Lee et al., “A Multi-channel Micro Valve for Micro Pneumatic Artificial Muscle,” 2002.

Page 30: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

30

59EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Actuators: Shape Memory Alloy (SMA)Actuators: Shape Memory Alloy (SMA)

• Ex.: S. Takeuchi, “Three Dimensional SMA Microelectrodes with Clipping Structure for Insect Neural Recording,” 1999.

TiNi

60EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

OverviewOverview

• Transducers• Actuators

• Electrostatic• Electro-Thermal• Bimorph Electro-Thermal• Residual Stress

• Mechanical Components

Page 31: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

31

61EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

lh2

lh1

Solder

lh1Substrate

Structure 1

Structure 2

α

lh1

lh2

tp2

tp1

)sin()cos( 21

1 αα pp

h

ttl

+≥

)sin()cos(21

2 ααpp

h

ttl

+≥

lh1 + lh2 ≥ minimum fabrication spacing (for α > 90°)

Mechanical Components: Substrate or Staple HingesMechanical Components: Substrate or Staple Hinges

Poly2Poly1

Anchor2

3 µm

62EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Mechanical Components: Scissor Mechanical Components: Scissor HingesHinges

• “Up - Folding” ⎟⎠⎞

⎜⎝⎛≥

2cot α

ph tl

lh ≥ minimum fabrication spacing (for α > 90°)

Structure 2

α

lh

tpStructure 1

Solder

lh

lhlh

minimumspacing

Substrate Side

Poly 2Poly 1

Substrate Side

Page 32: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

32

63EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Mechanical Components: Scissor Mechanical Components: Scissor HingesHinges

• “Down - Folding”

Structure 1

Poly 2Poly 1

Substrate Side

Structure 2

64EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Mechanical Components: HingesMechanical Components: Hinges

Up - Folding

Down - Folding

Substrate Hinges

Slider

Page 33: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

33

65EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Mechanical Components: Pin JointMechanical Components: Pin Joint

66EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Mechanical Components: LinkagesMechanical Components: LinkagesPlate 2

Pull Up Tandem

Push Up

200 µm

Plate 1

LinkagePlate 1

Plate 2

Linkage

Plate 1

Plate 2

Linkage

Page 34: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

34

67EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Mechanical Components: LocksMechanical Components: Locks

68EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Mechanical Components: LocksMechanical Components: Locks

131 μm

4 μm steps

Locking Mechanism

Page 35: Wright State University › people › faculty › kxue › mems › MEMS_4... · Overview • Transducers scina Mhcce•Bisa • Actuators • Electrostatic • Electro-Thermal •

35

69EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Mechanical Components: SpringsMechanical Components: Springs

70EE 480/680, Summer 2006, WSU, L. Starman MicroElectroMechanical Systems (MEMS)

Mechanical Components: OtherMechanical Components: Other

• Gears• Flexible Hinges• Corrugation or Stiffening

………