WP 2. HYDROL

60
Logo grupo WP 2. HYDROL WP2. HYDROL - Surface and groundwater hydrology. Associated processes at different scales. Presentation about: work done and work to do in the next future

description

WP 2. HYDROL. WP2. HYDROL - Surface and groundwater hydrology. Associated processes at different scales. Presentation about: work done and work to do in the next future. Three major tasks: - PowerPoint PPT Presentation

Transcript of WP 2. HYDROL

Page 1: WP 2. HYDROL

Logo grupo

WP 2. HYDROL

WP2. HYDROL - Surface and groundwater hydrology. Associated processes at different scales.

Presentation about: work done and work to do in the next future

Page 2: WP 2. HYDROL

Logo grupo

Three major tasks:

i) To analyze the impact of the interaction processes in water interfaces (water and sediments accumulated in dams, river beds, hyporreic zone, infiltration ponds,…) on water quality in the study basins

ii) To characterize the effects of artificial recharge operations on water quality

iii) To determine the likelihood of chemical compounds to reach the water bodies in concentrations exceeding a given threshold.

TASKS

Page 3: WP 2. HYDROL

Logo grupo

The boundary conditions…

D2.1. Characterization of processes taking place at the different interfaces within water bodies, with emphasis on reactive transport development (UPC) (month 18).

Training activity: Managed artificial recharge for sustainable water management under varying climate conditions: quantitative and qualitative aspects. Organized by UPC in collaboration with UPM and IDAEA-CSIC.

• So, first processes; then applications to the sites

Page 4: WP 2. HYDROL

Logo grupo

Fate of micropollutants: batch experiments (UPC + IDAEA)

Page 5: WP 2. HYDROL

Logo grupo

0

2.5

5

7.5

10

0 1 10 100time [d]

C [

mM

]

0

50

100

0 1 10 100Time [d]

C/C

o [

%]

0

50

100

0 1 10 100Time [d]

C/C

o [

%]

NO3 NO2 Alk

DOC

DCF

SMX

SMX

DCF

a)

b)

c)

0.1

LDet

Figure 1: results for “Experiment 1” (individual pollutant at initial concentration of 1microg/L ).

a) chemical evolution with time in the biotic NO3-reducing experiment;

b) evolution with time of the average normalized concentration (with respect to the initial value C0) of diclofenac (DCF) and sulfamethoxazole (SMX) in the biotic test. “LDet” stays for Limit of Determination;

c) idem in the abiotic test.

Page 6: WP 2. HYDROL

Logo grupo

0

20

40

60

80

0 1 10 100time [d]

C [

mM

]

0

25

50

75

100

125

0 1 10 100Time [d]

C/C

o [

%]

0

25

50

75

100

125

0 1 10 100Time [d]

C/C

o [

%]

NO3

Alk

DCF

SMX

SMX

DCF

DOC

APP

APP

NO2

a)

b)

c)

Figure 2: results for “Experiment 2” (individual pollutant at initial concentration of 1mg/L ).

a) chemical evolution with time in the biotic NO3-reducing experiment;

b) evolution with time of the average normalized concentration (with respect to the initial value C0) of Acetaminophen (APP), DCF and SMX in the biotic test. “

c) idem in the abiotic test.

Page 7: WP 2. HYDROL

Logo grupo

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 10 100time [d]

DC

F, N

O2

-DC

F

[mic

rog

/L]

0

1

2

3

4

5

NO

2 [

mm

ol/L

]

DCF

NO2-DCF

Nitrite

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 10 100time [d]

SM

X, 4

-NO

2-S

MX

[mic

rog

/L]

0

1

2

3

4

5

NO

2 [

mm

ol/L

]

SMX

4-NO2-SMX

Nitrite

0

200

400

600

800

1000

1 10 100time [d]

DC

F, N

O2

-DC

F

[mic

rog

/L]

0

2

4

6

8

10

NO

2 [

mm

ol/L

]

DCFNO2-DCFNitrite

0

200

400

600

800

1000

1200

1 10 100time [d]

SM

X, 4

-NO

2-S

MX

[mic

rog

/L]

0

2

4

6

8

10

NO

2 [m

mo

l/L

]

SMX

4-NO2-SMX

Nitrite

a)

c)

b)

d)

Figure 3: Evolution of DCF, Nitro-DCF (NO2-DCF), and nitrite in the biotic series of “Experiment 1” (plot “a)”) and “Experiment 2” (plot “b”).

Evolution of SMX, 4-Nitro-SMX (4-NO2-SMX), and nitrite in the biotic series of “Experiment 1” (plot “c)”) and “Experiment 2” (plot “d”).

Page 8: WP 2. HYDROL

Logo grupo

Fate of micropollutants: real site (UPC + IDAEA)

• Based on column experiments

• Artificial recharge facility

• Organic matter layer: 60 cm of compost + natural soil (40 % – 60%)

• Plus some iron hydroxide

• The test has just started…

Page 9: WP 2. HYDROL

Logo grupo

Page 10: WP 2. HYDROL

Logo grupo

Exchange processes: coupling cation exchange with sorption

Page 11: WP 2. HYDROL

Logo grupo

Biofilm transient impact upon recharge/ clogging (UPC + ICRA)

Soil wetting and feeding

Biofilm Dessication /scrubbing

Biofilm development

Soil rewetting

Page 12: WP 2. HYDROL

Logo grupo

Sensor and experimental set up

Tank to couple hydrology and biology Coarse and sandy soil collected

from the pound in 3 locations

Page 13: WP 2. HYDROL

Logo grupo

Abiotic measurments

Soil moisture, EC and temperature

Water suction

Water flow

Page 14: WP 2. HYDROL

Logo grupo

Biotic measurments

Microlysimeter, collection of liquid samples

Dissolved oxygen, conductivity, pH/ORP nitrate, chloride and temperature

Eventually planar octopodes to measure oxygen

Imaging surface

Page 15: WP 2. HYDROL

Logo grupo

INFILTRATION /FEEDING

P

Page 16: WP 2. HYDROL

Logo grupo

BIOFILM FORMATION

P

Page 17: WP 2. HYDROL

Logo grupo

BIOFILM CLOGGING

P

Page 18: WP 2. HYDROL

Logo grupo

DESSICATION/SCRUB

Page 19: WP 2. HYDROL

Logo grupo

REWETTING

Page 20: WP 2. HYDROL

Logo grupo

Processes: facies delineation/reconstruction

• Very similar to CSI

• With little (to no) information, reconstruct as best as possible the undersampled formation

Page 21: WP 2. HYDROL

Logo grupo

Modelling efforts on reactive transport (UPC+ UPM)

• Tool development, to be started soon

Page 22: WP 2. HYDROL

Logo grupo

Original figure. Selection of 10 random samples

Realization 1 Realización 2 Realización 3

Realización 50 Realización 100

Page 23: WP 2. HYDROL

Logo grupo

Classsical Kernel Regression Orden 2

CKR2 (Iteración 0)

Figura original

Realización 1 Realización 2 Realización 3

Realización 50 Realización 100

Page 24: WP 2. HYDROL

Logo grupoSteering Kernel Regression Orden 2

SKR2 (Iteración 1)

Figura original

Realización 1 Realización 2 Realización 3

Realización 50 Realización 100

Page 25: WP 2. HYDROL

Logo grupoSteering Kernel Regression Orden 2

SKR2 (Iteración 2)

Figura original

Realización 1 Realización 2 Realización 3

Realización 50 Realización 100

Page 26: WP 2. HYDROL

Logo grupo

Concentric formations

Page 27: WP 2. HYDROL

Logo grupo

ARTIFICIAL RECHARGE ACTIVITIES

En zanjas En superficie

Infiltrómetro de “Doble Anillo”

Page 28: WP 2. HYDROL

Logo grupo

Sitio de estudio en Sant Vicenç dels Horts:

Ensayos puntuales para la medición del capacidad de infiltración de la superficie de la balsa

II. Interpretación

Page 29: WP 2. HYDROL

Logo grupo

Sitio de estudio en Sant Vicenç dels Horts:

Ensayos puntuales para la medición del capacidad de infiltración de la superficie de la balsa

III. Resultados

Punto Infiltración (m/día)

Enero 09

S1 0.2

S2 2.6

S3 2.9

S4 3.3

S5 12.9

S6 12.6

Page 30: WP 2. HYDROL

Logo grupo

Sitio de estudio en Sant Vicenç dels Horts:

Mapa de variabilidad espacial de los parámetros físicos y hidráulicos en la superficie de la balsa de infiltración (SIP)

Page 31: WP 2. HYDROL

Logo grupo

Sitio de estudio en Sant Vicenç dels Horts:

Resultados de un ensayo de inundación

Page 32: WP 2. HYDROL

Logo grupo

Sitio de estudio en Sant Vicenç dels Horts:

Estado de la balsa antes del ensayo de infiltración

Page 33: WP 2. HYDROL

Logo grupo

Sitio de estudio en Sant Vicenç dels Horts:

Estado de la balsa durante el ensayo

Colmatación por error humano («human failure»)

Error de cálculo, diseño, aleatoriedad de estabilidad de las estructuras, eventos extremos, vandalismo, …

Page 34: WP 2. HYDROL

Logo grupo

Sitio de estudio en Sant Vicenç dels Horts:

Estado de la balsa después del ensayo de infiltración

Colmatación por efectos naturalesCrecimiento de algae, trapping de coloides, sedimentación de material fino en suspencion, precipitacíon de minerales , …

Page 35: WP 2. HYDROL

Logo grupo

LOCAL INFILTRATION VARIATIONS

Punto Infiltración (m/día) Junio 09

Diferencia con el valor anterior (antes

del ensayo)

S1 0.18 - 6 %

S2 2.1 - 20 %

S3 2.5 - 14 %

S4 1.1 - 66 %

S5 1.2 - 91 %

S66.3 - 50 %

S7 0.17

S8 3.04

S9 0.75

Page 36: WP 2. HYDROL

Logo grupo

EFFECTIVE PARAMETERS

Model:

I = I_0 exp (- λe t) + (I_R-I_0)

Page 37: WP 2. HYDROL

Logo grupo

Sitio de estudio en Sant Vicenç dels Horts:

Oscilaciones de la temperatura y su relación con el gradiente hidráulico

Page 38: WP 2. HYDROL

Logo grupo

Risk Assessment: Overview and Challenges

Page 39: WP 2. HYDROL

Logo grupo

Illustration of the Process

1) Identifying contaminant source releases & environmentally sensitive targets.

2) Data acquisition used to infer modeling parameters! Site characaterization.

3) Final task: Estimate human health risk toward decision making! Should a site be remediated or not? Is the exposed population at risk?

Page 40: WP 2. HYDROL

Logo grupo

OR

AND

System Failure

Critical Concentrations

Sources-Receptors

Pathways-Processes

CC11 CC12 CCij CCnm

CSi PRj

SF

OR

AND

PWijp FATijp

AND

AND

Page 41: WP 2. HYDROL

Logo grupo

CSi PRj AND

OR

SAijk

AND

OBSk

BPijk

WELL1 WELLk WELLnw

BPijk FATijk

AND

FATijk OR

Sources-Receptors

Pathways-Processes

Observation wells

Page 42: WP 2. HYDROL

Logo grupo

Computation of probabilities for a monitoring system of two wells:

Page 43: WP 2. HYDROL

Logo grupo

Evolution of Risk with time T: The most sensitive failure mode is the occurrence of simultaneous small sampling frequency

Page 44: WP 2. HYDROL

Logo grupo

APPLICATIONS?so far NAPLs?

NAPLs: Non-Aqueous Phase Liquids

Fluids capable to stay in the subsurface in a

different (non-aqueous) phase thanks to its

low solubility

LNAPLs (gasoline and other Hydrocarbons) density below water density

DNAPLs (Chlorinated solvents) density higher than water

Page 45: WP 2. HYDROL

Logo grupo

Failure of Remediation

Time

END-POINT

C

RISK AFTER REMEDIATION

Page 46: WP 2. HYDROL

Logo grupo

Vapor flux

Dissolved plume

PROBLEM STATEMENT

EVALUATE THE RISK IS DIFFICULT DUE TO:

MANY PATHS, PROCESSES, RECEPTORS, SOURCES,

SAMPLING, OBSERVATION

PATH 1

PATH 2

PATH 3

PATH 4

Page 47: WP 2. HYDROL

Logo grupo

Failure due to Sampling Frequency

SOURCE ZONE

DNAPL

inc

time

RECEPTOR

mcOBS

C

time

OBS RECEPTOR

freqP[NA FS | NAPL] P[ t ]

Page 48: WP 2. HYDROL

Logo grupo

Failure due to Bypassing

SOURCE ZONE

DNAPL

inc

time

RECEPTOR

mcOBS

C

time

OBS

RECEPTOR

P[NA BP | NAPL]

Page 49: WP 2. HYDROL

Logo grupo

Fate and transport

);,( tFcm x

• We need a transport model or a set of transport models to generate

a large number of replicates of the system based on some uncertain

parameters

ityheterogenebiorearchitectu ,,

Page 50: WP 2. HYDROL

Logo grupo

Model Parameters

RECEPTOR

inc

time

0 0( , )x y

L

CONTAMINATED SITE

OBSERVATION

S

N 0 biof , ,M ,F

v velocity

Page 51: WP 2. HYDROL

Logo grupo

Mass Depletion with Time

inbio0

in 0

c (t) M(t)1 F

c M

1/ 11N 0

0 N

1 t M 1M(t)

M exp t 1

Mass depletion exponent

Page 52: WP 2. HYDROL

Logo grupo

Review of literature

  Beta Remediation Method Contaminant

Canadian Forces Base Borden Site, Ontario   

0.32 natural gradient water flush  TCM, TCE, PCE

  in situ chemical oxidation  

0.24 natural gradient water flush  

0.63 surfactant enhanced aquifer remediation  

Hill Air Force Base  

0.80 cosolvent  

1.74 surfactant enhanced aquifer remediation  

0.35 cyclodextrin flushing  

Dover National Test Site  

0.72 Ethanol flush  

1.03 n-Propanol flush  

2.36 surfactant enhanced aquifer remediation  

NASA Lunch Complex 34 

1.29 in situ chemical oxidation  

0.64 emulsified zero-valent iron  

Air Force Plant 4 

1.00 Six Phase heating  

0.92    

Sages Dry Cleaners 0.62 cosolvent PCE

Tucson International Airport 5.80 pump-and-treat TCE, 1,1-DCE

Paducah Gaseous Diffusion Plant 0.31 Six Phase heating TCE, PCBs, VOCs

Camp Lageune 0.61 surfactant enhanced aquifer remediation PCE

Former Recycling Facility 0.15 in situ chemical oxidation PCE,TCE,cis-DCE

Savannah River Site 1.64 in situ chemical oxidation  

Pinellas Site 1.19 rotary steam stripping TCE, methylene chloride, DCE, VC

in0in 0

c (t) M(t)

c M

Prior Knowledge

Page 53: WP 2. HYDROL

Logo grupo

Integration of data in real time

( | ) ( )( | )

( | ) ( )m

m

m

f c ff c

f c f d

Measurements are incorporated into PRA using Bayes

PRIOR KNOWLEDGE

POSTERIOR KNOWLEDGE

( )f ( | )mf c

Page 54: WP 2. HYDROL

Logo grupo

Algorithm

• Choose prior knowledge

• Update pdf with Bayes

• Generate many replicates of the system based on

• Compute probability of failure

j

j

FOP

FOP

NAPLBPNAPNAPLFSNAPNAPLP

SFP

]FONAPL,|FSP[NA][

]FONAPL,|P[NA][

]|[]|[][

][

j

j

( )f

( | )mf c( )f

( | )mf c

Page 55: WP 2. HYDROL

Logo grupo

Example of application

Page 56: WP 2. HYDROL

Logo grupo

SAMPLING

RECEPTOR

OBS

Observations

Page 57: WP 2. HYDROL

Logo grupo

Page 58: WP 2. HYDROL

Logo grupo

Prior realizations Posterior realizations

Page 59: WP 2. HYDROL

Logo grupo

Evolution of Risk with time

Page 60: WP 2. HYDROL

Logo grupo

MORE Applications

TO BE DECIDED