World Bioplastics Industry

161
INDUSTRY MARKET RESEARCH FOR BUSINESS LEADERS, STRATEGISTS, DECISION MAKERS 767 Beta Drive Cleveland, OH • 44143-2326 • USA Toll Free US Tel: 800.927.5900 or +1 440.684.9600 Fax: +1 440.646.0484 E-mail: [email protected] The Freedonia Group www.freedoniagroup.com Table of Contents 2 List of Tables & Charts 3 Study Overview 4 Sample Text, Table & Chart 5 Sample Profile, Table & Forecast 6 Order Form 7 About Freedonia, Custom Research, Related Studies, Corporate Use License 8 CLICK TO VIEW Industry Study with Forecasts for 2013 & 2018 Study #2548 | November 2009 | $5800 | 272 pages World Bioplastics photo: NatureWorks PLA

description

Biodegradable plastics are plastics that can be biologically broken down, in a reasonable amount of time, into their base compounds.....

Transcript of World Bioplastics Industry

Page 1: World Bioplastics Industry

INDUSTRY MARKET RESEARCH FOR BUSINESS LEADERS, STRATEGISTS, DECISION MAKERS

767 Beta Drive

Cleveland, OH • 44143-2326 • USA

Toll Free US Tel: 800.927.5900 or +1 440.684.9600

Fax: +1 440.646.0484

E-mail: [email protected]

The Freedonia Group

www.freedoniagroup.com

Table of Contents 2

List of Tables & Charts 3

Study Overview 4

Sample Text, Table & Chart 5

Sample Profile, Table & Forecast 6

Order Form 7

About Freedonia, Custom Research, Related Studies,

Corporate Use License 8

CLICK TO VIEW

Industry Study with Forecasts for 2013 & 2018

Study #2548 | November 2009 | $5800 | 272 pages

World Bioplastics

phot

o: N

atur

eWor

ks P

LA

Page 2: World Bioplastics Industry

Study #2548November 2009

$5800272 Pages

World BioplasticsIndustry Study with Forecasts for 2013 & 2018

Page 2 Order now, click here!Click here to purchase online

Table of Contents

ExEcutivE Summary

markEt EnvironmEntGeneral ...................................................... 4World Economic Overview .............................. 4 Recent Historical Trends ............................ 5 World Economic Outlook ............................ 7World Population Outlook .............................11World Manufacturing Outlook ........................12World Agricultural Outlook ............................14 Maize.....................................................16 Sugar Crops ............................................18World Plastics Overview ................................20 Plastics Demand ......................................21 Plastics Production ..................................24 Pricing Trends .........................................25World Converted Flexible Plastic Packaging Outlook ....................................28Regulatory & Environmental Considerations .....31 Degradability Standards & Certification .......31 Composting & Recycling ...........................34 Legislation .............................................36 Food Versus Industrial Crop Use .................37

WorLD BioPLaSticS ovErviEWGeneral .....................................................39Product Overview ........................................40 Biodegradable .........................................42 Starch-Based Resins .............................44 Polylactic Acid .....................................47 Petroleum-Based Resins ........................50 PHAs ..................................................53 Other .................................................56 Non-Biodegradable ..................................58Market Overview .........................................63 Packaging ...............................................65 Packaging Film.....................................67 Loose-Fill ............................................68 Containers & Other ...............................68 Nonpackaging .........................................69 Bags ..................................................72 Foodservice Disposables ........................73 Automotive & Electronics ......................74 Agricultural Films .................................75 Other .................................................76Regional Overview .......................................77 Demand .................................................77 Production ..............................................80 Trade Flows .............................................83

nortH amEricaGeneral .....................................................85Bioplastics Demand .....................................86United States .............................................89Canada ......................................................96Mexico .................................................... 101

WEStErn EuroPEGeneral ................................................... 107Bioplastics Demand ................................... 109Germany .................................................. 111Italy ....................................................... 116United Kingdom ........................................ 122France ..................................................... 127Netherlands ............................................. 132Other Western Europe ................................ 137 Belgium ............................................... 141 Norway ................................................ 141 All Other .............................................. 141

aSia/PaciFicGeneral ................................................... 144Bioplastics Demand ................................... 146Japan...................................................... 149China ...................................................... 156South Korea ............................................. 162Other Asia/Pacific ..................................... 168 Taiwan ................................................. 173 Australia .............................................. 173 All Other .............................................. 174

otHEr rEGionSLatin America: General ............................... 177Latin America: Bioplastics Demand .............. 179 Brazil................................................... 181 Other Latin America ............................... 187Eastern Europe ......................................... 192Africa/Mideast .......................................... 198

inDuStry StructurEGeneral ................................................... 204Market Share ............................................ 206Mergers & Acquisitions ............................... 210Manufacturing Requirements ....................... 211Research & Development ............................ 213Marketing Strategies .................................. 215Channels of Distribution ............................. 218Competitive Strategies ............................... 220Cooperative Agreements ............................. 221

comPany ProFiLESArcher-Daniels-Midland .............................. 227Arkema SA ............................................... 229BASF SE ................................................... 231BioMatera Incorporated ............................. 232Braskem SA .............................................. 233Cardia Bioplastics ...................................... 234Cargill Incorporated................................... 236Cereplast Incorporated ............................... 239Dow Chemical ........................................... 241DuPont (EI) de Nemours ............................. 242Eastman Chemical ..................................... 245EBM Biodegradable Materials ...................... 246FKuR Kunststoff ........................................ 246Grace Biotech ........................................... 247Innovia Films ........................................... 248IRe Chemical ............................................ 250Merquinsa ................................................ 251Metabolix Incorporated .............................. 252Mitsubishi Chemical .................................. 254Ningbo Tianan Biologic Material .................. 255Novamont SpA .......................................... 256Perstorp AB .............................................. 257PHB Industrial .......................................... 258Plantic Technologies .................................. 259Rodenburg Biopolymers .............................. 261Showa Denko ............................................ 262Solvay SA ................................................ 263Sphere SA ................................................ 265Stanelco plc ............................................. 266Synbra Holding ......................................... 267Teijin Limited ........................................... 268Total SA................................................... 270Zhejiang Hangzhou Xinfu Pharmaceutical ...... 271Zhejiang Hisun Biomaterials ....................... 272

ExEcutivE Summary 1 Summary Table ...................................... 3

markEt EnvironmEnt 1 World Gross Domestic Product by Region ..10 2 World Population by Region ...................12 3 World Manufacturing Value Added by Region ...............................14 4 World Agricultural Value Added by Region 16 Cht World Maize Production by Region, 2008 ..18 Cht World Sugar Crop Production by Region, 2008 ...............................20 5 World Plastic Resin Demand by Region .....23 (continued on next page)

List of Tables/Charts

Page 3: World Bioplastics Industry

Study #2548November 2009

$5800272 Pages

World BioplasticsIndustry Study with Forecasts for 2013 & 2018

Page 3 Order now, click here!Click here to purchase online

List of Tables/Charts (continued from previous page) Cht World Plastic Resin Demand by Region, 2008 ...............................23 6 World Plastic Resin Production by Region .25 7 Plastic Resin Pricing .............................27 Cht Plastic Resin Pricing Trends, 1998-2018 ...28 8 World Converted Flexible Plastic Packaging Demand by Region..............30

WorLD BioPLaSticS ovErviEW 1 World Bioplastics Demand by Type ..........41 2 World Biodegradable Plastics Demand by Type ...............................43 Cht World Biodegradable Plastics Demand by Type, 1998-2018 ...............44 3 World Starch-Based Resin Demand by Region & Market ...........................47 4 World Polylactic Acid Demand by Region & Market ...........................50 5 World Petroleum-Based Bioplastic Demand by Region & Market ...........................53 6 World PHA Resin Demand by Region & Market ...........................55 7 World Other Biodegradable Plastic Resin Demand by Region & Market ...............58 8 World Non-Biodegradable Bioplastics Demand by Type, Region & Market .......62 Cht World Non-Biodegradable Bioplastics Demand by Type, 1998-2018 ...............63 9 World Bioplastics Demand by Market........64 10 World Packaging Demand for Bioplastics by Application & Region ....................66 Cht World Packaging Demand for Bioplastics by Application, 2008 .........................67 11 World Nonpackaging Demand for Bioplastics by Application & Region .....71 Cht World Nonpackaging Demand for Bioplastics by Application, 2008 .........72 12 World Bioplastics Demand by Region .......79 Cht Bioplastics Demand by Region, 1998-2018 ...........................80 13 World Bioplastics Production by Region ...82 Cht Bioplastics Production by Region, 1998-2018 ...........................83 14 World Bioplastics Net Exports by Region ..84

nortH amErica 1 North America -- Bioplastics Supply & Demand ..............................86 Cht North America Bioplastics Demand by Country, 2008 ...................89

2 North America -- Bioplastics Demand by Type & Market ..................88 3 United States -- Bioplastics Supply & Demand ..............................92 4 United States -- Bioplastics Demand by Type ...............................94 5 United States -- Bioplastics Demand by Market ............................96 6 Canada -- Bioplastics Supply & Demand ...98 7 Canada -- Bioplastics Demand by Type .....99 8 Canada -- Bioplastics Demand by Market 101 9 Mexico -- Bioplastics Supply & Demand .. 103 10 Mexico -- Bioplastics Demand by Type ... 104 11 Mexico -- Bioplastics Demand by Market 106

WEStErn EuroPE 1 Western Europe -- Bioplastics Supply & Demand ............................ 108 2 Western Europe -- Bioplastics Demand by Type & Market ................ 110 Cht Western Europe Bioplastics Demand by Country, 2008 ................. 111 3 Germany -- Bioplastics Supply & Demand 113 4 Germany -- Bioplastics Demand by Type . 114 5 Germany -- Bioplastics Demand by Market .......................... 116 6 Italy -- Bioplastics Supply & Demand..... 118 7 Italy -- Bioplastics Demand by Type ...... 120 8 Italy -- Bioplastics Demand by Market ... 121 9 United Kingdom -- Bioplastics Supply & Demand ............................ 123 10 United Kingdom -- Bioplastics Demand by Type ............................. 125 11 United Kingdom -- Bioplastics Demand by Market .......................... 126 12 France -- Bioplastics Supply & Demand .. 128 13 France -- Bioplastics Demand by Type .... 130 14 France -- Bioplastics Demand by Market . 131 15 Netherlands -- Bioplastics Supply & Demand ............................ 133 16 Netherlands -- Bioplastics Demand by Type ............................. 135 17 Netherlands -- Bioplastics Demand by Market .......................... 136 18 Other Western Europe -- Bioplastics Supply & Demand ............................ 138 19 Other Western Europe -- Bioplastics Demand by Country & Type .............. 140 20 Other Western Europe -- Bioplastics Demand by Market .......................... 143

aSia/PaciFic 1 Asia/Pacific -- Bioplastics Supply & Demand ............................ 146

2 Asia/Pacific -- Bioplastics Demand by Type & Market ................ 148 Cht Asia/Pacific Bioplastics Demand by Country, 2008 ............................ 149 3 Japan -- Bioplastics Supply & Demand ... 151 4 Japan -- Bioplastics Demand by Type ..... 153 5 Japan -- Bioplastics Demand by Market .. 155 6 China -- Bioplastics Supply & Demand ... 158 7 China -- Bioplastics Demand by Type ..... 160 8 China -- Bioplastics Demand by Market .. 162 9 South Korea -- Bioplastics Supply & Demand ............................ 164 10 South Korea -- Bioplastics Demand by Type ............................. 166 11 South Korea -- Bioplastics Demand by Market .......................... 167 12 Other Asia/Pacific -- Bioplastics Supply & Demand ............................ 170 13 Other Asia/Pacific -- Bioplastics Demand by Country & Type ............... 172 14 Other Asia/Pacific -- Bioplastics Demand by Market .......................... 176

otHEr rEGionS 1 Latin America -- Bioplastics Supply & Demand ............................ 179 2 Latin America -- Bioplastics Demand by Type & Market ................ 181 3 Brazil -- Bioplastics Supply & Demand ... 183 4 Brazil -- Bioplastics Demand by Type ..... 185 5 Brazil -- Bioplastics Demand by Market .. 187 6 Other Latin America -- Bioplastics Supply & Demand ............................ 190 7 Other Latin America -- Bioplastics Demand by Type ............................. 191 8 Other Latin America -- Bioplastics Demand by Market .......................... 192 9 Eastern Europe -- Bioplastics Supply & Demand ............................ 194 10 Eastern Europe -- Bioplastics Demand by Country & Type ............... 196 11 Eastern Europe -- Bioplastics Demand by Market .......................... 197 12 Africa/Mideast -- Bioplastics Supply & Demand ............................ 200 13 Africa/Mideast -- Bioplastics Demand by Type ............................. 201 14 Africa/Mideast -- Bioplastics Demand by Market .......................... 203

inDuStry StructurE 1 Bioplastics Sales by Company, 2008 ...... 205 Cht World Bioplastics Market Share, 2008 .... 206 2 Selected Acquisitions & Divestitures ...... 211 3 Selected Cooperative Agreements .......... 223

Page 4: World Bioplastics Industry

Study #2548November 2009

$5800272 Pages

World BioplasticsIndustry Study with Forecasts for 2013 & 2018

Page 4 Order now, click here!

World demand to rise more than fourfold by 2013Global demand for bioplastics, plastic resins that are biodegradable or derived from plant-based sources, will rise more than fourfold to 900,000 metric tons in 2013, valued at $2.6 billion. Growth will be fueled by a number of factors, including consumer demand for more environmentally-sustainable products, the development of bio-based feed-stocks for commodity plastic resins, and increasing restrictions on the use of nondegradable plastic products, particu-larly plastic bags. Most important, however, will be the expected continua-tion of high crude oil and natural gas prices, which will allow bioplastics to become more cost-competitive with petroleum-based resins.

Non-biodegradable types to be fastest growingNon-biodegradable plant-based plastics will be the primary driver of bioplastics demand, rising from just 23,000 metric tons in 2008 to nearly 600,000 metric tons in 2013. Biodegradable plastics, such as starch-based resins, polylactic acid (PLA) and degradable polyesters, accounted for the vast majority (nearly 90 percent) of bioplastics demand in 2008. Double-digit gains are expected to continue, fueled in part by the emer-gence on the commercial market of polyhydroxy-alkanoates (PHAs). PLA will also see strong advances in demand as new production capacity comes online,

lowering the price of the resin and making it more widely available.

Brazil, China to become major bioplastic producersWestern Europe was the largest regional market for bioplastics in 2008, account-ing for about 40 percent of world de-mand. Bioplastics sales in the region benefit from strong consumer demand for biodegradable and plant-based products, a regulatory environment that favors bioplastics over petroleum resins, and an extensive infrastructure for composting. Going forward, however, demand will grow more rapidly in the Asia/Pacific region, which will surpass the West European market by 2013.

Gains will be stimulated by strong demand in Japan, which has focused intently on the replacement of petroleum-based plastics. Other regions, such as Latin America and Eastern Europe, will see stellar gains in bioplastics demand from a very small 2008 base.

Currently, world bioplastics production is heavily concentrated in the developed countries of North America, Western Europe and Japan. This will change dramatically by 2013 when Brazil will become the world’s leading producer of bioplastics. Furthermore, China plans to open over 100,000 metric tons of new bioplastics capacity by 2013, making that country a major player in the global industry.

Copyright 2009 The Freedonia Group, Inc.

Click here to purchase online

Growth factors include consumer demand for more environmentally-sustainable products, and increasing restrictions on the use of nondegradable plastic products, particularly plastic bags.

World Bioplastics Demand, 2008(200,000 metric tons)

Western Europe38%

Other Regions 4%

North America29%

Asia/Pacific29%

phot

o: P

olyO

ne

Page 5: World Bioplastics Industry

Study #2548November 2009

$5800272 Pages

World BioplasticsIndustry Study with Forecasts for 2013 & 2018

Page 5 Order now, click here!Click here to purchase online

CHART VIII-1

WORLD BIOPLASTICS MARKET SHARE, 2008($793 million)

M a r k e tL e a d e r s

6 1 . 8 %

O th e r s3 8 . 2 %

N o v am o n t

In n o v ia F ilm s

Arkem a

N at u reW o rks

11.3%

15.8%

16.4%

18.3%

ASIA/PACIfIC

Japan: Products Demand for bioplastics in Japan will rise nearly sixfold to 178,000 metric tons in 2013, outpacing the Asia/Pacific region as a whole and making the country the world’s largest market for bioplastics. Although Japan is already one of the largest markets for bioplastics, demand will advance at a significantly faster pace than other established bioplastics markets such as the US and Western Europe. Gains will be driven by a variety of factors, including falling bioplastic prices compared to their traditional counterparts, a rising consumer focus on sustainability issues, the ongoing development of certification and labeling systems for bio-plastics in Japan, and the increased availability and variety of bioplastic products. Legislative and regulatory action is also expected to play a role, as the Japanese government has set an ambitious goal of replac-ing 20 percent of petroleum-based plastic consumption with bio-based plastics by 2020. While this goal is unlikely to be met, efforts toward the promotion of bioplastic use in Japan will continue to be strong.

The bioplastics market in Japan includes a diverse range of prod-ucts, with starch-based resins, PLA, petroleum-based biodegradable resins, and non-degradable bioplastics each accounting for around 20 to 25 percent of 2008 demand. Through 2013, the fastest gains among bio-degradable plastics are expected for PLA, which will benefit from more widespread availability as production in China begins to come online. Additionally, Japanese compounders are making efforts to improve the performance of PLA-based materials in order to penetrate durable goods markets such as automotive and electronics uses.

The most rapid growth among bioplastic products in Japan, howev-er, will be for non-biodegradable resins such as bio-based polyethylene. While this is true in most countries, it is especially apparent in Japan, due to the willingness of consumers to pay a premium for bio-based ma-terials, as well as achieving the government’s goal of bio-based plastic

152 Copyright 2009 The Freedonia Group, Inc.

samPLE TExT

samPLE CharT

sample Text, Table & Chart

TABLE VI-4

JAPAN -- BIOPLASTICS DEMAND BY TYPE(thousand metric tons)

Item 1998 2003 2008 2013 2018

Plastic Resin Demand 11650 10820 10990 11800 12600 kg bioplastic/m ton plastic 0.94 1.57 2.82 15.08 24.60 Bioplastics Demand 11 17 31 178 310 Biodegradable: 7 11 24 43 100 Starch-Based Resins 1 3 8 13 25 Polylactic Acid neg 1 7 15 43 Petroleum-Based Resins 2 4 6 9 13 Other Biodegradable 4 3 3 6 19 Non-Biodegradable 4 6 7 135 210

samPLETaBLE

Page 6: World Bioplastics Industry

Study #2548November 2009

$5800272 Pages

World BioplasticsIndustry Study with Forecasts for 2013 & 2018

Page 6 Order now, click here!Click here to purchase online

Ningbo Tianan Biologic Material Company Limited68 Dagang Road, Number 6Beilun, Ningbo, ZhejiangChina86-574-86895240http://www.tianan-enmat.com

Annual Sales: $5 million (estimated)Employment: 85 (estimated)

Key Products: polyhydroxybutyrate-valerate polymers

Ningbo Tianan Biologic Material, which also operates as Tianan, is among the world’s leading producers of polyhydroxybutyrate-valer-ate (PHBV), a bio-based and biodegradable polymer. The Company is privately held.

The Company’s PHBV, which is marketed under the ENMAT brand name, is produced via the fermentation of natural sugars and is 100-percent biodegradable under standard composting conditions. EN-MAT PHBV is capable of withstanding temperatures up to 170 degrees Celsius and offers moisture, gas and aroma barrier properties. This product is intended for use as an alternative to petroleum-based plastics in injection molding, paper coating, cast film and sheet, blown film, thermoforming and other processes. ENMAT PHBV can be employed in such applications as the production of films, pens, tableware, pack-aging, home and office goods, electronic parts, automotive components, and medical products. Specific products from Tianan include EN-MAT-Y1000, a pure powder; ENMAT Y1010, a powder blended with a nucleant and antioxident; and ENMAT Y1000P, a pelletized form of ENMAT Y1010. In addition, the Company offers ENMAT501 and

255 Copyright 2009 The Freedonia Group, Inc.

COMPANY PROFILES

sample Profile, Table & Forecast

“Bioplastics demand in Japan will advance nearly sixfold to 178,000 metric tons in 2013. Like the range of bioplastic products in Japan, markets for bioplastics in the country show a substantial degree of diversity, with a significant amount of demand in most major market categories. Nonpackaging markets accounted for the largest por-tion of demand in 2008. However, more rapid gains through 2013 are expected in packaging markets, fueled by ...”--Section VI, pg. 154

samPLEPrOFILE

TABLE VI-5

JAPAN -- BIOPLASTICS DEMAND BY MARKET(thousand metric tons)

Item 1998 2003 2008 2013 2018

Population (million persons) 126.3 127.6 127.4 125.9 123.8 kg bioplastic/capita 0.09 0.13 0.24 1.41 2.50 Bioplastics Demand 11 17 31 178 310 Packaging: 6 6 12 75 124 Packaging Film 4 4 5 47 66 Loose-Fill 1 1 3 3 4 Containers & Other 1 1 4 25 54 Nonpackaging: 5 11 19 103 186 Bags neg 2 4 32 46 Automotive & Electronics 3 4 4 9 22 Agricultural Films 1 2 4 7 12 Foodservice Disposables neg 1 3 6 15 Other Nonpackaging 1 2 4 49 91 % Japan 64.7 68.0 53.4 58.9 47.0Asia/Pacific Bioplastics Demand 17 25 58 302 660

samPLE TaBLE

Page 7: World Bioplastics Industry

The Freedonia Group, Inc. 767 Beta Drive • Cleveland, OH • 44143-2326 • USA • Web site: www.freedoniagroup.comTel US: 800.927.5900 or +1 440.684.9600 • Fax: +1 440.646.0484 • e-mail: [email protected]

Order InfOrmatIOnFive Convenient Ways to Order

Email

Title

Fax

Company

Division

Street

City/State/Zip

Country

Phone

Name

(No PO Box please)

Signature

Order fOrm

World Bioplastics ........................................................... $5800

Additional Print Copies @ $600 each *

Total (including selected option) $

Enclosed is my check (5% discount) drawn on a US bank and payable to The Freedonia Group, Inc., in US funds (Ohio residents add 7.75% sales tax)

Corporate Use License (add to study price) * +$2600

F-WEB.2548

Signature Signature

Page 7

Corporate Use LicenseNow every decision maker in your organization can act on the key intelligence found in all Freedonia studies. For an additional $2600, companies receive unlimited use of an electronic version (PDF) of the study. Place it on your intranet, e-mail it to coworkers around the world, or print it as many times as you like,

Click here to learn more about the Corporate Use License

Corporate Use License AgreementThe above captioned study may be stored on the company’s intranet or shared directory, available to company employees. Copies of the study may be made, but the undersigned represents that distribution of the study will be limited to employees of the company.

* Please check appropriate option and sign below to order an electronic version of the study.

Individual Use License AgreementThe undersigned hereby represents that the above captioned study will be used by only ___ individual(s) who are employees of the company and that the study will not be loaded on a network for multiple users. In the event that usage of the study changes, the Company will promptly notify Freedo-nia of such change and will pay to Freedonia the appropriate fee based on Freedonia’s standard fee schedule then in effect. Note: Entire company cor-porate use license, add $2600; one additional user, add $600; two additional users, add $1200; three additional users, add $1800.

Bill my company VisaMasterCardAmerican Express

Orders Outside of the USChecks must be made payable in US funds, drawn against a US bank and mailed directly to The Freedonia Group. For wire transfers please contact our customer service department at [email protected]. Credit cards accepted.

ONLINE: www.freedoniagroup.com MAIL: Print out and complete the order form and send to The Freedonia Group (see address at the bottom of this form)

PHONE: Call toll free, 800.927.5900 (US) or +1 440.684.9600 FAX: +1 440.646.0484 (US) EMAIL: [email protected]

Free Handling & ShippingThere is NO charge for handling or UPS shipping in the US. Expect delivery in 3 to 5 business days. Outside the US, Freedonia provides free airmail service. Express delivery is available at cost.

Save 15%If you order three (3) different titles at the same time, you can receive a 15% discount. If your order is accompanied by a check or wire transfer, you may take a 5% cash discount (discounts do not apply to Corporate Use Licenses).

Credit Card OrdersFor convenience, Freedonia accepts American Ex-press, MasterCard or Visa. Credit card purchases must include account number, expiration date and authorized signature.

MM YY

Credit Card # Expiration

INDUSTRY MARKET RESEARCH FOR BUSINESS LEADERS, STRATEGISTS, DECISION MAKERS

Page 8: World Bioplastics Industry

About The Freedonia Group

The Freedonia Group, Inc., is a leading international industry market research com-pany that provides its clients with information and analysis needed to make informed strategic decisions for their businesses. Studies help clients identify business oppor-tunities, develop strategies, make investment decisions and evaluate opportunities and threats. Freedonia research is designed to deliver unibiased views and reliable outlooks to assist clients in making the right decisions. Freedonia capitalizes on the resources of its proprietary in-house research team of experienced economists, professional analysts, industry researchers and editorial groups. Freedonia covers a diverse group of industries throughout the United States, the emerging China mar-ket, and other world markets. Industries analyzed by Freedonia include:

• Chemicals • Plastics • Life Sciences • Packaging • Building Materials • Security & Electronics • Industrial Components & Equipment • Automotive & Transportation Equipment • Household Goods • Energy/Power Equipment

The Freedonia Group, Inc. 767 Beta Drive • Cleveland, OH • 44143-2326 • USA • Web site: www.freedoniagroup.comTel US: 800.927.5900 or +1 440.684.9600 • Fax: +1 440.646.0484 • e-mail: [email protected]

Freedonia Custom ResearchFreedonia Custom Research delivers the same high quality, thorough and unbiased assessment of an industry or market as an industry study. Since the research initia-tive is based upon a company’s specific needs, companies harness Freedonia’s research capabilities and resources to answer unique questions. When you leverage the results of a Freedonia Custom Research engagement, you are able to obtain important answers to specific questions and issues associated with: mergers and acquisitions, new product launches/development, geographic expansion, entry into new markets, strategic business planning, and investment and funding decisions.

Freedonia Custom Research is ideal for companies seeking to make a strategic dif-ference in the status quo and focus on future business growth. Working side by side with clients, Freedonia’s team is able to define a research project that is custom-tai-lored to answer specific questions and provide the basis from which a company can make informed business decisions.

Click here to learn more about Freedonia

Click here to learn more about Custom Research

Page 8

Click here for complete title list

Other StudieS

INDUSTRY MARKET RESEARCH FOR BUSINESS LEADERS, STRATEGISTS, DECISION MAKERS

Click here to visit freedoniagroup.com

Biodegradable PlasticUS demand for biodegradable plastic will grow 15.5% yearly through 2012. Gains will be driven by escalat-ing costs for petroleum-based resins and growing initiatives that favor renewable resources. Polyester-based and polylactic acid resins will grow the fastest, while starch-based types remain the largest segment. This study analyzes the 350 million pound US biode-gradable plastic industry, with forecasts for 2012 and 2017 by type and market. It also details market share and profiles industry players. #2387 ...................08/2008..................... $4600

Natural PolymersUS demand for natural polymers will grow 7.1% annually through 2012. Best opportunities are an-ticipated in packaging uses based on the increased availability and cost competitiveness of novel poly-mers such as polylactic acid (PLA). Cellulose ether will remain the largest segment while starch and fermentation products jump at double-digit rates. This study analyzes the $2.9 billion US natural polymer industry, with forecasts for 2012 and 2017 by market and product. It also evaluates company market share and profiles industry players. #2422 ...................11/2008..................... $4600

Foamed PlasticsUS foamed plastics demand will reach 8.4 billion pounds in 2013 as key construction and motor vehi-cle markets recover. Foamed urethane will remain the largest segment while foamed LDPE grow the fastest. Construction will provide the best opportunities based on growth in insulation and carpet underlay applications. This study analyzes the $22.5 billion US foamed plastics industry, with forecasts for 2013 and 2018 by market and product. It also evaluates market share and profiles industry players. #2532 ...................07/2009..................... $4700

World Thermoplastic ElastomersGlobal TPE demand will rise 6% yearly through 2013, with China making up 42% of new demand. Exclud-ing China, TPE sales will remain concentrated in the developed markets of the US, Western Europe and Japan, especially for higher performance materials such as TPVs and copolyester elastomers (COPEs). This study analyzes the 3.1 million metric ton world TPE industry, with forecasts for 2013 and 2018 by market, type, world region and for 13 countries. It also evaluates market share and profiles industry players. #2551 ...................10/2009..................... $5800

Extruded PlasticsThis study analyzes the US extruded plastic industry. It presents historical demand data for the years 1998, 2003 and 2008, and forecasts for 2013 and 2018 by extruded plastic resin (e.g., polyvinyl chloride, low density polyethylene, high density polyethylene, poly-styrene, polypropylene, polyester) and market (e.g., construction, packaging, consumer goods). The study also considers market environment factors, details industry structure, evaluates company market share and profiles industry players.#2566 ...................11/2009..................... $4700

Page 9: World Bioplastics Industry
Page 10: World Bioplastics Industry

National Roadmap for the Development of Bioplastics Industry

(2008 – 2012)

In accordance with the policy towards “New Wave Industries”

NATIONAL INNOVATION AGECY MINISTRY OF SCIENCE AND TECHNOLOGY

Page 11: World Bioplastics Industry

Innovation: as new things derived from the exploitation of knowledge and creativity,

leading to enhancement of social and economic value. All rights reserved. No part of this publication may be reproduced, Stored in retrieval system or transmitted, in any form or by any means, Electronics, mechanical, photocopying, recording or otherwise, without written permission of the copyright holders. Design by National Innovation Agency (NIA) 73/1 Rama VI Road, Rajdhevee, Bangkok 10400 Thailand Tel. +662-2-644 6000 Fax. +66-2-644 8444 http://www.nia.or.th

Page 12: World Bioplastics Industry

Table of Contents Page

Executive Summary 1

Chapter 1 Current Situation of Bioplastics in Thailand 9

1.1 Introduction 9

1.2 Status of bioplastics in Thailand 9

1.3 Thailand’s readiness for a bioplastics industry 13

1.3.1 Raw materials 13

1.3.2 The plastics industry and market growth in Thailand 18

1.3.3 Government policy and support measures 23

Chapter 2 Strategy, Action Plans & Budget 25

Strategy 1 Sufficient Supply of Biomass Feedstock 27

Strategy 2 Accelerating Technology Development and

Technology Cooperation

30

Strategy 3 Building Industry and Innovative Businesses 38

Strategy 4 Establishment of Supportive Infrastructure 42

Abbreviations 55

Page 13: World Bioplastics Industry
Page 14: World Bioplastics Industry

Executive Summary

1. Rationale

Bioplastics, as the biodegradable plastics, are plastics which could be derived from plant-based materials or other renewable resources through fermentation process. This process requires low energy input and produces the plastics with the ability to degrade when being composted, yielding carbon dioxide and water as end products. In fact, bioplastics have become one of the most innovative materials which answer to the ever-increasing demand for more environmentally friendly solutions. Around the world, especially in the leading industrialized nations, there is a great awareness in searching for new raw materials or polymers to improve the quality and functionality of bioplastics so that they can replace the conventional plastics that produced by petrochemical industries.

An awareness in using bioplastics can be witnessed in many developed

countries where a wide range of favorable initiatives are put into action, including government policies, a research and development, and the industrial promotion. These resulted in a rapid growth of bioplastics business in a clearly defined direction. The United States, for example, has stepped forward to become the pioneer in bioplastics industry as a result of the success in the industrial-scale bioplastics resin production. NatureWork LLC (USA) has successfully produced lactic acids and polylactic acids (PLAs) from corn feedstock; whereas, Metabolix Inc. has developed the technology to produce PHAs (Polyhydroxyalkanoates) and is constructing its first production facility in the USA.

This development has been encouraged by the state policies to increase the

production of biomass-based products from 5% in 2002 to 12% and 20% in 2010 and 2030 respectively. Furthermore, 11 states have declared the policies to promote the environmentally friendly packaging market. Green Report I and II have also been issued to serve as the guidelines for advertising eco-friendly products. With regard to the plastic waste management, MARPOL convention prohibits the dumping of plastic waste to the sea. These movements arose from the questioning of the conventional plastics’ inability to degrade naturally and resulted in the initiation of 17 cent per piece charged for each plastic bag.

On the other continent, the European Union also announced a mandate for

automobile industry that, from 1 January 2006 onward, more than 85% (by weight) of the vehicle parts must be made of reusable or recoverable materials. Bioplastics, consequently, stand out as one of most sought-after answers for those regulations. For example, Germany has exempted the tax for the compostable packaging, while France requires that by 2010 all trash bags must be compostable. In Florence, Italy, all food packaging must be made from degradable materials. As another example, Denmark bans the use of water containers which cannot be recovered. In Norway, the UK and Ireland, there is a plan to program to lower the consumption of petrochemical-based plastic shopping bags as these conventional bags must be bought by consumers instead of be given freely.

Page 15: World Bioplastics Industry

Many more countries in Asia-Pacific also join in enforcing laws and measures with an aim to reduce environmental loads from the growing demands for packaging. In Japan, Green Procurement policies were imposed along with the Revised Recycling Laws and the Pollutant Release and Transfer Register to counter this problem. In Ladakh, India, it is announced that 1 May of every year is the Plastic Ban Day; while, in Bombay and Himachal Pradesh, there is a strict regulation of plastic bags and Styrofoam production. On the other hand, Bangladesh has issued a more strict regulation of countrywide prohibition of plastic bags since 2002. In Taiwan, R.O.C., the conventional LDPE plastic bag control scheme called “Plastic Shopping Bag Use Restriction Policy” bans all shops from distribute plastic bags and Styrofoam containers to their customers without pay.

In some regions, bioplastics have been used as a tool for waste management.

Taking Australia for example, during the Sydney Olympics Games, bioplastics containers and packaging were used and 75% of these bioplastics was gathered for compost. This greatly eased the burden of having to separate conventional plastics before compost and proved to be very effective in the management of plastic waste.

The growth of bioplastics market has been evident in many developed

countries, e.g. USA, European Union and Japan. In Germany, the advances in the bioplastics compounding technology, the blending process of bioplastics resin and other additives to attend the desired mechanical and physical properties, has resulted in the rapid growth of small and medium enterprises (SMEs). Also, the governmental agencies both at the national and local levels issue tax deterrent for non-degradable plastics making their price higher and in turns helping the bioplastics to stay competitive.

In Japan, the development of bioplastics product has been substantial and

rapid. Many large companies, e.g. Sony, Panasonic and Toshiba, have turned to bioplastics for their product packaging, computer devices and compact discs.

Considering the business rationalization of bioplastics in the abovementioned

examples, it is apparent that the market share for bioplastics is on the rise and bioplastics is rapidly replacing the conventional petroleum-based plastics. The production capacity for bioplastics worldwide was 360,000 ton in 2005 or approximately 1% of the total plastics production of 200 million ton per year. The demand for bioplastics in the EU is estimated at 40,000-50,000 ton per year with the projected growth of 20% each year; whereas the bioplastics consumption in Japan is at 15,000 ton per year and this number is anticipated to double each year. On the other hand, the demand for bioplastics in USA is estimated at 70,000 – 80,000 ton per year with the projected growth of 16% each year. All these figures amount to the global projected expansion for bioplastics demand of 30% per year.

Page 16: World Bioplastics Industry

2. Opportunity for Thailand to Create Well-Established Bioplastics Industries

Thailand is an agricultural country which is endowed with biomass materials

and agricultural products including rice, sugarcane, cassava, corn, cellulose, palm, etc. These products contain abundant composition of either starch (carbohydrates), sugar (glucose), or fibers (cellulose). All of which can be used as feedstock for the production of bioplastics. Favored with the price competitiveness and strength in the cultivation techniques, Thailand is clearly standing at the prime spot.

Cassava starch, one of the most promising potential feedstock for bioplastics,

is priced relatively lower than other kinds of starch in the global market. In fact, Thailand has long been the largest exporter of cassava starch. In 2005, the country produced 16.94 million ton of cassava roots and exported approximately 4.6 million ton of cassava-based products amounting to 85.5% of the market share which worth more than 40,000 million baht.

The value chain of the production of bioplastics from these agricultural

products is another major propelling factor for the development of bioplastics from cassava feedstock. At present, the processed products from cassava, in the form of chips, pellets or starch, are still low in price and subject to unreliable global market both in the sense of price and demand. These processed products can raise the value by 2 folds or about 40,000 million baht. However, if cassava is to be used as the feedstock for bioplastics, its value will increase 10 folds, valued as high as 200,000 million baht.

Thailand’s readiness in the downstream industries is yet another important

supporting factor. Downstream plastics industries are very well-established with capability to produce wide-ranging products. Therefore, a full cycle of bioplastics product development can be achieved in the country once the upstream production is in place. Majority of plastics producers in Thailand is categorized as SMEs (almost 4,000 factories). The largest proportion is the packaging products at 41.9%, followed by household products at 16.9%. The rest includes the compounding enterprises making up 5.1% of the industry.

Thailand is regarded as ASEAN’s number one plastics exporter and ranks

number eight in the global market. Notable exported products are films, foil straps, synthetic fibers, sacks, etc. The key markets for Thailand’s plastics export are Japan, USA, Hong Kong, UK, Australia and ASEAN countries. During 2000 to 2003, the export value expanded by more than 40% with the total value as high as 51,000 million baht in 2003. Considering the whole export sector for the country, the plastics resin and plastics products actually came fourth with the total value of 140,000 million baht.

Furthermore, Thailand is equipped with researchers and experts covering the

entire cycle of bioplastics production process ranging from the upstream, midstream to downstream industries. About 100 of these personnel are ready and willing to work actively on the R&D with the industrial sector.

Page 17: World Bioplastics Industry

3. Thailand’s Environmental Issues

Thailand is currently producing 40,000 ton of waste daily (or about 14 million ton per year). Among this is the plastics waste, making up 20% of the mix, and only 22% of this plastics waste can be recycled or transformed into fuel. As a result, the remaining 2.2 million ton of plastics waste needs to be disposed each year (Pollution Control Dept., 2005). However, bioplastics will not create such a problem as they can be degraded naturally in the suitable condition, leaving no other residues but carbon dioxide and water. Therefore, bioplastics can be a potential solution to tackle the problem of the overwhelming plastics waste.

Not only bioplastics can be an effective tool for waste managements, but they

also help combating with various environmental issues including the air pollution (caused by the global warming from the rising carbon dioxide emission, ozone depletion and haze from fuel combustion), water pollution (e.g. acidification or eutrophication of natural bodies of water), and soil and water problems (e.g. the deposition of non-degradable plastics). The fact that bioplastics can be degraded by the activity of naturally occurring microbes means that this type of plastics will not cause the overwhelming load of waste and needs no other waste management such as burning. As the end products from biodegradation are non-toxic, bioplastics can be used effectively in the separation of organic waste for compost.

4. Development of Thailand’s Bioplastics Industry

Bioplastics industry can be regarded as the country’s New Wave Industry due to the fact that there has not yet been the complete value chain of the bioplastics industry and the products have not been distributed widely in the local market. However, the initiations from both government and private sectors have been carried out continuously. Some of the prominent organizations, which have been involved with the development of bioplastics in Thailand, are National Innovation Agency (supporting financially and technically to the companies which are eager to invest in bioplastics), Thai Industrial Standards Institute-TISI (developing bioplastics standard for biodegradability, National Research Council of Thailand-NRCT and National Metal and Materials Technology Center-MTEC (supporting and conduct R&D in bioplastics), and Thai Bioplastics Industry Association-TBIA (established from the cooperation of plastics companies which have great interest in creating infrastructure to support the bioplastics industry in the country), Board of Investment- BOI (providing tax privileges for bioplastics investment). By working together as a cluster, TBIA can gain more negotiating power with other trading counterparts and also successfully kick off various supporting initiatives, e.g. the drafting of standards for biodegradability of bioplastics products and cooperation with NIA, NRC, MTEC and some universities to introduce the R&D direction.

National Innovation Agency (NIA), being the initiator of this project in

Thailand, has its major roles to encourage, support and gather information associated with bioplastics continuously. The key activities carried out with regard to the development of Thailand’s bioplastics project are summarized chronologically as follows:

Page 18: World Bioplastics Industry

• In 2003, NIA and cassava starch producers carried out a feasibility study for Thailand to establish bioplastics industry and assess the business opportunity.

• During 2004 to present, NIA has facilitated Thai companies to negotiate with the world’s leading bioplastics companies, e.g. NatureWorks LLC (USA), Metabolix Inc. (USA), Unitika (Japan), Mitsui Chemicals (Japan) BASF (Germany), Uhde Inventa-Fischer (Germany) and PURAC(Netherlands) to seek cooperation on investment, creation of market opportunities, technology licensing technology transfer and research and development.

• In 2006, NIA initiated the founding of the Thai Bioplastics Industry Association (TBIA) by inviting plastics leading companies (both large and medium sized) in the country to join as a business association. The pioneers included Thantawan Industries Plc., Thai Plastics Bag Industry Co., Ltd, Unity Thai Co., Ltd. and Quality Minerals Plc. This initiative was also supported by National Metal and Materials Technology Center (MTEC) and Petroleum and Petrochemical College (PPC), Chulalongkorn University.

• In 2006, the industry standards for bioplastics were firstly drafted by the cooperation of NIA, TBIA, PPC and MTEC for further developed by the Thai Industrial Standards Institute (TISI)

• In 2005, bioplastics testing facility was developed by MTEC. • In 2006, brainstorming sessions, meetings and workshops were

conducted by NIA to assemble all opinions from all stakeholders (business executives from private sectors, researchers, academia and related governmental agencies) in order to conclude the operating direction for the bioplastics roadmap.

• NIA organized 2 international conference-and-exhibitions on bioplastics, i.e. InnoBioPlast 2006 (September 21-24, 2006) and EcoInnovaAsia 2008 (October3-5, 2008). These events aimed at disseminating knowledge and create understanding related to Thailand’s bioplastics development, catching up on the latest technology trend delivered by the world experts, providing the platform for co-investment and cooperation on bioplastics businesses and, most importantly, demonstrating Thailand’s potential to step forward as a bioplastics hub in the region.

• In 2006, NIA was assigned as the responsible agency to coordinate drafting of a Thailand’s National Roadmap for the development of Bioplastics Industry, according to the national economic restructuring policies to prioritize ‘New Wave Industries’.

At the same time, the private sector could develop some bioplastics products

from with the support from NIA through technology transfer and joint research with universities and research institutes. This technology cooperation between private and government sectors has resulted in the import of bioplastics compounds for products processing and of bioplastic resin to blend with starch to produce cost-effective compounds. These products, in fact, have made it to the international markets.

Page 19: World Bioplastics Industry

On the research and development collaboration, NRCT, NIA and TBIA have initiated a targeted research to develop innovative bioplastics products. This has been NRCT under the project, “Research and Innovation Helix Program on Bioplastics”. Numerous universities and research institutions were the research counterparts in this project; among these include Chulalongkorn University, King Mongkut's Institute of Technology Ladkrabang, Suranaree University of Technology, Chiengmai University and Kasetsart University.

Up to present, there are 3 strategic areas for bioplastics R&D in Thailand

namely: (1) Agricultural Raw Materials, (2) Biotechnology, and (3) Chemical and Compounding Technology. Approximately 100 researchers have been actively conducting studies on these 3 areas ranging from the improvement of plant breeding, the enhancement of crop productivity for industry feedstock, selection of natural strains of microbes, improvement of microbe strains, fermentation technology, starch technology and polymerization technology.

In summary, the development of bioplastics industry in Thailand is still in the

early stage. Therefore, there is a need for a national roadmap in order to propel this initiative into the streamlined manner to facilitate all stakeholders (both government and private) to work together to induce a favorable environment for investment, establishment of business partnership, establishment of supporting policy, market development and development of technology and innovation. This roadmap can, in turn, enable Thailand to secure a competitive edge to position herself on the global bioplastics market.

5. Preparation of National Roadmap for the Development of Bioplastics Industry

Realizing the challenges and opportunities in the development of bioplastics

industry in Thailand, the National Subcommittee on Economic Restructuring endorsed the plan to include the development of bioplastics industry along with the development of biomass-based renewable energy in the action plans for the economic restructuring under “New Wave Industries” on 12 January 2006. The subcommittee appointed the Ministry of Science and Technology as a core organization and asked the Ministry of Industry and Board of Investment (BOI) to take part in this project. After the meeting on 14 February 2006, the working committee appointed NIA as a key focal point in this project and a responsible agency to draft the “Bioplastics” New Wave Industries Action Plan as the National Roadmap for the Development of Bioplastics Industry.

6. National Strategies and Targets in the National Bioplastics Roadmap

To ensure the most efficient execution of the Roadmap, 4 key strategies were

pinpointed and the implementation is planned to last for 5 years. Brief outlines of the 4 strategies are as follows:

Page 20: World Bioplastics Industry

Strategy One: Sufficient Supply of Biomass Feedstock (Budget: 100 million baht)

This strategy targets at preparing sufficient quality and quantity of raw materials for the industry without having to interfere with the food supply. Also the acceleration of technology development to enhance the productivity of starch-producing crops must be carried out to ensure that the bioplastics production can reach the break-even point and to prevent various problems on the crop cultivation including the destruction of an ecosystem balance. Strategy Two: Accelerating Technology Development and Technology Cooperation (Budget: 1,000 million baht)

This strategy not only focuses on the adoption of overseas technologies, but also aims at having local researchers and scientists to develop technological advances and innovation further from those adopted technologies. The goal to create the country’s own technologies is at the heart of this strategy. Strategy Three: Building Industry and Innovative Businesses (Budget: 475 million baht)

Under this strategy, an investment in bioplastics industries and businesses must be encouraged from the upstream, midstream right to the downstream stages both at the international business and local business levels.

Strategy Four: Establishment of Supportive (Budget: 225 million baht)

Many supportive infrastructures must be established to facilitate the development of bioplastics industry in Thailand. These include establishment of industrial standards, setting up the laboratory for testing and certifying bioplastics products, raising public awareness for the use of bioplastics products for an environmental protection, implementation of pilot project for bioplastics utilization in small municipals or community and various activities of public relation.

7. Expected Outcomes

At the end of this 5-year Roadmap, the cooperation and initiative from both governmental and private sectors under this action plan should create significant impact on the following 4 areas:

7.1 Economic, Industrial and Agricultural Aspects Thailand, through the new wave industries and innovative business on

bioplastics, can anchor herself on the international bioplastics market and manage to take a considerable proportion of the global market share. Also, this can provide value creation and value-added to the agricultural raw materials are anticipated to result in the value totaling up to 4,500 million baht.

7.2 Technological Aspect The development of new technology can lead to the creation of intellectual

properties, technology transfer and integration of technology from abroad resulting in the growing number of research specialists on bioplastics. This consequently gears the

Page 21: World Bioplastics Industry

country toward the integrated and directed R&D process which could produce an economic value of 500 million baht.

7.3 Environmental Aspect Awareness in using bioplastics as a solution for environmental problems can

help lower the burden caused by the plastics waste. Thus, less money will be allocated to the management of plastics waste and air pollution created from the burning of these non-degradable plastics will be eliminated. This equates with an economic impact of 500 million baht.

7.4 Policy Aspect The execution of the National Bioplastics Roadmap can induce the

establishment of policy, framework and measure to promote and incentives favoring the investment in the bioplastics industry including the establishment of various testing and certification standards on bioplastics products.

Page 22: World Bioplastics Industry

Chapter 1: Current Situation of Bioplastics in Thailand*

1.1 Introduction The amount of garbage produced in Thailand is constantly increasing, with over 14.4 million tons created in 2003. The main elimination process is landfill- only 11% is recycled. With the situation driving research into developing environmentally friendly new products, there is an increasing interest in biodegradable plastics as one of the potential solutions. This chapter focuses on government and private sector activities in the area of bioplastics, the potential for Thailand’s materials and plastic industry, and the current government policy.

1.2 Status of bioplastics in Thailand With increasing concern over the amount of garbage produced, both

government and private organizations are beginning to support the development of Thailand’s bioplastics sector. The National Innovation Agency (NIA) supports the investment, technology acquisition and assessment in bioplastics, The Pollution Control Department has enacted laws to alleviate the garbage problem; The National Metal and Materials Technology (MTEC) supports testing laboratory for biodegradable plastics; and the Thai Bioplastics Industry Association (TBIA) - which was recently initiated to stimulate development of the sector- serves as a national focal point for negotiations with other industrial countries on issues such as collaboration on drafting standards for biodegradable plastics.

In particular, since 2003 NIA has been active in promoting bioplstics, compiling technology and business information on bioplastics from leading countries as well as coordinating with all stakeholder organizations to drive the support infrastructure and policy for the establishment bioplastics industry in Thailand. The production of bioplastics products from biomass is shown schematically in Figure 1.1. Cassava roots are first transformed into cassava starch, which is then put through a scarification process using enzymes to produce liquid glucose. The liquid glucose can then be fermented by specialized bacteria or fungi to produce lactic acid monomer, which is then polymerized to produce polylactic acid (PLA), a biodegradable polymer. These polymers undergo a compounding process in which its basic properties are modified and enhanced as needed by addition of plasticizers and other ingredients. In the final part of the production process, the material is moulded or blown into various types of finished product as needed. Thailand currently has two technologies at industrial levels - saccharification by using enzymes to produce glucose from starch, and molding into finished products. Other technologies are still at the research and development stage. * Parts of this material have been translated by GTZ, Thailand, based on the original Thai version of the National Roadmap for the Development of Bioplastics Industry.

Page 23: World Bioplastics Industry

Figure 1.1 Production process of bioplastics products from biomass (The bold arrows shows industrial level in Thailand) Production of liquid glucose from starch or saccharification by enzymes

Syrup glucose or liquid glucose is the starting point in producing monomers for biodegradable plastics production. It can be prepared from cassava starch by digestion with amylase and amyloglucosidase enzymes, as shown in Figure 4.2.

Figure 1.2 Liquid glucose production process Sources: adapted from liquid glucose production process by PSC Starch Products Co, Ltd. http://www.pscstarch.com/th/process.asp

Liquid glucose can be produced from cassava starch and molasses. However, the process is still under development to optimize the use of specific enzymes necessary for the digestion process. Production of glucose from corn starch is possible but different equipment must be used. Since there is only one corn starch factory in Thailand and a 60% import tax is levied on, its use as a feedstock is not currently cost-effective.

Centrifuge / add enzyme Liquid glucose

Native tapioca starch Fine stalk extractor Coarse stalk extractor Separator

Cassava roots Sieving Tuber washing machine Rasping

Wheat flour

Corn starch

Lactic acid

1,3-Propanediol: PDO

Cassava starch

Liquid glucose

Succinic acid

PHAs

Biodegradable plastics such as PLA, PBS

Bioplastics products

Compounding Molding

Polymerization

Fermentation by bacteria

Saccharification by enzyme

Potato starch

Page 24: World Bioplastics Industry

In Thailand glucose is produced from cassava starch, most of it destined for the food industry. The liquid glucose price is approximately 14 baht/kg (August 2006). Glucose, as a feedstock for bioplastics, does not need to be purified as for the food industry. Liquid glucose used for making ethanol is produced directly from cassava chip, which will generate 20% glucose and can be used directly in the monomer production process without purification. There are many such glucose factories in Thailand, producing both liquid and powdered glucose, as shown in Table 1.1. These factories have the potential to expand their facilities to produce monomers such as lactic acid.

Table 1.1 Glucose factories in Thailand

Factory Location Mr. Kamol Tangkamornsiri Bangkhuntian, Bangkok Hangya Thai 1942 Ratburana, Bangkok Prasertchai Co., Ltd. Muang, Samut Prakarn Thai Sugar Products Co., Ltd. Bangplee, Samut Prakarn Pure Chem Co., Ltd. Bangplee, Samut Prakarn Chaokhun Kaset Pheud Phon Co., Ltd. Gaengkhoi, Saraburi PSC Starch Products Ltd. Nongyai, Chonburi Thai Wattana Pharmaceuticals Dextrose Ltd.

Banglamung, Chonburi

Thai Cassava Industry Co., Ltd. Bankai, Rayong Rong Paeng Sin Sahasin Wattana Ltd. Part.

Pongnamron, Chantaburi

Sima Inter Products Co Ltd (Branch2) Panom, Sarakam, Chachoengsao Corn Products Amadas (Thailand) Co., Ltd.

Muang, Nakhon Ratchasima

Siam Sorbitol Co., Ltd. Muang, Nakhon Ratchasima Mr Kamol Pichitsingh Sikeo, Nakhon Ratchasima Asia Fructose Co., Ltd. Tamoung, Kanchanaburi Sin Udom Flour and Foods Co., Ltd. Muang. Nakhon Phatom Heng Uy Nguan Dontoom, Nakhon Phatom Nakorn Luang Glucose Co., Ltd. Sampran, Nakhon Phatom Thai Glucose Co., Ltd. Sampran, Nakhon Phatom

Sources: http://www2.diw.go.th/cluster/Fac_EIA1.asp Production of monomer and bioplastics products in Thailand

Since there are currently no bioplastics factories in Thailand, many companies have started importing bioplastics compounds to use the existing plastics processing machinaery to produce finished bioplastics products as pilot production for both domestic and export markets. Moreover, some companies have started developing their business to produce relating bioplastics products as shown in Table 1.2.

Page 25: World Bioplastics Industry

Table 1.2 Companies carrying on business relating to bioplastics

Company Location Product Technology 1. Advance

Packing Co., Ltd. (Special Tech Group)

Phranakorn Sri-Ayutthaya Plastic bags for plants

- produced from corn starch

- import raw plastic from USA and process in Thailand

2. M.S.V. Trading Ltd., Part

Bangkok Food container such as plate, bowl, spoon and fork

3. Bio Green World Co., Ltd. (BGW)

Samut Prakarn

Food container such as Plates, bowls, spoons and cups

- produced from PLA or PLA / starch blend

- PLA pellets imported from Taiwan

4. BIOFOAM Jazzy Creation Co., Ltd.

Bangkok Heat-resistant food packaging (single-use) such as disposable plates, bowls and food trays

- Produced from cassava starch, hot-molded into finished products

- Own proprietary technology

5. Biodegradable Packaging for Environment Co., Ltd. (BPE)

Bangkok Single use food packaging such as disposable plates, bowls and spoons

- Produced from bagasse

6. KU-GREEN: Biodegradable Package

Bangkok Single use food packaging such as disposable plates, bowls, trays and glasses

- Produced from cassava starch, hot-moulded into finished products

- Own proprietary technology

7. Thantawan Industry Public Co., Ltd.

Bangkok Bag, film - Import raw plastic from USA and process in Thailand

- Development compounding

8. PURAC Thailand

Rayong Lactic acid - Produced from molasses or cassava

Page 26: World Bioplastics Industry

1.3 Thailand’s readiness for a bioplastics industry

1.3.1 Raw materials

As an agricultural country, Thailand has major comparative advantages in producing bulk commodities such as rice, sugar cane, cassava, cellulose, wheat and oil palm. Such products contain carbohydrates, glucose or cellulose that are suitable as feedstock for producing bioplastics. Considering its competitive prices and abundant growing capacity in Thailand, cassava is the most feasible and appropriate crop for bioplastics industrial production. Comparing starch prices on the world market, cassava starch has the lowest price, as shown in Figure 1.3. Moreover, Thailand is now the world’s largest cassava exporter.

Year

Figure 1.3 Prices of cassava starch, potato flour, corn starch

and wheat flour in the world market In 2005, Thailand produced 16.94 million tons of fresh cassava roots, equal to

8% of world production and ranked No. 4 among fresh cassava producers, behind Nigeria, Brazil and Indonesia. 73.5% of fresh cassava roots are exported as pellets, chips or flour, as shown in Figure 1.4. As mentioned, Thailand is ranked as the world’s top exporter of cassava products, with 4.6 million tons p.a., or 85.5% of market share, valued at more than 30 billion baht. Its exports to China, Taiwan and other emerging markets mean that cassava has now become one of Thailand’s most important industrial crops. The non-exported production (26.5%) is mostly used as fresh starch in various agro-industrial processes such as the monosodium glutamate production, as well as the lysine, sweeteners, papers, and weaving industries. However, the export demand for cassava remains the main market driver.

Potato flour

Corn starch

Wheat flour

Cassava starch

Price

(doll

ars pe

r ton)

Page 27: World Bioplastics Industry

Figure 1.4 Cassava utilization ratios between domestic industry and exportation (2005)

Source: adapted information from The Thai Tapioca Trade Association Book B.E. 2547 (the detail based on the Ministry of Agriculture and Cooperatives and Customs Department) From draft report ‘Evaluation and Identification for Raw Intervention Ideas for Thailand’s Tapioca Subsector’ by AgriSource Co. Ltd. Figure 3.3, page 28. Notes: Conversion ratio for fresh cassava roots: 1 kg cassava chip : 2.2-2.4 kg fresh cassava roots 1 kg pellets cassava : 2.5-3.0 kg fresh cassava roots 1 kg fresh starch : 3.5-4.0 kg fresh cassava roots

Global production of fresh cassava 204 million tons

Fresh production- Thailand 16.9 million tons

Cassava consumption in Thailand (4.2 m tons fresh roots)

Cassava product exportation (12.7 m tons fresh roots)

Chip (0.08 m tons fresh

roots)

Flour 1.1 m tons

(4.12 m tons fresh roots)

Chip 2.77 m tons

(6.2 m tons fresh roots) 11,939 million baht

Pellets 0.26 m tons

(0.6 m tons fresh roots) 838 million baht

Flour 1.61 m tons

(5.9 m tons fresh roots) 20,150 million baht

36 % 1.5 %

World No.4 producer (8.3 %)

World no.1 Ratio 85.5 %

26.5 % 73.5 %

3.5% 34% 25 %

Food industry 200,000 tons flour

MSG/Lysine 250,000 tons flour

Sweeteners 380,000 tons flour

Paper 120,000 tons flour

Modified starch 70,000 tons flour

Sago 50,000 tons flour

Weaving 10,000 tons flour

Others 12,859 tons flour

Page 28: World Bioplastics Industry

Cassava is cultivated over 6.5 million rai (1 rai: 1,600 square meters), amounting to 14.22% of the total cultivated areas in Thailand. (Source: Ministry of Agriculture and Cooperatives). Around 52% of the cassava production area is in the northeastern provinces of Nakorn Ratchasima, Chaiyaphum, Kalasin, Khon Kaen, Buriram, and Sa kaew, and 25% in the eastern provinces of Chacheongsao, Chonburi, Chantaburi and Trat. The northern and central regions have 15% and 8%, respectively. Table 1.3 to 4.6 show statistics on the cultivated area, annual productivity, productivity per rai, farm gate prices of fresh roots, wholesale prices of cassava product, and volumes and value of cassava exports.

Table 1.3 Primary information on commercial cassava cultivation Source: Agricultural Development Plan, Tambon Kornswan, Chaiyaphum Table 1.4 Cultivated area, product, product per rai, cassava selling price by farmers B.E. 2539-2005

Cultivated area

Harvested area Production Production

per rai

Selling price by farmers Year

(1,000 rai) (1,000 rai) (1,000 ton) (kg) (baht/kg) 1996 7,885 7,676 17,388 2,265 0.98 1997 7,907 7,690 18,084 2,352 0.71 1998 6,694 6,527 15,591 2,388 1.26 1999 7,200 6,659 16,507 2,479 0.91 2000 7,406 7,068 19,064 2,697 0.63 2001 6,918 6,558 18,396 2,805 0.69 2002 6,224 6,176 16,868 2,731 1.05 2003 6,435 6,386 19,718 3,087 0.93 2004 6,757 6,608 21,440 3,244 0.80 2005 6,524 6,162 16,938 2,749 1.31

Source: Department of Agriculture http://www.doa.go.th/fieldcrops/cas/eco/index.HTM

Average product 3.5 tons/rai Production cost 2,100 baht/rai Cost of product 4,000 baht/rai

Page 29: World Bioplastics Industry

Table 1.5 Cassava product price B.E. 1990-2005

Cassava product Wholesale price in Bangkok

(baht/kg) FOB price (baht/ton)

Year

Pellets Chip Flour Pellets Flour 1990 2.36 2.03 5.16 3,700 5,740 1991 2.62 2.40 5.70 3,860 6,070 1992 2.57 2.40 5.59 3,850 5,893 1993 2.16 1.94 4.31 2,736 5,056 1994 2.43 2.22 4.31 2,736 6,184 1995 3.10 3.08 8.48 3,495 8,869 1996 2.96 2.70 6.47 3,160 7,343 1997 2.21 2.05 6.46 2,479 7,566 1998 3.20 3.01 10.64 3,301 11,306 1999 2.65 2.43 5.85 2,865 6,826 2000 2.00 1.81 5.27 2,210 6,308 2001 2.22 2.27 7.29 2,574 7,648 2002 2.22 2.69 7.62 2,807 7,898 2003 2.57 2.56 6.39 2,911 7,052 2004 2.72 2.85 7.60 3,097 7,473 2005 3.20 3.99 9.28 3,207 9,495

Sources: Office of Agricultural Economics, Ministry of Agriculture and Cooperatives. From draft report ‘Evaluation and Identification for Raw Intervention - Ideas for Thailand’s Tapioca Subsector’ by AgriSource Co. Ltd. Table 4.3 Table 1.6 Exports of cassava products 2003-2004 (volumes and value)

2003 2004

Products Amount (ton)

Cost (million

baht)

Amount (ton)

Cost (million

baht) Fresh tubers 127 4.2 75 1.8 Cassava chips 1,812,374 5,352.9 2,805,988 8,640.7 Cassava starch 1,084,068 7,439.6 1,113,633 8,196.5 Cassava pellets 1,859,939 5,096.0 2,212,948 6,391.6 Sago 21,684 251.9 26,742 315.5 Dextrin and other modified starch

525,515 8,780.0 492,638 7,500.7

Glue 5,091 161.2 10,231 289.5 Cassava stalks 61,594 138.7 194,267 479.2 Total of cassava products 5,370,392 27,224.7 6,856,522 31,815.5 Sources: Office of Agricultural Economics http://www.doa.go.th/fieldcrops/cas/eco/stat_1.HTM

Page 30: World Bioplastics Industry

Thailand’s cassava exports consist mostly of chips, pellets and starch, which have low prices and depend on the foreign commodity market factors leading to unstable prices and demanding conditions. Therefore, in order to increase its value, cassava needs to be adopted as an industrial raw material. Cassava starch in particular can be used for a number of industrial processes. As shown in Figure 1.5, when raw cassava roots are transformed into secondary products such as pellets, chip or flour, the value added will be only 50%, equal to 30 billion baht. But when further transformed into its tertiary products such as bioplastics, modified starch, cellulose products or liquid glucose, the added value will be 150% of its original, equal to 76 billion baht. For bioplastics alone, the added value would be 44 billion baht.

Figure 1.5 Cassava value chain

Source: adapted from strategic plan for agriculture and ago- industrial research, according to national research period in crisis for national revival by Prof. Dr. Theera Sutabutra, Kasetsart University. Diagram 2, page 17 .

Chips 2 MT

6,000 MB

Pellets 3 MT

9,000 MB

Cellulose 10,000 MB

Liquid glucose 2,000 MB

Modified starch and chemicals(14 B/kg)

20,000 MB

Bioplastics (PLA: 120-320 B/kg)

44,000 MB

Animal feed Exported

cassava starch 1.4 MT

76,000 MB

30,000 MB

8 MT

150 %

50 %

12 MT

0.7 MT 0.2 MT

Stalks 1 MT

1,000 MB

Fresh roots 20 MT (1 B/kg)

20,000 MB

Flour 2.3 MT (6.5 B/kg)

15,000 MB

Cost 20,000 MB

Page 31: World Bioplastics Industry

1.3.2 The plastics industry and market growth in Thailand Plastics production and markets

Thailand’s plastic industry is a full-cycle mature industry sector with a world-

class potential. Figure 1.6 shows the industry structure. Plastic granules or resin from the tertiary petrochemical industry may either directly enter the plastic industry or may undergo compounding or polymer blending or poly-alloy production in order to increase its value and utility. There are various plastic molding processes such as an injection molding, extrusion, blow molding and extrusion blow film/sheet. Plastic products are also extremely diverse, including packaging for household appliances, plastic parts for use in consumer goods, electrical appliances and the electronics industry, vehicles, shoes, construction materials etc. Thailand also has an active molding machinery production sub-sector, including die and mould machinery manufacture.

Figure 1.6 Structure of Thailand’s plastic products industry

Thailand’s plastic granule and resin production accounts for 4% of worldwide

production, as shown in Figure 1.7. Annual production amounts to 6.38 million tons/year, which is 38.7% more than domestic demand. Thus, Thailand has become an exporter of both basic pellets and engineering plastics. Thailand has fewer primary

Tertiary petrochemical industry

Plastic granules/resin

Composites SMC, BMC

Compounding Blending

Strengthening

Additives

Plastic product industry Molding

Mould and injector production

Consumer market Packaging

Sports equipment / toys Parts / building materials

Downstream industries Packaging Electrical parts Vehicle parts Construction materials Household appliance Sports equipment / toys Synthetic fibres Shoe parts, others

Page 32: World Bioplastics Industry

sources (natural gas from the Gulf of Thailand) than others such as the Middle Eastern countries, Indonesia and Malaysia. Nevertheless, Mabtapud Petrochemical Industrial Estate is ranked 8th in the world, and No.1 in the ASEAN region, as the producer of plastic granules. Thailand produces a diverse range of high quality plastic granules, including thermoplastics and thermoset. Both types are made in both basic and engineering forms. Thailand’s plastic granule exports are destined mainly for Japan, Singapore, USA, South Korea and Taiwan (See Figure 1.7).

Figure 1.7 Major producers of plastic granules and resins, 2003

Plastic production facilities in Thailand are mainly medium and small-sized.

80% of them are located in Bangkok and its surroundings, with a concentration in the southwestern part of Bangkok- Bangkhuntian, Bangbon, Chomthong, Ratburana and Toongkru districts.

Table 1.7 The plastics industry in Thailand, 2003

Detail Thailand No of factories 4,296 SME ratio (%) 88 Congested factory area Bangkok and

surroundings No of domestic consumer (millions) 62 Domestic consumers / factory (people/factory)

14,432

Ranking (in terms of production quantity) No.1 in ASEAN Sources: Department of Industrial Works, Ministry of Industry and Department of Trade Negotiation, Ministry of Foreign Affairs

Malaysia

1.5%

USA31 . 0 %

Thailand4.0%

Others

47 . 0 %

Germany10 . 5 %

China6.0%

Page 33: World Bioplastics Industry

There are 4,296 factories producing plastic products for molding registered with Department of Industrial Works, Ministry of Industry (data from the DIW, December 2002). However, it was estimated that the real number of factories could be over 5,000, including 30 plastic granule factories. From 2002 data there are 4,229 registered factories categorized into packaging manufacturers (41.9%, the largest market), followed by household products (16.9%) and finally, compounding plastic granules (5.1%). Figure 1.8 below shows the breakdown of plastic product factories in Thailand.

Figure 1.8 Categories of plastic product factories in Thailand

Source: Department of Industrial Works (2002) and the Federation of Thai Industries.

Economic Importance

Although Thailand has always been considered primarily as an agricultural country, over 75 percent of its exports are industrial products, including plastic granules, which indeed form one of the country’s most important exports. Even during the economic downturn in 1997, the export value of plastic granules is listed in the top 10 in Thailand. Thailand’s export volume and value of plastic granules between the years 1996 – 2003 are shown in Figure 1.9 below.

Packaging

42 %

Others

16 %

Toys, sport equipment

5%

Construction materials 4%

Home and kitchen utensils

17 %

Vehicle parts 2 %

Fibre

1%

Compounding plastic granules

5%

Shoes

4%

Electrical parts4%

Page 34: World Bioplastics Industry

Volum

e (m

tons)

Value

(m ba

ht)

Volum

e (m

tons)

Figure 1.9 Export volumes and value of plastic granules (1996 – 2003)

Source: IT Centre for Economy and Trade, and the Customs Department Thailand is now ASEAN’s leading exporter of plastic products and is ranked

8th in the world. The most important exports are films, foil/tape, synthesized fibers and sack bags. As we can see from Figure 1.10, the growth in export value from 1996 to 2003 is as high as 25.3 percent. The most important markets are Japan, USA, Hong Kong, UK, Australia and other ASEAN countries. From 2000, the value of plastic exports grew by more than 40 percent to 51 billion baht in 2003. Moreover, the export value of plastic granules and plastic products comprises 4 percent of the country’s total export value (140 billion baht).

0.0

1.0

2.0

3.0

2539 2540 2541 2542 2543 2544 2545 25460

20,00040,000

60,00080,000100,000

120,000

0.0

1.0

2.0

3.0

2539 2540 2541 2542 2543 2544 2545 2546020,00040,00060,000

80,000100,000

120,000

Page 35: World Bioplastics Industry

Film, foil and tape29%

Other28%

Pipes and tubes2%

Clothing & accessories

3%Rainwear

0%Boxes

and luggage2%

Woven sacks2%

Fishing nets4%

Tableware and kitchenware

5%

Bags and sacks25%

Figure 1.10 Key plastic exports, by value (2003)

Source: Department of Trade Negotiations, Trade Information Centre, and Thai Customs Department.

Plastic Industry ↓ ↓

Plastic granules and resin Plastic product ↓ ↓

Production: 3.91 million tons Cost 157,000 million baht Production: 6.38 million tons

No of factories : 30 factories No of factories : 4,296 factories ↓ ↓

Export volume 2.55 million tons Export value 89,261 million baht

Export value: 51,446 million baht

↓ Domestic consumption 3.83 million tons

Imports: 0.95 million tons ↓

Domestic consumption of plastic granules: 4.78 million tons, or 80 kg per

capita

Figure 1.11 Potential of Thai plastics industry (2003) by volume and value.

Figure 1.11 indicates the potential for Thailand’s plastic industry, from the production of basic intermediates (plastic granules) from the petroleum industry at Maptaphut to midstream technologies (compounding) and downstream (molding) and the presence of strong market demand both within Thailand and overseas.

The potential and competitiveness of the petrochemical-based plastics industry

brings both advantages and possibilities for the production of bioplastics, especially downstream technologies that employ similar production processes and machinery.

Page 36: World Bioplastics Industry

As shown in Table 1.8, Thailand has many advantages and strengths. With the government policy supports in various areas such as an environment, trades and investment as well as an encouragement to build technology, Thailand has the potential to play a leading role in bioplastics industry development in the region.

Table 1.8 Strengths and potential of Thailand’s bioplastic industry

Industry Strength and opportunity Constraints Possibility Polymer Industry

- Ample supplies of low-priced cassava feedstocks

Lack of technology and expertise

Moderate

Compounding granule industry

- Readiness for machines, technology, staff, domestic and foreign market

- Ability to import bioplastics in order to blend with abundant cassava starch to reduce costs

High price of bioplastics

High

Plastic products industry

- Readiness for machines, technology, staff, domestic and foreign markets

High price of bioplastics

Highest

1.3.3 Government policy and support measures

The government policy and support measures have a direct and major effect in driving the bioplastics industry. Implementing existing policies and establishing new ones to create an appropriate enabling regulatory framework to promote the bioplastics sector will be crucial to achieve national objectives. Since there is currently no law dealing specifically with bioplastics, laws concerning plastics and foams packaging are currently applied. New Royal Decrees are needed to amend existing legislation and ensure an effective enforcement in order to provide an effective and enabling regulatory framework for a viable bioplastics industry sector in Thailand. Some suggestions related to current legislation are offered below.

1. Customs Tariff Decree, B.E. 2530 (1987) Increases in import tariffs (collection of special tariffs) for non-

biodegradable raw materials, would help reducing import volumes and encouraging manufacturers to turn to biodegradable materials or to recycle products domestically.

2. The Excise Tax Act, B.E. 2527 (1984) This is an important statute which could be amended to incorporate tax

rate reductions, exemptions and other rules and conditions to reduce the use of foams and plastics. Under this Act imports and exports could be controlled by establishing tax-free policies for importing bioplastics, foam compounds, raw materials and biodegradable products which can substitute for conventional plastic bags and foam trays.

Page 37: World Bioplastics Industry

3. Industrial Product Standards Act, B.E. 2511 (1968) This Act could be amended to specify standards for biodegradable plastics,

including imprinting of the standard assurance logo and use of environmentally friendly printing inks.

4. Consumer Protection Act (No.1), B.E. 2522 (1979) and Consumer

Protection Act (No.2), B.E. 2541 (1998) The Consumer Protection Acts specify product label requirements. The

Act might be amended to specify that the label for plastic and foam products and packages must indicate whether the products are made from biodegradable materials, are environment-friendly, and rank their suitability for re-use or recycling. This would provide consumers with alternatives and would influence distributors to take this into consideration when choosing products to distribute.

5. Public Health Act, B.E. 2535 (1992) This Act authorizes a local government and public health officials to

control any business that have the potential to cause damage to public health. Therefore, the Act might be applied to the business relating to plastics and foams, and include new measures for collecting, transporting and disposing of plastics and foams solid wastes. It could also introduce new measures for plastics and foams garbage separation for households and enterprises in Bangkok and surrounding areas. The Act could establish different fee rates for collection of separated and non-separated garbage categories. Separation of the plastics and foams garbage could be used as a mean to reduce costs of municipal garbage separation services.

Identifying suitable channels for a waste separation and biodegradable plastic

packaging will provide an impetus for the efficient implementation of the green plastic pilot project. Under this Act, the authority is given to a local government to prescribe rules, procedures, fees and conditions for collecting, transporting, and disposing of sewage or solid wastes and the issuance of operating licenses for collection and disposal of garbage or wastes (pursuant to Articles 20(3), (4) and (5)), could be extended to include provisions for operations which separate plastics and foams from other categories.

Moreover, there are some more Acts which are relevant to the sector, as

follows: • Hazardous Substance Act (2nd Issue), B.E. 2544 (2001) • Enhancement and Conservation of National Environmental Quality Act, B.E. 2535 (1992) • Industrial Estate Authority of Thailand Act, B.E. 2522 (1979) • National Metrological System Development Act, B.E. 2540 (1997) • Investment Promotion Act, B.E 2520 (1977) and Amendment • Factory Act, B.E. 2535 (1992) • Price of Goods and Services Act, B.E. 2542 (1999)

Page 38: World Bioplastics Industry

Chapter 2: Strategy, Action Plan and Budget

Updated information about the industry, technologies, methods and strategies

employed by leading countries in the field of bioplastics will be crucial to accelerate the development of bioplastics industry in Thailand and also to attend the status of a regional hub for bioplastics production.

There is an urgent need to establish alliances at national and international levels to

support technology transfer and accelerate the development of bioplastics innovations and technologies. This will facilitate investment in bioplastics industry and further enhance the international competitiveness for Thailand. Apart from technology transfer, the enhancement of the national technology capacity will be required in order to make best use of its comparative advantages in terms of natural resources and existing supporting industry, proximity to markets etc., and also to aggressively develop Thailand’s R&D capacity and ownership of intellectual property rights on bioplastics related technologies.

Furthermore, at the policy level, it will be necessary to impose a range of

measures to support production and encourage the use of bioplastics, including procurement policies, taxation, and public relations, and pilot schemes and compliance with international standards. Intermediary organizations which have the power to negotiate on behalf of the industry at regional and international levels will also be needed.

The Road Map recognizes the need to ensure stable and adequate supplies of raw

feedstock materials, and therefore contains outline plans for utilizing raw materials which are readily utilizable by industry as feedstock, and which support growth and stability in the agricultural sector, as well as creating new cultivation and harvesting technologies.

To support the development of bioplastics as the New Wave Industry, a five-year

Road Map (2008-2012) for bioplastics development in Thailand was proposed. The Road Map consists of 4 key strategies, and is supported by a budget proposal. These strategies with relating budget are summarized in the Table 2.1.

Page 39: World Bioplastics Industry

Table 2.1 Strategy and budget allocation for the Road Map for the Development of Bioplastics Industry

Strategies Budget (million baht)

Strategy 1 Sufficient Supply of Biomass Feedstock 100 Strategy 2 Accelerating Technology Development and Technology Cooperation 2.1 Immediate adoption of available technologies 2.2 Further developing / generating indigenous new technologies

1,000

(100) (900)

Strategy 3 Building Industry and Innovative Businesses 3.1 Industry innovative business 3.2 Domestic and overseas markets

475 (445) (30)

Strategy 4 Establishment of Supportive Infrastructure 4.1 Establishing industry standards for biodegradability and testing 4.2 Environment 4.2.1 Environmental conservation 4.2.2 Public relations and building awareness 4.3 Policies (Technology, Industry, Environment)

225 (55) (50)

(120)

Total Budget 1,800

Each strategy consists of 6 components: target identification, indicators, action plans, responsible agency, functions of each agency and a budget for implementation. The rest of this chapter provides specific details for each of the 4 strategies.

Page 40: World Bioplastics Industry

Action Plans

Strategy 1: Sufficient Supply of Biomass Feedstock (100 million baht)

Targets Key Indicators 1. To obtain sufficient cassava as raw materials for production feedstock - To have approximately 10,000 tons of cassava annually

- To increase the cassava productivity to more than 8 ton per rai # #1 Hectare = 6.25 Rai or 10,000 sq. m.

Period/Budget Action Plans (Total Budget) Functions (Budget) Responsible Agency

(* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Found contingent loans and a lending system for farmers to increase cassava cultivation and its productivity

(20 million baht)

4 4 4 4 4

1. Introduce policies and

regulations on supporting cultivation and productivity enhancement

(20 million baht)

- Study and formulate policies for the use of genetic engineering in the field of GMO development to improve cassava variety to be used as feedstock for bioplastic production

- Ministry of Agriculture and Cooperatives*

The total of 10,000 ton increase in cassava production (~20 million baht) with the aid of 20 percent of the capital for five years; total budget 20 million baht.

Page 41: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Advise and educate farmers on the importance of using cassava as feedstock for bioplastic production and its impact on the economics and environment

(2 million baht)

A 2.5-year project for giving farmers the understanding; 4 times a year and 0.2 million baht a time, worth 2 million baht.

0.8 0.8 0.4

- Gather and establish the collection of crop variety

(2 million baht)

Implementation budget worth 2 million baht

1 1

- Transfer technology and distribute newly improved variety to farmers

(5 million baht)

A 5-year project for outreach program and cultivation techniques transfer; twice a year and 0.5 million baht each time; worth a total 5 million baht

1 1 1 1 1

2. Educate farmers to understand the use of agricultural products as feedstocks for bioplastic production

(22 million baht) - Select high-yield variety and

distribute them to farmers together with the transfer of good cultivation techniques and other necessary knowledge to ensure high productivity - Advise cultivation techniques and

secure all necessary supports e.g. good variety of crop, fertilizers and farming equipments

(13 million baht)

- Ministry of Agriculture and Cooperatives*

Fund for procuring all supports for farmers lasting 5 years with 2.6 allotted each year; worth a total 13 million baht

2.6 2.6 2.6 2.6 2.6

3. Encourage improved management of cultivated areas

(5 million baht)

Map the cultivation areas and managing those areas for agricultural crops especially cassava (5 million baht)

- Ministry of Agriculture and Cooperatives*

- Ministry of Industry

A pilot cultivation project covering the area of 2,000 rai, worth 5 million baht.

1 1 1 1 1

Page 42: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

4. Support the research and development, enhancement of crop variety, cultivation technology, and machinery to replace manual labor in cultivation and harvest process

(50 million baht)

- Prepare the direction for research on crop variety enhancement, and development of cultivation and harvesting technology

- Allocate fund to support the research and development activities

(50 million baht)

- National Research Council of Thailand*

[Working in a form of

committee consisting of representatives from Ministry of Education, Ministry of Industry, Thai Bioplastics Industry Association, etc.]

Research fund for crop improvement and development of cultivation technique lasting for 5 years. The fund is allocated to 7 projects (worth 3 million baht each) and 29 project (worth 1 million baht each)

22 20 8

- Analyze the demand for bioplastic production feedstock

(3 million baht)

Hosting inter-ministry meeting to formulate plans to manage the crop supplies for 5 years with the budget of 0.2 million baht each time (to be conducted 3 times a year)

0.6 0.6 0.6 0.6 0.6

- Gather information and acting as source of information on the status of raw material supply

- Allocate the crop for the production of bioplastics

- Ministry of Agriculture and Cooperatives*

- Thai Tapioca Development Institute

6. Promote proper management to ensure stable supplies to meet demand e.g. channeling the low-value cassava products for bioplastic production

(3 million baht)

- Analyze all economic factors concerned with using cassava for bioplastic production

- Ministry of Commerce*

Total Budget for STRATEGY 1: Sufficient Supply of Biomass Feedstock 100 million baht 33 31 17.6 9.2 9.2

Page 43: World Bioplastics Industry

Strategy 2: Accelerating Technology Development and Technology Cooperation (1,000 million baht) 2.1 Immediate adoption of available technologies (100 million baht)

Targets Key Indicators 1. To gain an access to at least 1 modern technology for fermenting sugar

for monomer production and/or PHAs by 2012 - To have an access to 2 types of technologies in transforming sugar into monomer and/or PHAs, such as

production of lactic acid, PDO, succinic acid and/or PHAs 2. To gain an access to at least 1 modern polymerization technology for

polylactic acids (PLAs) by 2012 - To have an access to 2 types of polymerization technologies such as PLA and PBS production

3. To gain an access to modern compounding technologies for the preparation of PLA resin for molding products at least 1 technology by 2010

- To have an access to at least 5 compounding formulae, with an emphasis on the formulae for use in packaging applications, thermoforming film and injection

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Conduct all necessary activities to acquire suitable technologies from upstream to downstream industry

(7.5 million baht)

Supporting representatives from private sector and member of academia to attend seminars and factory visits in countries of advanced bioplastics technology; 5 areas of technology (upstream, midstream and downstream); 1.5 million baht for each technology making up the total of 7.5 million baht

3 3 1.5

1. Assess and acquire suitable technologies to adopt or co-invest (including the execution of feasibility study)

(10 million baht) - Hire expert(s) to conduct the technology assessment (from upstream to downstream) in order to recommend the technology with feasibility to invest in

(2.5 million baht)

- National Innovation Agency*

Budget for hiring expert(s) to assess the technologies worth 2.5 million baht

1 1 0.5

Page 44: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Identify groups of industry executives/ entrepreneurs who have the potentials and are interested in bioplastics investment (from upstream, midstream and downstream)

(5 million baht)

- Conducting various activities to identify and persuade investors lasting 2 years; 2 events per year with 2 million baht allocated annually, making up 4 million baht in total

- Partial grant support for business executives to attend conference/seminar or have a factory visit to the country of leading bioplastics technology; 2-year project, 0.5 million baht allocated annually making a total of 1 million baht

2.5 2.5

- Undertake activities to introduce proven technologies to groups of industry executives/entrepreneurs

(5 million baht)

Seminars to introduce suitable technologies; 10 times with 0.5 million baht allotted to each, worth a total of 5 million baht

1.5 1.5 1.5 0.5

- Allocate partial subsidy funds for buying licenses of intellectual property for groups of industry entrepreneurs

(50 million baht)

- National Innovation Agency*

Support fund for procuring intellectual properties for 10 technologies worth 50 million baht

20 20 10

2. Promote and support the import or investment of technology between groups of industry entrepreneurs and enterprises which own overseas technologies

(60 million baht)

- Issue investment incentives - Board of Investment (BOI)*

Page 45: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Undertake activities to provide groups of local executives/entrepreneurs with an opportunity to associate with overseas enterprises which own technology

(5 million baht)

Organizing meetings between the local and overseas counterparts (2-year project, 1 meeting per year, 2.5 million baht for each meeting, totaling to 5 million baht)

2.5 2.5

- Create a stimulating environment for investment, coordinating and facilitating groups of local executive/entrepreneurs and overseas technology owners in order to encourage co-investment between them

- National Innovation Agency*

- Ministry of Industry

3. Coordinate groups of industry entrepreneurs with enterprises which own overseas technologies

(5 million baht)

- Issue incentives to facilitate the co-investment of local executives/entrepreneurs and oversea technology owners

- Board of Investment (BOI)*

4. Develop human capacity to transfer knowledge of technology

(25 million baht)

- Conduct seminars and training for personnel from private sector to broaden knowledge of technology

(20 million baht) - Support the training of personnel

overseas for both government and private sectors; in case of the private sector, the trainees must share the cost incurred during the training

(5 million baht)

- National Innovation Agency*

- 5-year project of training and personnel development; 4 times a year, 1 million baht set for each seminar/training, making up the total of 20 million baht

- 5-year project of sending personnel

overseas for technology training; 2 times a year, 0.5 million baht set for each training

4

1

4

1

4

1

4

1

4

1

Total Budget for STRATEGY 2.1: Immediate adoption of available technologies 100 million baht 35.5 35.5 18.5 5.5 5

Page 46: World Bioplastics Industry

2.2 Further developing / generating indigenous new technologies (900 million baht)

Targets Key Indicators

1. Further development and generation of new technologies for fermenting sugar for monomer production and/or PHAs (by 2012), in polymerization (by 2011) and in compounding (by 2010)

- To have at least 2 types of technologies for fermenting sugars for monomer production and PHAs, e.g. production of lactic acids, PDO, succinic acids and/or PHAs

- To have at least 2 types of technologies in polymer production - To have at least 5 compounding formulae per year for commercial use - To have at least 20 research papers per year published in national academic journals and at least

5 papers per year in international academic journals - To have at least 20 research papers presented in national academic conferences and at least 10

in international academic conferences - To register at least 10 national patents per year and at least 1 international patent per year

(starting from 2011)

Period/Budget Action Plans (Total Budget) Functions (Budget) Responsible Agency

(* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Collect and evaluate a status of global research and state of the art technologies which can be applied to the production of bioplastics at industrial level

(20 million baht)

5-year research program; 5 projects with 4 million baht allocated for each

4 4 4 4 4

- Collect data on finished/processing research projects and research personnel of countries in connection with technology of bioplastics production

1. Define research directions and offer research funds for integrative research in further development and/or generation of technologies for industrial application

(395 million baht) - Define research directions for

further development and/or generation of technologies for industrial applications

- National Research Council*

- National Innovation Agency

Page 47: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Allocate research funds for research projects in the following areas:

- Upstream research (100 million baht) - Midstream research (90 million baht) - Downstream research (60 million baht)

5-year research funds for target research; 1) 45 one-year small projects, 1 million

baht per project, worth 45 million baht in total

2) 23 three-year medium projects, 5

million baht per project, worth 115 million baht in total

3) 9 five-year large projects, 10 million

baht per project, worth 90 million baht in total

15

40

30

15

40

30

15

35

30

(cont.)

- Support the instruments and durable goods to research institutes or research teams along with research fund in order to facilitate the development of further research or improvement of existing technology

(125 million baht)

- National Research Council*

[Working in a form of

committee consisting of representatives from National Innovation Agency, Bereau of the Budget, Ministry of Education, Ministry of Industry, Thai Bioplastics Industry Association, etc.]

Instruments and durable goods to support: 1) Upstream research, 60 million baht 2) Midstream research, 30 million baht 3) Downstream research, 35 million baht

60 30 35

Page 48: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Gather local information on research projects and existing technology concerned with bioplastics and prioritize available technologies in order to determine direction for research which aims at producing country’s own technology

(5 million baht)

- National Innovation Agency*

Conducting meetings to gather project information

1

1

1

1

1

- Allocate research funds for research projects in the development of crucial and feasible technologies in the following areas:

- Upstream research (90 million baht) - Midstream research (80 million baht) - Downstream research (30 million baht)

5-year research funds for target research; 1) 50 one-year small projects, 1 million

baht per project, worth 50 million baht in total

2) 12 three-year medium projects,

5 million baht per project, worth 60 million baht in total

3) 9 five-year large projects, 10 million

baht per project, worth 90 million baht in total

10

20

50

10

20

40

10

20

10

10

2. Define research directions and allocate research funds for target and integrative research in the generation of the country’s own technologies that must be both crucial and feasible

(305 million baht)

- Support the durable goods for research to institutes or research teams to ensure the readiness of the pilot plant

(100 million baht)

- National Research Council*

[Working in a form of committee consisting of representatives from National Innovation Agency, Bureau of the Budget, Ministry of Education, Ministry of Industry, Thai Bioplastics Industry Association, etc.]

Instruments and durable goods to support: 1) Upstream research, 50 million baht 2) Midstream research, 25 million baht 3) Downstream research, 25 million baht

50 25 25

Page 49: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Establish a database on research projects and researchers who work on industrial engineering and production process at the model or pilot level

- National Innovation Agency*

- National Research Council

- Allocate funds for relevant research projects which co-develop with private sector

(100 million baht) - Allocate funds for relevant

research projects to university with research excellence on various areas concerned with bioplastics in order to develop to the industrial scale

(20 million baht) - Support the durable goods for

research to institutes or research teams to ensure the readiness of the pilot plant

(30 million baht)

- National Research Council*

[Working in a form of

committee consisting of representatives from National Innovation Agency, Bureau of the Budget, Ministry of Education, Ministry of Industry, Thai Bioplastics Industry Association, etc.]

5-year research funds for target research; 1) 10 three-year medium projects, 5

million baht per project, worth 50 million baht in total

2) 5 five-year large projects, 10 million baht per project, worth 50 million baht in total

5-year research funds for target research; 4 three-year medium projects, 5 million baht per project, worth 20 million baht in total - Upstream instruments, 10 million baht - Midstream instruments, 10 million baht - Downstream instruments, 10 million

baht

20

20

10

10 10 10

15

20

10

15

10

3. Encourage and support the industrial engineering and production process at model or pilot level for building fully-equipped industrial factories

(150 million baht)

- Initiate the cooperation among industry sectors to support the industrial research on the pilot scale and invest with own fund to carry out R&D activities with lecturers and researchers

- Thai Bioplastics Industry Association*

Page 50: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

4. Encourage and support researchers in conducting collaborative research, and to exchange research data within and between groups

(25 million baht)

- Conduct meetings, seminars and workshop training for researchers in relevant fields

(25 million baht)

- National Innovation Agency*

5-year project to host meetings and academic seminars; 2 meetings and seminars a year, 1 million baht per one event; total budget 10 million baht.

5

5

5

5

5

- Provide advise and consultation for the intellectual properties registration procedures

5. Encourage and support registration of patents, selecting from research with potential for development at industry level

(20 million baht) - Allocate subsidies for registering

patents (20 million baht)

- Ministry of Commerce* (Department of Intellectual Properties)

5-year subsidy funds for protecting intellectual property of the country’s technologies: - 50 national intellectual property, 0.3

million baht per case, budget 15 million baht, and

- 5 international intellectual property cases, 1 million baht per property; total budget 5 million baht

3

1

3

1

3

1

3

1

3

1

7. Establish database of research in technology and bioplastics industry

(5 million baht)

- Establish database of research, technology and companies engaged in bioplastics

- Allocate subsidy funds for establishing a database

(5 million baht)

- National Innovation Agency*

- 5-year subsidy funds for establishing database (5 million baht)

1

1

1

1

1

Total Budget for STRATEGY 2.2: Further developing / generating indigenous new technologies 900 million baht 485 215 150 25 25

Page 51: World Bioplastics Industry

Strategy 3: Building industry and innovative businesses (total budget Baht 475 million) 3.1 Industry innovative business (445 million baht)

Targets Key Indicators

1. Establish a pilot industrial factory for monomer production (by 2012) - To have 2 starch, sugar or new factories to produce monomer (such as lactic acid, succinic acid, PDO)

from sugars, with capacity of at least 1,500 tons per year and approximate investment value of 1.0 billion baht

2. Set up a pilot industrial factory for monomer production (by 2012) - To have 2 factories for monomer production (such as PLA and PHAs), with capacity of at least 1,000 tons per year and approximate investment value of 1.5 billion baht

3. Set up an industrial factory for compounding (by 2011) - To have 5 compounding factories which expand their existing businesses to bioplastics, or set up new

factories, with capacity of at least 300 tons per year in productivity and approximate investment value of 200 million baht

4. Set up an industrial factory for molding products (by 2011) - To have 30 molding factories expanding their businesses lines to bioplastics, with capacity of at least 100 tons per year and with approximate investment value of 300 million baht

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Allocate zero-interest contingency loans for building factories (100 million baht)

Zero-interest contingency loans worth 100 million baht

30

30

40

- Establish co-investment with groups of entrepreneurs (250 million baht)

Funds for co-investment worth 100 million baht

100

150

- Suggest, advise, facilitate and coordinate relevant sectors for building factories

- National Innovation Agency*

1. Encourage co-investment between groups of entrepreneurs and enterprises which own foreign technologies in order to build pilot industrial factories for monomer and polymer production

(350 million baht) - Issue support incentives - Board of Investment

(BOI)*

Page 52: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Subsidize loans to expand or construct new factories without interest

(15 million baht)

Subsidized loan without interest of 15 million baht

3 3 3 3 3

- Initiate joint ventures with prospective investors

(50 million baht)

Joint venture subsidy fund of 50 million baht

25 25

- Support via subsidy fund for importing bioplastics granules for compounding trial run in the pilot project

(5 million baht)

- National Innovation Agency*

5-year subsidy for importing a total of 25 tons of granules worth 5 million baht

1 1 1 1 1

2. Encourage compounding industry and product molding by having manufacturers expand their business lines to include bioplastics, or building new factory facilities to fully support bioplastic production

(70 million baht)

- Issue support incentives/measures

- Board of Investment (BOI)*

3. Support establishment of full-cycle industrial estates specifically for bioplastics

(10 million baht)

- Determine the area of the industrial estate including provision of public utilities and services and infrastructure

(10 million baht)

- Ministry of Industry* - National Innovation Agency

- Ministry of Commerce - Board of Investment (BOI)

Budget for conducting study on the zoning for bioplastics industrial estate lasting for 2 years; worth 5 million baht per year

5 5

4. Support various activities to help strengthening Thailand’s bioplastics industries

(15 million baht)

- Support activities and initiatives conductive to the strengthening of bioplastics industries

(15 million baht)

- National Innovation Agency*

Support funding of 3 million baht annually

3 3 3 3 3

Total Budget for STRATEGY 3.1: Industry innovative business 445 million baht 167 217 47 7 7

Page 53: World Bioplastics Industry

3.2 Building domestic and overseas markets (30 million baht)

Targets Key Indicators 1. Establish a domestic business on bioplastics compounding and

bioplastics products - To sell 4,500 tons per year of compounding granules, valued at 300 million baht per year - To sell 800 million baht of bioplastic products per year

2. Establish overseas markets for bioplastics compounding and bioplastics products

- To export 1,500 ton per year of compound granules and bioplastic products worth 400 million baht per year.

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Subsidize participation in exhibitions for manufacturers

(10 million baht)

Subsidy on exhibition participation for 100 manufacturers during the 5-year period, 0.1 million baht per company - a total of 10 million baht

2 2 2 2 2

1. Encourage manufacturers to participate in domestic product exhibition shows

(10 million baht) - Collect data of annual product exhibitions and disseminate news to manufacturers and consumers

- National Innovation Agency*

- Ministry of Commerce

Page 54: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Subsidize participation of manufacturers at exhibitions and trade shows

(20 million baht)

Subsidy on participation in product exhibitions and trade promotion events for the period of 5 years; granted to 100 companies, 0.2 million baht each – a total of 20 million baht

4 4 4 4 4

- Collect data and publicize product exhibition event abroad to manufacturers.

- Coordinate cooperation between Thai companies and foreign counterparts

- National Innovation Agency*

- Ministry of Commerce

2. Encourage manufacturers to participate in product exhibitions and major trade events abroad

(20 million baht)

- Coordinate cooperation with foreign companies

- National Innovation Agency*

- German Technical Cooperation (GTZ)

Total Budget for STRATEGY 3.2: Building domestic and overseas markets 30 million baht 6 6 6 6 6

Page 55: World Bioplastics Industry

Strategy 4: Establishment of Supportive Infrastructure (225 million baht) 4.1 Building industry standards for biodegradability and testing (55 million baht)

Targets Key Indicators

1. Set national biodegradability standards for bioplastics - To set up certification standards for biodegradation for domestic products, including assurance logo for certification

2. Establish a Degradability Testing Center for bioplastics - To establish at least 2 functioning centers

Period/Budget Action Plans (Total Budget) Functions (Budget) Responsible Agency

(* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Conduct preliminary study, define national standards, and submit for approval

(5 million baht)

- National Innovation Agency*

- Standards establishment – 4 million baht.

2 2

- Execute these national standards - Ministry of Industry*

(Thai Industrial Standards Institute)

1. Establish a committee to set national standards for bioplastics, including assurance logo and render these standards effective through public announcement

(5 million baht) - Conduct public hearing on biodegradability standards

- Ministry of Industry* (Thai Industrial Standards Institute)

- National Innovation Agency

- 2 public hearings over 2-year period – 1 million baht

0.5 0.5

Page 56: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Support via subsidy fund for establishing Degradability Testing Center of bioplastics

(40 million baht)

Purchase of equipments for 5 tests (40 million baht): (1) Measureing carbon content before

testing (2) Weighing (3) Measuring CO2 by the DIC method

(dissolved in organic solution) or titration with Ba(OH)2

(4) Measuring O2 through BOD test (5) Measuring CH4 by using GC

40

2. Establish a Degradability Testing Center for bioplastics

(50 million baht) - Personnel development (10 million baht) - Provide information on testing

techniques and equipment. - Participate in development of the

Testing Center - Support information and advise

on the model of Testing Center

- National Science and Technology Development Agency (NSTDA) *

- Thailand Institute of Scientific and Technological Research (TISTR)*

- Department of Science Service

- Thai Bioplastics Industry Association (TBIA)

- German Technical Cooperation (GTZ)

Staff training (10 million baht): - 5 million baht for domestic training - 5 million baht for on-the-job training

abroad

10

Total Budget for STRATEGY 4.1: Building industry standards for biodegradability and testing 55 million baht 52.5 2.5 - - -

Page 57: World Bioplastics Industry

4.2 Environnent 4.2.1 Environnemental conservation (50 million baht)

Target Indicators 1. Implement government measures or policies to encourage and

facilitate the production and utilization of bioplastics - To establish at least 2 government measures/policies to encourage manufacturing and use of

bioplastics 2. Establish pilot bioplastic project for environmental protection - To launch at least 2 projects/campaigns such as the Green Airline and Compost Bag for Organic

Waste 3. Reduce the volume of waste in Bangkok - To reduce waste in Bangkok by at least 12 percent (equivalent to 1,000 tons per day)

Period/Budget Action Plans (Total Budget) Functions (Budget) Responsible Agency

(* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

1. Study the available measures and policies addressing the environmental issues in order to support the development of bioplastics industry and the utilization of bioplastic product

(10 million baht)

- Analyze the regulations, policies and measures concerned with environmental issues in order to support the development of bioplastics industry and the utilization of bioplastic product

(10 million baht)

- National Innovation Agency*

The analysis and research study on regulations, policies and standards on environment for the bioplastics development worth 10 million

5

5

2. Propose measures or policies to reduce greenhouse gases, reducing use of energy and chemicals from industrial sources.

- Propose regulatory control and policies or environmental standards, e.g. control of aerial discharge from factories and gaseous ejection from biohazard incinerator

- Ministry of Natural Resource and Environment* (Department of Pollution Control)

- Ministry of Science and Technology

Page 58: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Propose waste management measures with emphasis on household waste separation

- Ministry of Natural Resource and Environment* (Department of Pollution Control)

- Participate in initiatives for practical waste separation (e.g. supporting the Livable City, Livable Community Project)

- Ministry of Interior* (District Administration)

3. Propose measures or policies for local waste management

- Participate in generating regulations for hospital waste management

- Ministry of Public Health* (Department of Health)

- Propose incentives for manufacturers and consumers

- Ministry of Natural Resource and Environment* (Department of Environmental Quality Promotion)

4. Propose measures to promote the use of bioplastics as means to protect the environment

- Propose incentives for manufacturers and consumers - Ministry of Commerce*

- Support measures for efficient waste management.

- Ministry of Natural Resource and Environment* (Department of Pollution Control)

- Support measures for efficient waste management.

(10 million baht)

- Ministry of Interior* (District Administration)

2 2 2 2 2 5. Establish an efficient biodegradable waste management model

(20 million baht) - Encourage the waste separation

(dry and wet) to enable the waste recovery

(10 million baht)

- National Innovation Agency*

Project funding of 10 million baht for 5-year implementation period

2 2 2 2 2

Page 59: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Support the LCA analysis of bioplastics

- Ministry of Natural Resource and Environment* (Department of Pollution Control)

6. Conduct Life Cycle Assessment (LCA) for bioplastics and compare with result from conventional plastics

(10 million baht) - Appoint researcher(s) to study,

gather information, analyze and conduct LCA for bioplastics

(10 million baht)

- National Science and Technology Development Agency (NSTDA)*

Funding for the LCA study worth 10 million baht

5 5

7. Green Airport Project for Suvarnbhumi International Airport

- Promote the use of bioplastics in the airport compound - Ministry of Transport*

- Create understanding about waste separation to people in the community

- Distribute garbage bags within the target community

(10 million baht)

- Ministry of Interior* (District Administration)

Funding for the provision of bioplastic garbage bags for the duration of 5 years; 1 year for 1 locality with estimated 5,000 bag/day, worth 10 million baht in total

2 2 2 2 2

8. Pilot community project for bioplastic bags and organic waste for biogas production; to be implemented in 2 selected districts

(10 million baht) - Coordinate and create understanding with community in the pilot areas.

- Thailand Environmental Institute (TEI)*

Total Budget for STRATEGY 4.2.1: Environnemental conservation 50 million baht 16 16 6 6 6

Page 60: World Bioplastics Industry

4.2.2 Public relations and building awareness (120 million baht)

Target Index 1. Arrange campaigns to introduce bioplastics to consumers - To hold regional exhibition on bioplastics once a year during the 5-year period 2. Create positive attitudes towards using bioplastics, including social

and environmental consciousness - To create advertising media including, but not limited to, radio and television spots

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

1. Hold the exhibition introducing bioplastics.

(5 million baht)

- Enhance public understanding on bioplastics, from manufacturing processes, degradation and environmental impacts

(5 million baht)

- National Innovation Agency*

5 exhibitions over the 5-year period; total budget of 5 million baht

1 1 1 1 1

2. Integrate the content on bioplastics into Environment Studies in the education curricula.

- Submit the content to be added to the curricula

- Ministry of Education* (Schools, colleges and universities)

- Produce or purchase documentaries

(30 million baht)

- National Science and Technology Development Agency (NSTDA)*

6 6 6 6 6 3. Establish and/or purchase

documentary on bioplastics, and distribute to school and institutions of higher education

(30 million baht) - Distribute documentary to

education institutes

- Ministry of Education* (Schools, colleges and universities)

Subsidy fund of 5 million baht to purchase a documentary from overseas (e.g. BBC or NHK from Japan, or to produce locally

4. Environment Innovation Award (5 million baht)

- Determine conditions and award prizes

(5 million baht)

- National Innovation Agency*

Prize money and event support of 1 million baht per year

1 1 1 1 1

5. Produce television and radio promotional media

(30 million baht)

- Produce advertising media to create positive attitudes towards bioplastics

(30 million baht)

- National Innovation Agency*

Subsidy fund of 30 million baht for the duration of 5 years – 1 event per year, max 6 million baht per promotional event

6 6 6 6 6

Page 61: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

6. Convene an international exhibition in Thailand

(50 million baht)

- Organize exhibitions and publicize the events

(50 million baht)

- National Innovation Agency*

Hosting 1 exhibition per year; 10 million baht set for each event

10 10 10 10 10

Total Budget for STRATEGY 4.2.2: Public relations and building awareness 120 million baht 24 24 24 24 24

Page 62: World Bioplastics Industry

4.3 Policies (Technology, Industry, Environment)

Target Key Indicators 1. Establish supportive technology policies - Technology policies created and implemented

2. Establish supportive policies for bioplastics industry business - Industry business policies created and implemented

3. Establish supportive policies to stimulate domestic and export markets

- Market stimulation policies created and implemented

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget Figures

2008

2009

2010

2011

2012

- Issue policies and measures for tax, inducement, privileges and exemptions (such as the privilege for tax exemptions for investment in technology R&D)

- Ministry of Finance* (Thai Customs Department,

Revenue Department)

1. Propose policies and measures to accelerate growth and technology transfer

- Issue policies and measures to accelerate technology R&D

- National Innovation Agency*

- National Research Council - Ministry of Education

(education institutes, Commission on Higher Education, Institute for the Promotion of Teaching Science and Technology)

- Thailand Research Fund

Page 63: World Bioplastics Industry

Period/Budget

Action Plans (Total Budget) Functions (Budget) Responsible Agency (* Key Agency) Sources of Budget

2008

2009

2010

2011

2012

- Issue policies to support establishment of bioplastics production facilities (e.g. tax privileges for investment)

- Ministry of Industry* (Dept. of Industrial

Promotion, Board of Investment, Office of Industrial Economics, Office of SME Promotion, Industrial Estate Authority)

- Ministry of Finance

2. Propose policies and measures supporting bioplastic industry development

- Issue policies to enforce some locally produced plastic parts, e.g. electrical parts, to be replaced by bioplastics

- Ministry of Natural Resource and Environment*

- Ministry of Industry (Board of Investment) - National Innovation

Agency

- Issue policies, measures, tax privileges, trade privileges and international measures facilitating imports and exports of bioplastics

- Ministry of Finance* (Thai Customs Department,

Revenue Department) - Ministry of Commerce (Dept. of Foreign Trade,

Dept. of Interior Trade, Dept. of Trade Promotion, Dept. of Export Promotion)

- National Innovation Agency

3. Propose policies and measures facilitating import and export of compounding granules and bioplastic products

- Issue biodegradation standards

- Ministry of Industry* (Office of SME Promotion,

Industrial Standards Institute)

- National Innovation Agency

Page 64: World Bioplastics Industry

Table 2.2 Summary of Annual Budget Allocation

Year/Budget (million baht) Organization

2008 2009 2010 2011 2012 Total

1. Ministry of Agriculture and Cooperatives 11.0 11.0 9.6 9.2 9.2 50.0

2. Ministry of Industry 5.0 5.0 - - - 10.0

3. National Research Council of Thailand 496.0 224.0 147.0 14.0 14.0 895.0

4. National Science and Technology Development Agency 36.0 11.0 6.0 6.0 6.0 65.0

5. Thailand Institute of Scientific and Technological Research 25.0 - - - - 25.0

6. National Innovation Agency 238.0 288.0 98.5 45.5 45.0 715.0

7. Ministry of Commerce 4.0 4.0 4.0 4.0 4.0 20.0

8. Ministry of Interior (District Administration Organizations and Bangkok Metropolitan Administration) 4.0 4.0 4.0 4.0 4.0 20.0

Total 819.0 547.0 269.1 82.7 82.2 1,800.0

Page 65: World Bioplastics Industry

Table 2.3 Annual budget allocation for Strategy 1

Year/Budget (million baht) Organization

2008 2009 2010 2011 2012 Total

1. Ministry of Agriculture and Cooperatives 11.0 11.0 9.6 9.2 9.2 50.0

2. Ministry of Industry - - - - - -

3. National Research Council of Thailand 22.0 20.0 8.0 - - 50.0

4. National Science and Technology Development Agency - - - - - -

5. Thailand Institute of Scientific and Technological Research - - - - - -

6. National Innovation Agency - - - - - -

7. Ministry of Commerce - - - - - -

8. Ministry of Interior - - - - - -

Total 33.0 31.0 17.6 9.2 9.2 100.0

Table 2.4 Annual budget allocation for Strategy 2

Year/Budget (million baht) Organization

2008 2009 2010 2011 2012 Total

1. Ministry of Agriculture and Cooperatives - - - - - -

2. Ministry of Industry - - - - - -

3. National Research Council of Thailand 474.0 204.0 139.0 14.0 14.0 845.0

4. National Science and Technology Development Agency - - - - - -

5. Thailand Institute of Scientific and Technological Research - - - - - -

6. National Innovation Agency 42.5 42.5 25.5 12.5 12.0 135.0

7. Ministry of Commerce 4.0 4.0 4.0 4.0 4.0 20.0

8. Ministry of Interior - - - - - -

Total 520.5 250.5 168.5 30.5 30.0 1,000.0

Page 66: World Bioplastics Industry

Table 2.5 Annual budget allocation for Strategy 3

Year/Budget (million baht) Organization

2008 2009 2010 2011 2012 Total

1. Ministry of Agriculture and Cooperatives - - - - - -

2. Ministry of Industry 5.0 5.0 - - - 10.0

3. National Research Council of Thailand - - - - - -

4. National Science and Technology Development Agency - - - - - -

5. Thailand Institute of Scientific and Technological Research - - - - - -

6. National Innovation Agency 168.0 218.0 53.0 13.0 13.0 465.0

7. Ministry of Commerce - - - - - -

8. Ministry of Interior - - - - - -

Total 173.0 223.0 53.0 13.0 13.0 475.0

Table 2.6 Annual budget allocation for Strategy 4

Year/Budget (million baht) Organization

2008 2009 2010 2011 2012 Total

1. Ministry of Agriculture and Cooperatives - - - - - -

2. Ministry of Industry - - - - - -

3. National Research Council of Thailand - - - - - -

4. National Science and Technology Development Agency 36.0 11.0 6.0 6.0 6.0 65.0

5. Thailand Institute of Scientific and Technological Research 25.0 - - - - 25.0

6. National Innovation Agency 27.5 27.5 20.0 20.0 20.0 115.0

7. Ministry of Commerce - - - - - -

8. Ministry of Interior 4.0 4.0 4.0 4.0 4.0 20.0

Total 92.5 42.5 30.0 30.0 30.0 225.0

Page 67: World Bioplastics Industry

Expected Outputs from the Implementation of the National Road Map for the Development of Bioplastics Industry

Economic, industrial and agricultural aspect (valued 4.5 billion baht) • Establishment of new wave industry and a complete range of innovative

bioplastics business (from the upstream to downstream) with an investment value of 3,000 million baht.

• An ability to reach 1 percent of the market share (by value) of plastic products produced, worth 1.5 billion baht.

• New value creation and value-added which will increase a price stability for agricultural crops used as feedstock

Technological aspect (valued 500 million baht) • New technology for the country, leading to at least 50 items of the intellectual

property, worth 300 million baht. • Technology transfer and business integration between foreign technology owners

and local partners, making use of Thailand’s supplies of biomass. The economic value of this contribution to the country’s technology base is valued at 100 million baht.

• Creation of national core expertise in specialized fields, leading to integrated and targeted R&D which will create the industrial innovation research work valued at 100 million baht.

Environmental aspect (valued 500 million baht) • Budget reduction of 400 million baht (currently allocated to dispose of the

conventional plastic wastes). • Awareness and consciousness of the environment preservation throughout

Thailand’s population. • Use of biodegradable plastic products to help enhance quality of life and

contribute to environmental protection. • Pilot demonstration areas with the complete range of system of biodegradable

plastic use, with an environment value of 100 million baht. Policy aspect • Establishment of effective policies and measures which will promote and facilitate

investment in the bioplastics industry. • Establishment of effective policies and measures to accelerate, R&D and

technology transfer for manufacturing of bioplastics. • Measures and environmental regulations supporting the use of biodegradable

plastics. • Bioplastics industry measures.

Page 68: World Bioplastics Industry

Abbreviations Organization ASEAN Association of South East Asian Nation MTEC National Metal and Materials Technology Center NIA National Innovation Agency NRCT National Research Council of Thailand PPC Petroleum and Petrochemical College R&D Research and Development SME Small and Medium Enterprise TBIA Thai Bioplastics Industry Association

Chemical reagents

AAC aliphatic-aromatic polyester BDO 1,4-butane diol BOD biological oxygen demand COD chemical oxygen demand DMT dimethyl terephthalate DOA dioctyl adipate DOP dioctyl phthalate HDPE high density polyethylene HDT heat distortion temperature LDPE low density polyethylene PBA poly(butylene adipate) PBAT poly(butylene adipate terephthalate) PBS poly(butylene succinate) PBSA poly(butylenes succinate adipate) PBT poly(butylene terephthalate) PCL poly(carprolactone) PDLA poly(d-lactic acid) or poly(d-lactide) PDO 1,3-propane diol PE polyethylene PEG poly(ethylene glycol) PES poly(ethylene succinate) PET poly(ethylene terephthalate) PGA poly(glycolic acid) PGLA poly(glycolic-co-lactic acid) PHAs poly(hydroxyalkanoate)s PHB poly(hydroxybutyrate) PHBV poly(hydroxybutyrate-hydroxyvalerate) PLA poly(lactic acid) or polylactide PLLA poly(l-lactic acid) or poly(l-lactide)

Page 69: World Bioplastics Industry

PP polypropylene PS polystyrene PTT poly(trimethylene terephthalate) PVA poly(vinyl alcohol) PVAc poly(vinyl acetate) PVC poly(vinyl chloride) Tg glass transition temperature Tm melting temperature TPA terephthalic acid TPS thermoplastic starch

Page 70: World Bioplastics Industry

Proposed Works for Bioplastic Policy Study in ThailandAsst. Prof. Pomthong MalakulAsst. Prof. Hathaikarn Manuspiya

The Petroleum and Petrochemical CollegeChulalongkorn University

Page 71: World Bioplastics Industry

Current Status of Bioplastics in Thailand

National Road Map of Bioplastics in Thailand

Expected Thai Government Policy and Supporting for Investment

Scope of Proposed Work: Policy Study for the Promotion of the Bioplastics Industry and

Biodegradable Products in Thailand

Page 72: World Bioplastics Industry

Private sector activities

CurrentCurrent StatusStatus ofof BioplasticBioplastic ininThailandThailand

� Nature Works : establishing the new plant as a base for its Asia plant which is expected to start operations in 2014.

� BASF : leading a pilot project to encourage consumers to use biodegrable bags for waste and compost in Thailand.

� Thai Government : efforts to derive 5% of plastics from bio-based sources in 2012 by introducing an incentive program that includes research funding and favorable tax policies.

� The Thai government is taking steps towards making Thailand a regional bioplastic hub.

Government sector activities

Page 73: World Bioplastics Industry

National Road Map of Bioplastic in National Road Map of Bioplastic in ThailandThailand

Chapter 1: Current Situation of Bioplastics in Thailan d

Chapter 2: Strategy, Action Plan and Budget

� Status of Bioplastics in Thailand� Thailand’s readiness for a Bioplastics Industry

� Strategy 1: Sufficient Supply of Biomass Feedstock� Strategy 2: Accelerating Technology Development and Technology Cooperation� Strategy 3: Building Industry and Innovative Business� Strategy 4: Establishment of Supportive Infrastructure

Page 74: World Bioplastics Industry

� The amount of garbage produced in Thailand is constantly increasing, with over 14.4 million tons created in 2003.

� In particular, since 2003 NIA has been active in promoting bioplastics, compiling technology and business information on bioplastics from leading countries as well as coordinating with all stakeholder organizations to drive the support infrastructure and policy for the establishment bioplastics industry in Thailand.

Chapter 1: Current Situation of Bioplastics in Thai land : Chapter 1: Current Situation of Bioplastics in Thai land : Status of Bioplastic in Thailand Status of Bioplastic in Thailand

Page 75: World Bioplastics Industry

� Cassava roots are first transformed into cassava starch, which is then put through a scarification process using enzymes to produce liquid glucose.

Chapter 1: Current Situation of Bioplastics in Thai land : Chapter 1: Current Situation of Bioplastics in Thai land : Status of Bioplastic in Thailand Status of Bioplastic in Thailand

Page 76: World Bioplastics Industry

� Production of monomer and bioplastics product in Thailand : some companies have started developing their business to produce relating bioplastics product.

Chapter 1: Current Situation of Bioplastics in Thai land : Chapter 1: Current Situation of Bioplastics in Thai land : Status of Bioplastic in Thailand Status of Bioplastic in Thailand

Page 77: World Bioplastics Industry

Table 1 Companies carrying on business relating to bi oplastics

Chapter 1: Current Situation of Bioplastics in Thailan d : StatusChapter 1: Current Situation of Bioplastics in Thailan d : Status of of Bioplastic in Thailand Bioplastic in Thailand

Page 78: World Bioplastics Industry

Table 1 Companies carrying on business relating to bi oplastics

Chapter 1: Current Situation of Bioplastics in Thailan d : StatusChapter 1: Current Situation of Bioplastics in Thailan d : Status of of Bioplastic in Thailand Bioplastic in Thailand

In Thailand, the world’s largest lactic acid producer, PURAC, (The Netherlands-based company)opened a state of the art lactic acid production facility in Rayong on Jan 2008

Page 79: World Bioplastics Industry

Chapter 1: Current Situation of Bioplastics in Thai land : Chapter 1: Current Situation of Bioplastics in Thai land : ThailandThailand ’’s readiness for a bioplastics industrys readiness for a bioplastics industry

Raw Materials

The Plastics Industry and Market Growth in Thailand

Government Policy and Support Measures

Page 80: World Bioplastics Industry

1. Raw materials� Thailand has major comparative advantage in producing bulk commodities such as rice, sugar cane, cassava, cellulose, wheat and oil palm.

� Cassava is the most feasible and appropriate crop for bioplastics industrial production because of its competitive prices and abundant growing capacity in Thailand.

Chapter 1: Current Situation of Bioplastics in Thai land : Chapter 1: Current Situation of Bioplastics in Thai land : ThailandThailand ’’s readiness for a bioplastics industrys readiness for a bioplastics industry

Page 81: World Bioplastics Industry

2. The plastics industry and market growth in Thailan d

Chapter 1: Current Situation of Bioplastics in Thai land : Chapter 1: Current Situation of Bioplastics in Thai land : ThailandThailand ’’s readiness for a bioplastics industrys readiness for a bioplastics industry

Page 82: World Bioplastics Industry

������������ ������������� (����� : ������������� �!"#���$��%&� )

2. The plastics industry and market growth in Thailan d

Chapter 1: Current Situation of Bioplastics in Thai land : Chapter 1: Current Situation of Bioplastics in Thai land : ThailandThailand ’’s readiness for a bioplastics industrys readiness for a bioplastics industry

Page 83: World Bioplastics Industry

'����� ���#��� -�(��)� *��'��+,����� )���� (����� : ������ ��������������������)

Page 84: World Bioplastics Industry

3. Government policy and support measures

� There is currently no law dealing specifically with bioplastics, therefore laws concerning plastics and foams packaging are currently applied.

� Some suggestions related to current legislation are offered such as customs tariff decree, the excise tax act, industrial product standards act, consumer protection act and public health act.

Chapter 1: Current Situation of Bioplastics in Thai land : Chapter 1: Current Situation of Bioplastics in Thai land : ThailandThailand ’’s readiness for a bioplastics industrys readiness for a bioplastics industry

Page 85: World Bioplastics Industry

� There is an urgent need to establish alliances at national and international levels to support technology transfer and accelerate the development of bioplastics innovations and technologies.

� Apart from technology transfer, the enhancement of the nationaltechnology capacity will be required in order to make best use of its comparative advantages in terms of natural resources and existing supporting industry , proximity to markets.

Chapter 2: Strategy, action plan and budgetChapter 2: Strategy, action plan and budget

Page 86: World Bioplastics Industry

Chapter 2: Strategy, action plan and budgetChapter 2: Strategy, action plan and budget

Page 87: World Bioplastics Industry

The most important factors as The most important factors as driversdrivers for the for the bioplastics industry in Thailand.bioplastics industry in Thailand.

The top three important factors reported were

• Packaging law

• Government policy

• Costs

J. Technol. Manag. Innov. 2009, Volume 4, Issue 1

Page 88: World Bioplastics Industry

The most important factors to maximize the The most important factors to maximize the success of bioplastics industry in the next success of bioplastics industry in the next five years.five years.

The top three factors were chosen are

• Public policy

• Technology

•Open innovation through academic-industry relationship.

J. Technol. Manag. Innov. 2009, Volume 4, Issue 1

Page 89: World Bioplastics Industry

Major finding from the primary Major finding from the primary qualitative researchqualitative research

Technology Economics Policy Market

Policy maker

Should indicate how much carbon dioxide is able to reduce byusing respective bioplasticsproduct.

Renewable feed stocks in Thailand such assugar and tapioca.

- Drive bioplastic businessthrough“Biodegradable plasticnational road map”,which approved by Thaicabinet on July 2008- Board of Investment-BOI (Thailand) hasplanned to put investmentincentives and exploreopportunities ofbioplastics business inThailand

- Price sensitive- Uncompetitive prices.No local raw materialavailable.- Lack of serious environmentallaw enforcement

Page 90: World Bioplastics Industry

Technology Economics Policy Market

Researcher Researchers areworking on PLA polymerizationand mechanicalpropertyimprovement.

World largest lacticacid plant in Thailandwith use as raw materialfor polylactic acidproduction.

Set up standard and certifybody according toISO17088 and EN13432

Price sensitive

Manufacturing Plastic converter industryin Thailand ishand on experienceand existing machineryequipments aresuitable or only smalladjustment needed toapply with biodegradableplastics

Price uncompetitive.Limited PLA producerand no local produceravailable.High cost of end product,when comparewith conventional plastics

Import tax for polylacticacid is still not categoryseparately. It is go withfamily of aliphatic polyesters

- Lot of enquiry fromcustomers, but price isa high barrier- Need to improveheat resistant and mechanicalproperty toserve the market demand- Lack of customerOrientation

Page 91: World Bioplastics Industry

Expected Thai Government Policy Expected Thai Government Policy and Supporting for Investmentand Supporting for Investment

Environment Policy

Investment Policy

Page 92: World Bioplastics Industry

� Propose policies for local waste management with emphasis on household waste separation.� Encourage the waste separation (dry and wet) to enable the waste recovery.� Establish an efficient biodegradable waste management model.� Propose regulatory control and policies or environmental standards, e.g. Control of conventional plastics or disposable plastics, in a specific time range.� Propose policies to promote the use of bioplastics as means to protect the environment.� Propose policies to promote the use of bioplastics in tourist attractions.� Issue policies to support establishment of bioplastics production facilities (e.g. green tax incentive).

Environment PolicyEnvironment Policy

Page 93: World Bioplastics Industry

� Issue policies to support establishment of bioplastics production facilities (e.g. tax privileges for investment).� Propose policies to protect the bioplastic investment using Patent registration.� Issue policies for a zero tax for facilitating import of compounding granules and bioplastic products

Investment PolicyInvestment Policy

Page 94: World Bioplastics Industry

Scope of Proposed WorkScope of Proposed Work

Page 95: World Bioplastics Industry

� Identification of appropriate legal and incentive frameworks, and institutional arrangements to promote bioplastic production in Thailand (policy analysis).� Identification of a coherent long-term strategy to build up an adapted bioplastic value chain in Thailand (recommendations of policy instruments for decision makers).

ObjectivesObjectives

Page 96: World Bioplastics Industry

� Overview of the current waste laws/formalities regarding bioplastics in Thailand.� Overview of the current status regarding the handling of bioplastics� Are there any concrete bans?� Is there an official quota agreement and how is it applied?� Is there a current market for bioplastics in Thailand and which mass flow is there on the market?� Illustration of regional, structural and cultural conditions for the application of bioplastics and their recirculation after their use regarding (acceptance, separation behavior and modilities, incentive system eg. Tax, refund, etc.).

Scope of the ServiceScope of the Service

Part IPart I : Bioplastics and waste management overview

Page 97: World Bioplastics Industry

� Analysis of the political aims to promote bioplastics in Thailand.� Analysis of existing policies, rules, regulations and law enforcements regarding their impacts on the promotion of the bioplastics industry in Thailand.� Analysis of existing institutional arrangements in the Thai bioplastic sector.� Analysis of existing incentive structures and instruments to promote bioplastic development in Thailand.� Analysis of public opinion (image and awareness) on bioplastics in Thailand.

Scope of the ServiceScope of the Service

Part II Part II : Analysis of the legal and incentive framewo rks and institutional arrangements of the bioplastic sector in Thailand (Po licy and strategy analysis)

Page 98: World Bioplastics Industry

Study, interview, collect and analyze the related data.

Conclusion of the important issues of the present situation

Meeting to consult with the GTZ and the NIA

Organization of brainstorming workshops (SWOT Analysis)

Meeting to consult with the GTZ and the NIA

Compilation of the results of the workshops and the revision of the drafted policies

Submission of the drafted policies

Research MethodologyResearch Methodology

Page 99: World Bioplastics Industry

1) Related policies and measures

Since Thailand has not yet possessed the policies or the measures that are directly connected with the promotion and the production and usage of bioplastic, the study team will therefore collect and analyze the following data:

• Environmental policies and related regulations, such as policies on the management of plastic and foam packages.• Relates laws, such as the Act on Revenue Tax and the Consumers’Protection Act.

2) Organizations

• Organizations that are related to the promotion of the protection and usage of bioplastic and the environmental-friendly materials.• The potentiality of the various organizations to become partners in the push for the production and usage of bioplastic products and the environmental-friendly materials under the national roadmap for the development of bioplastic industries.• Others

Domestic DataDomestic Data

Page 100: World Bioplastics Industry

Commentators: Government, National Agencies, Association, University, and Industry

The whole bioplastic value chain

Qualitative Surveys

Page 101: World Bioplastics Industry

Team ProjectTeam Project

Assoc. Prof. Chayodom Sabhasri , Ph.D. Asst. Prof. Pomthong Malakul , Ph.D.

Assoc. Prof. Pramoch Rangsunvijit , Ph.D. Asst. Prof. Hathaikarn Manuspiya , Ph.D.

Ms. Karnthidaporn Wattanakul Ms. Kanokporn Panichayakul

Page 102: World Bioplastics Industry
Page 103: World Bioplastics Industry

DISPOSABLE BIOPLASTICS

CONSUMER DISPOSABLES AGRICULTURAL FILMS

A Market Opportunity Study

April 2008 By: Phil Sarnacke & Stephen Wildes

OMNI TECH INTERNATIONAL, LTD 2715 Ashman Street Midland, Michigan 48640 Phone: (989)631-3377 Fax: (989)631-0812

Page 104: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD.

TABLE OF CONTENTS

Executive Summary PART 1 – CONSUMER DISPOSABLE PLASTICS............1 Introduction .............................................................................1 Overview of North American Plastics Market .................................1 Plastic Types ............................................................................3 Disposable Plastic Products.........................................................4 Market Demand for Renewable Bio-based Thermoplastics ...............5 Government Action...............................................................7 Global Market Size ...............................................................7 U. S. Market Size .................................................................9 By Plastic Type................................................................9 By Market Use .............................................................. 10 Pricing................................................................................... 14 Conclusions and Recommendations ........................................... 14 APPENDIX.............................................................................. 16 PART 2 – AGRICULTURAL FILMS........................................... 24 Agricultural Films Market Summary ........................................... 24 Mulch Film Market – What’s Changed Since 2000......................... 25 Agricultural Films Market – Situation Analysis ............................. 26 Agricultural Films – World Demand 2007 .................................... 27 Mulch Film Products – U.S. ....................................................... 30 Mulch Film Performance Requirements ....................................... 32 Economics ............................................................................. 32 Market Outlook....................................................................... 33 Farmer Challenges .................................................................. 33 State of the Art – Biodegradable Films ....................................... 34 Market Opportunity ................................................................. 35 Biodegradable Mulch Films ....................................................... 35 Recommendations................................................................... 35

Page 105: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD.

TABLES

Table A Global Market for Biodegradable Polymers .....................8 Table B U. S. Projected Demand by Bio-based Plastic Type .........9 Table C Market Demand for Bio-based Plastics ........................ 10 Table D Pricing ................................................................... 14 Table E Biodegradable / Renewable Plastics ............................ 18 Table F Novamont’s Starch Polymers ..................................... 19 Table G Polylactic Acid Properties .......................................... 20 Table H Ecoflex® Biodegradable Plastic vs. LDPE ..................... 21 Table I Current USB Soy Protein Projects............................... 23 Table J World Mulch Film Market........................................... 29 Table K U. S. Mulch Films .................................................... 31 Table L U. S. Mulch Film Manufacturers ................................. 31

CHARTS

Chart A Polymers from Renewable Resources .......................... 16 Chart B Bio-based Feedstocks ............................................... 17 Chart C World Demand 2007 – Ag Films ................................. 28 Chart D World Demand 2007 – Ag Films by Use ...................... 28 Chart E World Demand 2007 – Mulch Films............................. 29

Page 106: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD.

EXECUTIVE SUMMARY

PART 1 - CONSUMER DISPOSABLE PLASTICS The demand for bioplastics, both biodegradable and non-biodegradable, makes it one of the fastest growing thermoplastic product types globally. Global demand is expected to reach over one billion pounds by 2012. Currently, the biodegradable segment of bioplastics is the largest segment of the bioplastics category, but it is projected to be displaced by the non-biodegradable bioplastics group of products, which may or may not be 100% derived from biomass. Packaging, disposable food service and fiber applications are major use areas. In the United States, the growth of bioplastics is estimated to be 19% per annum through 2011, reaching a projected consumption in the U.S. of over 600 million pounds. The growth is driven by several factors: 1) large retailers, such as Wal-Mart and Target, requesting that their suppliers adopt bioplastics for packaging products they stock, 2) the public concern over the depletion of petroleum based raw materials, 3) the desire of manufacturing companies to develop more sustainable raw material sources, 4) the improvement in properties of bioplastics, 5) state and federal government support for biobased products, and 6) the more cost competitive relationship that bioplastics have achieved versus petroleum based plastics.

Polylactic acid polymer (PLA) demand is growing rapidly in both packaging and fiber applications. Demand for starch based polymers, in a modified form or blended with another polymer such as PLA for biodegradability or with a polyolefin such as polypropylene, will continue to grow. Omni Tech estimates that the growth in demand for starch based plastics will be equal to the growth in PLA at about 19% per year through 2011, reaching, conservatively, 180 million pounds. Among the bioplastic applications, four uses have standout growth opportunities in the immediate future: 1) biodegradable bags/films, 2) biodegradable plastic foam cushioning blocks, 3) bioplastic fibers, degradable and non-degradable, and 4) bioplastic molded products, degradable and non-degradable. Significant research and development work at several universities on developing biodegradable bioplastics made from soy protein products (meal, flour, concentrate, and isolate) in combination with PLA and other biodegradable plastics is being funded by USB – New Uses, and should continue to be supported. This work is building on past R&D efforts that have laid the technical ground work for these new projects. Although past research and development work to develop a bioplastic using soy protein as a component has not as yet been commercially successful,

Page 107: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD.

new driving forces and biopolymer technology have improved the opportunities for a soy protein containing bioplastic to be developed Additional projects using soy protein products combined with non-biodegradable biomass plastics and petroleum based plastics and targeted at specific large volume applications in fibers, molded products and films should be encouraged and supported. PART 2 – AGRICULTURAL FILMS

Photodegradable film use is gone and no commercially proven biodegradable mulch films are yet available in the U.S. The unmet market demand for these films is, however, strong because mulch film disposal costs are escalating and the problem remains unresolved. Two new biodegradable mulch films have been developed using renewable feedstocks that are in the early stages of market introduction. It is recommended that the USB New Uses Committee consider funding support for future projects involving the development of soy-based biodegradable agricultural mulch films. USB funding support was not recommended in the 2001 market study update. However, demand for biodegradable mulch films has increased considerably since then and the market will now support premium priced biodegradable films if they perform well and eliminate the need for mulch film collection and disposal. An RFP (Request for Proposal) focused on soy protein-based biodegradable mulch films sent to key universities and mulch film manufacturers could stimulate R&D efforts.

Page 108: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 1

DISPOSABLE BIOPLASTICS

PART 1 CONSUMER DISPOSABLE PLASTICS

Phil Sarnacke

INTRODUCTION The last Omni Tech report on opportunities in the thermoplastic market was in 2001. At that time agricultural films and polyvinyl chloride (PVC) plasticizer segments were the focus of the study. Since that time not only have the customers and soy opportunities changed, but the market prices of many competing petrochemical based plastics have increased dramatically, making soy based plastic more economically competitive. The study will identify the current market size, market growth, competitive products and opportunities for soy based plastics in the disposable plastics market. This market segment includes biodegradable/compostable plastics and non degradable plastics derived from renewable biomass. Opportunities for soy based plastics exist in both sub classification segments. OVERVIEW OF NORTH AMERICAN PLASTICS MARKET In 2006 the US Plastic market demand was 113 billion lbs. Thermoplastics made up 90 billion lbs of the total plastics market. The primary end use applications and the volume of plastics consumed for each of the major market categories are estimated as follows: Transportation: Motor vehicles and parts, including: autos, truck and bus bodies; parts for autos and trucks, including engines and electrical ignition systems; truck trailers and containers, including special purpose vehicles (i.e. fire truck) other than military. Also, aircraft and parts; ships and boats; railroad equipment; motorcycles and bicycles; missiles and space vehicles; recreational vehicles including golf carts; military, land, air and marine vehicles. 2006 Demand 4,600 million lbs. Packaging: Bottles, jars, vials; drums, pails, cans, barrels, buckets; caps, closures, aerosol parts; food containers excluding disposable cups; coating for all types of packaging; flexible packaging including bags, household and institutional refuse bags and film; boxes and baskets; personal care packaging products; pallets, crates, spools, reels, bobbins, tape, strapping, twine. 2006 Demand 26,200 million lbs

Page 109: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 2

Building And Construction: Pipe, conduit, and fittings including pipelines, drainage and irrigation systems; plumbing fixtures; siding, siding accessories, soffits, fascia, skirts for mobile homes; flooring; insulation materials; roofing materials; partitions, panels; agricultural film; doors, windows, sills; bathroom units, steps, gratings, railings; skylights, countertops, drainage downspouts; air-supported structures. 2006 Demand 15,500 million lbs. Electrical And Electronic: Home and industrial appliances including washers and dryers, air conditioners, lighting fixtures (affixed), freezers and refrigerators; small appliances; radios, TVs, telephones, office machines; electric equipment including electric power equipment, motors and controls, measuring and control equipment, lighting and wiring equipment, current-carrying equipment, non-current-carrying wire devices, pole line hardware; communications equipment; electronic components including tubes, semi-conductors, capacitors, resistors, coils and transformers, magnetic tape and audio, printed circuits, records and tapes, X-ray equipment; batteries, wire and cable. 2006 Demand 2,700 million lbs. Furniture And Furnishings: Rigid furniture including household, case goods, dinettes, lawn/garden furniture, headboards, occasional pieces, also office, institutional, and school furniture; stadium seating; benches for public buildings; churches and restaurant furniture; store fixtures; counter tops; flexible furniture including household upholstered furniture, cushioning, frames, simulated wood components for upholstered furniture, decorative pillows, bedding, bed pillows; carpets and carpet components including backing; curtains, house furnishings, awnings, blinds, household portable lamps and furniture accessories, wall decorations and coverings. 2006 Demand 3,350 million lbs. Consumer and Institutional Products: Disposable food serviceware including cups, dinnerware, tableware, kitchenware, drinking straws; luggage, buttons, hardhats, handbags, apparel; lawn and garden equipment (non-electrical); picnic jugs, ice chests, flower boxes; healthcare, medical products and personal care items including combs, brushes, prosthetic devices, medical tubing, blood packs, syringes, IV bags; toys and sporting goods (not vehicles) including plastic pools, liners, fishing line, life jackets; laboratory supplies; footwear; signs, displays, credit cards, placemats, ashtrays, mats. 2006 Demand 17,700 million lbs. Industrial/Machinery: Engine and turbine parts (except outboard); farm and garden machinery and equipment, construction equipment, mining equipment, oil field equipment, material handling equipment; machine tools (including hand power tools and hardware); industrial equipment; fishing and marine supplies (including commercial buoys and markers); chemical process equipment; ordnance and firearms. 2006 Demand 1,000 million lbs.

Page 110: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 3

Adhesives - Inks - Coatings: Adhesives and sealants; paper coating and glazing; printing ink; paints, varnishes, enamels; insulating varnishes and magnet wire enamels; core binder, foundry facing. 2004 Demand 1,110 million lbs. All Other (Not Elsewhere Classified): Other sales of resins that cannot be classified under any other major market category. Includes sales to resellers and compounders. 2006 Demand 2,000 million lbs. North American Export: 2006 Demand 10,000 million lbs. Plastic Types There are over 30 major (large volume) family types of plastics produced commercially today. Two major plastic groupings derived from hydrocarbons (natural gas or oil) are Thermoplastics and Thermoset plastics. The Thermoplastic polymers are those polymers that are melted and formed into a net shape article or film. They can be remelted and reformed as well. Thermoset plastics are polymers that are usually formed by the mixing of two chemical compounds that react chemically and form a polymer that will not reform on being exposed to heat due to cross linking with the polymer matrix. A smaller third category of thermoplastics exists that are derived from biomass. Most of the products in this family are derivatives of cellulose or modified starch; however recently, two new families of plastics derived from corn, polylactic acid (PLA) and polyhydroxyalkonates, have been developed and are being used to replace hydrocarbon derived thermoplastics in a variety of applications. Within each family of plastics there can be a dozen or more variants or derivatives off the base polymer type. As an example within the thermoplastics group, the polyethylene family can be divided into several sub groups (high density, low density, linear low density, ultra low density), based on the specific gravity (density) of the polymer. The following is an abbreviated list of major family types of thermoplastics and thermoset plastics produced from petrochemicals and consumed in North America and in the rest of the world: THERMOPLASTIC FAMILIES

• Polyethylene • Polypropylene • Polystyrene • Polyvinyl Chloride (PVC) • Polyesters (PET, PBT) • Engineered Plastics

o Polycarbonate o Nylon o Polysulfone o ABS

Page 111: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 4

THERMOSET PLASTIC FAMILIES • Polyurethanes • Epoxy resins • Unsaturated Polyesters • Vinyl Esters • Phenolic resins • Silicones

All of these plastics are derived from oil or a natural gas derivative. The remainder of this study will be concerned with the opportunity for bioplastics, specifically derived from renewable biomass. Characterization of these plastics is more difficult due the hybridization of their backbones. BIOPLASTICS Thermoset polymers

• Soy polyurethanes • Unsaturated polyester resins

Thermoplastic polymers

• Polylactic acid • Modified starch polymers • Thermoplastic polyesters • Bio-polyolefins • Polyhydroxy alkonates (PHA) • Cellulose ethers

Some but not all of these bio-based thermoplastic polymer families meet the ASTM definitions of biodegradable/compostable. All contain some amount of biomass derived from a renewable resource as part of their macromolecular structure. None of the thermoset plastics meet the ASTM definition of biodegradable/compostable by design. As a group they still represent relatively small volume of the total volume of plastics produced in the world today. Estimates run from 200 million to 500 million lbs. depending on whether the modified cellulosic polymers are included; however, the growth rate of demand for bioplastics is expected to grow at double digit rates for the next five years. Disposable Plastic Products For the purposes of this study, we are focusing on those plastics market segments whose products are usually made from commodity plastics such as polyvinyl chloride (PVC), polystyrene (PS), polypropylene (PP), polyethylene (PE), etc. and fit the following definition:

Page 112: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 5

Disposable plastics products are those plastic products that are not designed to last in use for a long period of time. In many cases, mostly packaging, food service and agricultural applications, they represent a onetime only use, followed by disposal. Most applications for disposable plastic products are found in the following market segment categories:

Consumer and Institutional Products; Disposable food service ware including cups, dinnerware, tableware, kitchenware, drinking straws; luggage, buttons, hardhats, handbags, apparel; picnic jugs, ice chests, flower boxes, plant pots; healthcare, medical products and personal care items including combs, brushes, medical tubing, blood packs, syringes, IV bags; toys and sporting goods (not vehicles) including liners, fishing line; laboratory supplies; footwear; signs, displays, credit cards, placemats, ashtrays, mats. Packaging: Bottles, jars, vials; drums, pails, cans, barrels, buckets; caps, closures, food containers excluding disposable cups; coating for all types of packaging; flexible packaging including bags, household and institutional refuse bags and film; boxes and baskets; personal care packaging products; pallets, crates, spools, reels, bobbins, tape, strapping, twine Adhesives - Inks - Coatings: Adhesives and sealants; paper coating and glazing; printing ink; paints, varnishes, enamels; core binder, foundry facing. Other (Industrial/Construction) : Agricultural mulch, blasting media. MARKET DEMAND FOR RENEWABLE BIO-BASED THERMOPLASTICS Background Thermoplastics produced from renewable agricultural and forest resources (biomass), also called bioplastics, are gaining in importance. For this study, we are investigating the opportunity for biobased thermoplastics in the disposable plastics market segments as opposed to engineering thermoplastics or thermoset plastics/ resins (which have a longer useful like), and will use the terms bioplastics or biobased thermoplastics interchangeably. In point of fact the biodegradable plastics based on bio-renewable raw materials are a subset of the Biobased Plastics category. The bioplastics products we are evaluating may or may not be biodegradable or compostable according to industry and government test protocols. The following two paragraphs further define the differences between the bio-based plastics categories. Biodegradable/compostable The term biodegradable applied to plastics is used to describe thermoplastic products that are either biodegradable, compostable or photo degradable. There are now specific ASTM tests which can be used to classify the plastic’s ultimate fate in the environment. (ASTM D-6400-99, Standard for Compostable Plastics)

Page 113: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 6

In order for a bioplastic to be considered compostable it has to satisfy three criteria (non-technical):

1) Biodegradation – breaks down into carbon dioxide, water and biomass at the same rate as cellulose

2) Disintegration – the plastic is indistinguishable in the compost from other biomass material after a fixed schedule of time

3) Non Toxic – the residual biomass material must not be harmful to animals or plants in final form

Renewable biobased plastic The term renewable biobased applied to thermoplastics and thermoset plastic means that some or all of the raw materials used to make the plastic were sourced from a biomass that can be cultivated and harvested on a periodic basis. Since the 1980’s environmental activists have been promoting the concept of degradable plastics along with recycling of trash as the answer to our growing municipal solid waste disposal and litter problems. While recycling is a generally accepted practice in most of North America and Europe (reinforced by legislation), the development and use of degradable bioplastics has been very slow in occurring. Reasons for this lack of adoption of these materials include:

• Cost of the biodegradable polymers (excluding paper) vs. hydrocarbon polymers,

• Lack of physical and thermal properties which meet the end use performance requirements,

• Processing difficulties with the bioplastics (degradable or non-degradable), • Degradable bioplastics contaminate the current plastic recycle waste streams, • Realization that biodegradable plastics do not actually degrade under normal

landfill conditions found today in most municipal landfills, and • Lack of government regulation (in the United States) regarding waste.

Current Outlook In spite of the reasons mentioned in the preceding paragraph, the current demand outlook for the use of degradable plastics based on renewable (biomass) raw materials is more promising due to a number of market, societal and technological developments that favorably impact demand for biodegradable plastic:

• Much higher petrochemical prices leading to higher conventional plastic prices • Improved synthesis plastic technologies utilizing biomass raw materials • Global concern over the rapid depletion of petroleum and natural gas resources

o Manufacturing corporation’s interest in chemicals and plastics raw materials derived from renewable resources

• A burgeoning global population • Economic growth of developing countries

o Global demand for many consumer items and the accompanying packaging of these items

• Improving disposable incomes

Page 114: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 7

• Greater knowledge and awareness of impact of human activity on the global environment

• Government (Federal, State, and Local) support for use of renewable plastics made from biobased raw materials to mitigate the growing waste disposal issues especially in urban areas.

In spite of these favorable factors, the amount of biopolymers being used today in total is small relative to the total market for thermoplastics. One estimate from Chemical Market Associates, reported in Plastic News, places the total consumed in packaging, the largest market for degradable bioplastics, at 90 million pounds worldwide and 35 million pounds in North America. According to several industry participants (Frederic Sheer, President of Cereplast, Inc, and William Riesbeck, Vice President of Sales and Marketing for Ex-Tech Plastics, Inc.), bioplastics must meet the cost performance requirements of the petroleum based plastics. Hurdles to overcome include:

• Minimum heat deflection • Brittleness • Processing window sensitivity • Polymer cost • Barrier properties

Government Action The following ordinance went into effect in San Francisco, California:

Food Service Waste Reduction Ordinance

Effective June 1, 2007, the Food Service Waste Reduction Ordinance requires that San Francisco restaurants and food vendors serving food prepared in San Francisco no longer use any polystyrene foam, otherwise known as Styrofoam, as disposable food ware. The ordinance also requires that any disposable food service ware or to-go containers be compostable or recyclable for food prepared and served in San Francisco, unless there is no suitable product that is within 15% of the cost of non-compostable or non-recyclable alternatives

Global Market Size In spite of the cost performance hurdles mentioned in the preceding list, a recent report by the European Bioplastics association places global production capacity for bioplastics, including both biodegradable and non-biodegradable plastics) at 576 million lbs. in 2007 growing to 3,300 million lbs. in 2011. This growth will occur as a shift occurs among the following three categories (excluding synthetic/non-biodegradable plastics) of plastic materials:

• Synthetic/biodegradable • Bio-based/biodegradable • Bio-based/non-biodegradable

Page 115: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 8

The greatest growth is expected to occur in bio-based/non-biodegradable materials segment. It is expected that the share of biobased/non-biodegradable bioplastics will reach 40% of total global capacity or 600 million lbs. in 2011 up from 12% share of 69 million lbs/year in 2007. A Fredonia 2006 market study reports that bio-based/biodegradable plastics will reach 270 million pounds by 2011. Based on other industry reports and OTI sampling of suppliers this number appears to be conservative. Another study of the global biodegradable plastics market by Chemical Market associates states that polylactic acid polymers (PLA) and blends will grow to 450 million lbs in 2011.

TABLE A

GLOBAL MARKET for BIODEGRADABLE POLYMERS* Million lbs

APPLICATION 2006 2007 2012 CAGR %

Compost Bags 173 242 587 19.4 Loose-fill Packaging 152 161 214 5.7 Other Packaging (1) 51 59 48 23.4 Miscellaneous (2) 33 54 171 25.0 TOTAL 409 516 1,200 17.3 *Data was generated by BCC Research, Wellesley, Massachusetts, in a report entitled Biodegradable Polymers. Published in BioPlastics Magazine Edition 01,2008 (1) Includes medical/hygiene products, agricultural, paper coatings, etc. (2) Unidentified biodegradable polymers The rapid predicted change in demand growth of biomaterials is due to the increasing concern over of the earth’s hydrocarbon reserves, thus the main driving force behind sustainable plastics in the 21st century is use of annually renewable resources. Biodegradability is an advantage in those countries that have an industrial composting infrastructure in place. However, no biopolymer can sustain a position in the market place without a competitive cost performance profile and for many applications the biodegradability attribute has no added value. Additionally development work continues in the development of durable plastic products which are usually produced by injection molding and thermoforming processes.

Page 116: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 9

U.S. MARKET DEMAND FOR BIOPLASTIC PRODUCTS

TABLE B

U.S. PROJECTED DEMAND BY BIOBASED PLASTIC TYPE Million lbs.

2003 2007 2011 ‘07-‘11

CAGR %

Polylactic acid (PLA) 45 150 300 19 polyhydroxyalkonates

(PHA, PHB) 0 < 1 110 49.5

Starch-based 50 100 180 16 bio-Polyester 0 10 50 49%

Cellulosic plastic NA NA NA NA Total 95 260 640 25%

The demand for the most common bioplastics is estimated based on public announcements by the companies producing the products, usually in conjunction with an announcement of increased bioplastic production capacity. The high growth rate projection of 25% assumes that the capacity brought on stream this year and next is essentially sold out by 2011. Polylactic Acid - NatureWorks, the major producer of polylactic acid (PLA) polymers in the U.S., has publicly stated that they will be starting up their second production train in the 2nd half of 2008 which should give them the full production capacity previously announced of 300 million lbs. of PLA produced on two production trains. Polyhydroxyalkonates - The commercial production of Mirel® polyhydroxyalkonates (PHA) is scheduled to start late in 2008. Telles, a joint venture between Metabolix and Archer Daniels Midland, announced the production capacity to be 110 million lbs. Another potential producer of PHA, Meredian Inc. will begin production in a pilot plant facility in 2009. Capacity is expected to be 30 million lbs. Additional plant capacity of 600 million lbs. of PHA is being planned by Meredian. Starch Polymers - Starch based polymers will continue to be a large bioplastic product used by itself in a modified form or blended with another polymer such as PLA for biodegradability or with a polyolefin, such as polypropylene. Omni Tech estimates that the growth in demand for starch based plastics will be equal to the growth in PLA at about 19% per year through 2011. Bio-Polyester - The demand for hybrid bioplastic polyesters (products with both a petrochemical component and a biomass component) in the polymer backbone will also grow. BASF a producer of EcoFlex™, a biodegradable polyester, and Ecovio™, a blend of PLA and EcoFlex™, expects the market for bioplastics to grow at 20% annually for the next 5 years. DuPont has developed a family of non-biodegradable polyesters based on 1,3 propane diol derived from corn syrup.

Page 117: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 10

Cellulosic Plastic – This product category has a long history of use in the plastics market. The products include cellulose esters, cellophane and rayon. They are derived mostly from wood pulp which is reacted with caustic followed by a variety of petrochemical monomers to produce the final products. Since cellophane is biodegradable, demand for it is again growing in the packaging film market. Consumer and Institutional Products –Market Demand by End Use

TABLE C

MARKET DEMAND FOR BIO-BASED PLASTICS

20052 20073 20113 ’07-’11 CAGR3

Films /Bags 117 200 359 15.8 Ring Carriers1 40 42 51 4 Loose fill/Foam 16 17 20 4 Food service 7 17 31 16 Molded 28 46 123 28 Fiber 5 11 50 46 Total 213 333 634 17.5

1) Currently ring carriers are made from a photodegradable polyethylene, it is assumed that this product will switch to a bioplastic that is degradable by 2011.

2) Freedonia Group, Degradable Plastics Demand to 2010 3) Omni Tech estimates, based on industry communications

Demand for bioplastics is accelerating as more supply of all bioplastic types come into production. This will be especially true in the molded products and film/bags markets. Plastic ring carriers are used for soft drink bottles, cans and for a variety of individual serving containers sold as one unit. We assume that the penetration of ring carries is at saturation and may in fact be losing market share to other unit packaging designs so that growth will be modest until a biodegradable bioplastic is available at a competitive price to the photodegradable polyethylene currently used. Molded products will show the fastest growth driven by the use of PLA blends, the PHA products and the starch plastic blends with polyolefins. According to reports in the trade press, PLA fibers are also experiencing rapid growth in clothing and there is even a small amount of soy protein based fiber being imported from China also for use in high end clothing. Packaging In spite of this growth, the penetration of biodegradable polymers in packaging applications will still be less than 1% due to the increased production of packaging resins from the relatively low cost Middle East hydrocarbon raw materials (oil and

Page 118: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 11

natural gas). According to Innovia Film’s marketing manager, a major issue facing the introduction of bio-based films in place of petrochemical based films is their current cost. Additionally, he points out that one of the packaging industries greatest hurdles for adoption of compostable materials is the lack of curb-side collection and municipal compositing facilities (a sentiment echoed by Business Development Director of Heritage Bag, a major producer of biodegradable trash bags). However, in spite of the hurdles of cost and lack of composting facilities, the growth experienced by the biodegradable packaging suppliers has been very high. Within packaging applications the following food packaging areas are receiving

considerable attention:

• Fresh-food packaging • Dried snacks and candy • Bakery goods • Water and juice bottles • Meat trays • Coatings for beverage cups • Films and card stock

A recent study from Pira Ltd. estimates that in 2006 biodegradable packaging of fresh food was the largest end-use food packaging category at 39.6 million lbs. in the US. The U.S. is the largest single market for biodegradable packaging, where the growth will continue and is estimated to reach 96.9 million lbs. in 2011. Large potential new applications for bioplastics and especially degradable bio plastics include diaper backing, adult incontinence products and landfill covers. Another bioplastic film application that is showing considerable growth, despite a cost premium, is the biodegradable plastic bags applications for yard and garden waste and industrial refuse. One supplier of the industrial biodegradable plastic bags told us that their production volumes had been doubling each year for the last 3 years, and was set to double again in 2008. The total bag market, which includes:

• Yard & Garden • Industrial Refuse • Kitchen and other

is estimated by Omni Tech to be 150 million lbs. in 2007. It is estimated to be growing at rate of 15% per year through 2011 to 262 million lbs. Drivers for increased bioplastic degradable bags will depend on an increase in municipal composting facilities and consumer education, and a decrease in cost versus kraft paper and conventional petroleum based plastic bags. Degradable bioplastic bags eliminate the need to separate bags from their contents at compost sites. Most of the biodegradable plastic bags are made from starch blended with polylactic acid (PLA) or a biodegradable polyester.

Page 119: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 12

Protective packaging is also making use of starch based bioplastics that are biodegradable. The products are formed as foam sheets or loose-fill “peanuts”. The major uses are for general impact protection of valuable items such as electronic equipment components, glass items and generally fragile consumer products. Because of their ability to dissipate static charge, they are especially useful in packaging microchips and electronic product susceptible to damage from static electricity. The bioplastics are made mostly from modified starch. Since they will degrade in water as well as compost sites, and are cost competitive with expanded polyethylene foams, the demand for them in growing. The biggest disposal negative comes from the fact that they are considered a contaminate in the petroleum based plastic recycle streams and thus, if not disposed of by composting or dissolution in water will end up in a standard land fill. Waste disposal of loose fill has become an issue for Wal-mart and its supplier base according to one starch packaging company that attended a recent meeting at Wal-mart headquarters. The goal is to eliminate all loose fill including starch based peanuts in favor of “green” protective packaging and space fillers. Because of the largest retailer in the U.S. is urging its supplier base to drop loose fill we see the demand for these products to be growing at rates of 4-5% annually driven in large part by purchases over the internet and overseas legislation requiring packaging to be compostable or biodegradable. Offsetting these drivers are competition from starch based board stock or planks and inflatable bags. Food Service This market segment describes those product used to serve food in a fast-food or causal dinning setting. It includes cutlery, plates, dishes, cups and bowls. Also included are paper products that have a water roof coating made from a renewable plastic such as PLA.

At EXPO 2005 Aichi, Japan more than 10 million eating utensils were used at the food and beverage facilities in the food courts at the EXPO site. This represented the first time biodegradable plastics have been used for such a large number of eating utensils at a single event. The disposable utensils were collected by waste disposal companies which composted the waste and utensils.

Industry contacts by Omni Tech indicated that food service consumed about 17 million pounds. This end use is expected to have U.S. growth rate of 16% CAGR through 2011. At that growth rate, the volume of bioplastics consumed in 2011 would be approximately 31 million lbs. The products used in this application include blends of starch and polylactic acid (PLA), baggase from sugarcane and PLA, polyhydroxyalkonates, and PLA alone. As an example, a Hong Kong company named Roots Biopac, has introduced trays made from sugarcane fibers. Fibers Fibers made from the new bioplastics are gaining strength, mostly because they are based on renewable biomass. NatureWorks, the major PLA manufacturer in the U.S., has introduced their fiber grade product call Ingeo® which is being used in clothing. Mazda has introduced a biofabric made of 100% PLA for use in automotive interiors. DuPont’s Bio- PDO™, 1,3 propane diol from corn syrup, is being incorporated into the polymer backbone of a polyester resin named Sorona®, which is being promoted by

Page 120: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 13

DuPont into textile and carpet fiber applications. Even though it is only partially a biobased plastic, it is being accepted as a bioplastic by end users looking for a “green” product. This is another example of the biobased but not biodegradable type of bioplastic that will be reaching the market in large quantities in the future; thus, we see a fast growth rate (46% CAGR) for this category over the immediate future as production of these biopolymers increases. Molded Products: Construction, Other This category includes most of the products that would be produced by injection molding, or net shape extrusion. This category is expected to experience very fast growth according to several bioplastic market studies, due to the following:

• General consumer demand for items made from “green” plastics • Higher end use value because of a longer useful life, even if ultimate disposal

by the end user is within 3 years. • The products made via injection molding or net shape extrusion can be

designed to perform a function that will involve physical stress or strain forces during their useful life.

This market segment also lends itself to the use of non-degradable bioplastics which may contain additional components such as inorganic fillers or petroleum based thermoplastic to impart higher performance properties, e.g. higher heat distortion, impact strength or modulus, to meet more demanding applications. Horticulture/Construction applications in which the product is molded or shaped under pressure and at elevated temperature in the same manner and is intended for temporary use might include:

• Erosion control timbers or stakes • Concrete forms imbedded in the ground • Simulated decorative wood products for indoor use • Cork board • Sub-flooring and finished parquet flooring tiles • Disposable trash containers • Particle board • Horticultural containers for “square foot gardening” • Animal feed containers • Large molded pails

Page 121: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 14

TABLE D

PRICING of Selected Thermoplastic and Bioplastic Polymers April, 2008

1 various industry sources and trade publications

The pricing of starch based plastic foams and polylactic acid are competitive with estimated pricing of various polyolefin products. Polyhydroxyalkonates are being quoted at $2.50/pound or higher, which would place them in the engineering plastics category with polycarbonate and other high performance plastics. Blends of starch with modified polypropylene have been reported to be cost competitive to polypropylene homopolymer.

CONCLUSIONS and RECOMMENDATIONS

• The bioplastics markets, both bioplastic biodegradable and bioplastic non-biodegradable, are the fastest growing product type categories of plastics globally with an expected demand in 2012 of over a billion pounds.

• Consumption of bioplastics, including biodegradable and non-biodegradable

thermoplastics made from biomass, will grow at about a 19% per rate through 2011 reaching a projected consumption in the U.S. of over 600 million pounds.

• Currently, of the product types, the biodegradable segment of bioplastics is

the largest segment but is projected to be displaced by the non-biodegradable bioplastics group of products, which may or may not be 100% derived from biomass.

• Starch based polymers will continue to be a large bioplastic product used by itself in a modified form or blended with another polymer such as PLA for biodegradability or with a polyolefin, such as polypropylene. Omni Tech estimates that the growth in demand for starch based plastics will be about 19% per year through 2011 reaching 180 million lbs.

Polymer Type Price1 (Cents/lb.)

Comments (>20 million lbs)

Polyethylene 86-104 HD – LD grades volumes. Polypropylene 92-98 Homopolymer Polystyrene 85-95 General purpose Polyester 80-85 PET bottle grade Polylactic acid 95-110 Very volume dependent Starch foam 65-75

Page 122: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 15

• Polylactic Acid polymer (PLA) demand is growing rapidly in both packaging and fiber applications and will be the largest bioplastic product produced in the U.S. by 2011 at over 300 million pounds. Due to blending with other materials such as starch and polyesters, PLA consumption will be higher.

• Among the bioplastic applications, four have standout growth opportunities,

based on interviews with Industry participants:

o Biodegradable bags/films, o Biodegradable plastic foam cushioning blocks, o Bioplastic fibers, degradable and non-degradable o Bioplastic molded products, degradable and non-degradable

• Several large retailers such as Wal-Mart and Target are actively requesting

that their product suppliers use as much biobased packaging as possible while still protecting the products during shipping.

• Biodegradable bioplastics demand, while growing at double digits, is also

hampered in the U.S. by several challenges:

o Small number of commercial composting facilities, o Higher cost of the bioproducts versus petroleum based plastics, o Contamination of plastics recycling streams, o Concern over diversion of grain crops to industrial uses and fuel, o Biomass raw materials harvested from genetically modified organism

(GMO) crops.

• Past research and development work to develop a bioplastic using soy protein as a component has not as yet been commercially successful, but new driving forces and biopolymer technology have improved the opportunities for soy protein containing bioplastic to be developed.

RECOMMENDATIONS

• Significant development work is now underway, supported by USB New Uses Committee, at several universities with soy protein products (meal, flour, concentrate, and isolate) in combination with PLA and other biodegradable plastics. Support of these efforts should be continued.

• Additional projects using soy protein products combined with non-

biodegradable biomass plastics and petroleum based plastics and targeted at specific large volume applications in fibers, molded products and films should be supported.

• Projects that focus on the processing/conversion of soy protein products

(meal, flour, concentrate) into water soluble film formers are also needed.

Page 123: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 16

APPENDIX

COMMERCIAL – RENEWABLE/BIO-DEGRADABLE THERMOPLASTIC PRODUCTS The following tables describe the currently known degradable and non- degradable commercial bio-thermoplastic polymers. Not all are based on 100% renewable biomass.

CHART A

POLYMERS FROM RENEWABLE RESOURCES

Thermoplastic Processing

Polymers from renewable

resources

from plants

starch, starch

derivatives

from microorganisms

from animals

polylactic acid (PLA)

cellulose, cellulose

derivatives

lignin

polyhydroxy- alkanoates (PHB, PHA)

proteins, e.g. casein, gelatin

chitin, chitosan

Page 124: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 17

CHART B

BIO-BASED FEEDSTOCKS

BIO-BASED FEEDSTOCKS Annually Renewable Bio FeedStocks

Cellulosics & Lignocellulosics Starches Other

Polysaccharides Fats & Oils Proteins

Products: • Cellulose

(Cellophane) • Cellulose

Derivatives (CA, CAB)

• Engineered Wood Products

Examples: • Corn • Potato • Sugar cane Products: • Thermoplastic

Starch • Starch Foams • Starch Graft

Copolymers & Reactive

Examples: • Pectin • Chitin • Levan • Pullulan

Examples: • Soybean • Lesquerella • Rapeseed Products: • Biodiesel • Lubricants • Polyols – Urethanes • Plasticizers/Process

Aids • Solvents • Unsaturated

Polyester Resins

Examples: • Zein • Soy Protein

Page 125: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 18

Biodegradable Thermoplastics The plastics listed in table D are commercially available to converters/fabricators of plastic products

TABLE E

BIODEGRADABLE / RENEWABLE PLASTICS Resin Producers Trade Name Polymer Family Biodegrade Arkema Rilsan nylon 11 na BASF EcoFlex co-polyester polybutylene

succinate/ terephthalate

Cereplast Hybrid Resins modified Starch+ PLA, starch-modified polyolefins

yes

DaniMer Scientific Seluma polyester DuPont BIOMAX,(35%)

/SORONA EP Cerenol polyol Selar VP (40%) Hytrel RS (25-50%)

polyesters (polytrimethylene terephthalate )/1,3 propanediol(PDO)

Innovia Films NatureFlex ™ cellophane yes Mitsubishi Chemical GS Pla® polybutylene succinate (PBS) na National Starch ECO-Foam starch yes NatureWorks(Cargill) NatureWorks®

PLA / Ingeo polylactic acid yes

Novamont MATER-BI, Eastar Bio Ultra

starch polymer, copolyester yes

Meredian Nodax H poly(3-hydroxybutrate-co-3-hydroxyhexanoate (PHBH))

films, bottles, rigid packaging

Soy Works Corp SoyPlus™ soy protein licenses other producers

Telles (ADM-Metabolix jv)

Mirel™ polyhydroxyalkonate (PHA) yes

STARCH POLYMERS (modified polysaccharides) These polymers have been under development for some time by Novamont. They have licensed National Starch to be the supplier of resins and technology in North America. The product family is composed of polysaccharides from different sources with various modifications applied. Thus, Novamont offers a variety of products with a range of physical properties. The polymers are processable via injection molding, extrusion and thermoforming and are foamable with water.

Page 126: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 19

Applications for injection molded Mater-Bi™ include cutlery, pencil sharpeners, rulers, cartridges, toys, plant pots and toys for pets, using a starch-based material obtained from cellulose. Combs made of Mater-Bi™ have the additional advantage of being anti-static, eliminating accumulation of electrical charge on conventional combs. Mater-Bi™ loose fillers are predominantly made of starch, and are expanded using water. It is recommended for packaging pharmaceutical products, laboratory equipment, consumer goods and mail order goods. They are purported to be completely biodegradable and water-soluble, resilient and anti-static, and have excellent shock-absorbing, elastic properties. Wave by Mater-Bi™ is starch-based, and is expanded using water, extruded into sheets and then assembled into blocks that can be cut into any shape. Wave by Mater-Bi™ has a robust and resilient closed-cell structure; sheets and blocks are available in different sizes, with densities from 30 to 400 kg/m3.

TABLE F

NOVAMONT’S STARCH POLYMERS TEST METHOD UNIT OF

MEASURE MATER-BI™ PP PS

MATER-BI™ for INJECTION MOLDING MFI ASTM 1238 g/10 min 6-30 0.9-9 19-24 Breaking load (tensile strength at break) ASTM D638 MPa 15-35 25-37 31-40 Breaking extension (% elongation at break) ASTM D638 % 20-150 40-400 1.2-1.6

Young's modulus (modulus of elasticity) ASTM D638 MPa 600-5000 1000-1600

2900-3200

Linear shrinkage ASTM D955 % 0.08-1 0.1-0.6 MATER-BI for Extrusion MFI ASTM D1238 g/10 min 8-10 Breaking load ASTM D822 MPa 18 Breaking extension ASTM D822 % 130 Young's modulus ASTM D638 MPa 1400 MATER-BI for Films LDPE MFI ASTM D1238 g/10 min 2-4 0,1-6 Breaking load ASTM D882 MPa 20-50 20-30 Breaking extension ASTM D882 % 200-600 150-600 Young's modulus ASTM D638 MPa 100-600 150-300 Start of Tearing ASTM D1938 N/mm 20-120 70 - Propagation N/mm 20-120 70

Water Vapor Permeability ASTM E96 gr 30mm/m2 24H 250-1000 15

Page 127: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 20

POLYLACTIC ACID (PLA) This polymer based on corn is currently produced in the North America by NatureWorks a joint venture company co-owned by Cargill Inc. and Teijin Ltd. of Japan. The product property profile is similar to polystyrene and polyethylene terephthalate.

TABLE G

POLYLACTIC ACID (PLS)

PROPERTIES NatureWorks® PLA

Polystyrene General Purpose

Polyethylene terephthalate

Physical properties Melt flow rate (g/10 min) Density (g/cm3) 1.24 1.04 1.3-1.4 Haze 2.2 Amorphous grades transparent transparent Yellowness index 20-60 Water absorption 0.16 Mechanical properties Tensile strength at yield (MPa)

53 36-52 55-75

Elongation at yield (%) 10-100 1.0-2.2 50-15- Flexural Modulus (MPa) 350-450 3,150-3,240 Young’s Modulus (MPa) 2800-3100 Notch Izod (KJ/M2) Thermal Properties

HDT (˚C) 44-55, 135 (crystalline) 87-97˚C

Melt Temperature Tm 140-152 ˚C 260 ˚C Glass Transition Temperature Tg

56.7-57.9 ˚C 75 ˚C

Heat Transfer Coefficient (W/m˚K)

0.24

In addition to being biodegradable, PLA has other properties such as high optical clarity, good mechanical properties, gas and water barrier properties. Technical hurdles for PLA include a low glass transition temperature of 60 C which might be improved if PLA were composed of both D- and L- lactic acid. This compositional change would probably increase the heat resistance as high as 175 C. Additionally, PLA needs better impact strength, and improved gas barrier properties. Currently, PLA is in short supply, It is estimated by PURAC Biochem that with improvements in PLA supply and quality that the market can grow to over several hundred thousand tons in 10 years.

Page 128: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 21

POLYHYDROXY ALKANOATES Polyhydroxy alkanoates is the generic term for a family of polyester polymers. Specific members include: poly 3-hydroxybutyrate –co-4- hydroxybutyrate, polydroxy butyrate- co-3- hydroxyvalerate. Metabolix is the major developer of technology for producing polyhydroxyalkonates from bacteria and corn sugar. They have formed a JV with Archer Daniels Midland to produce the biodegradable plastics called Mirel™. Together they are building a production plant in Iowa that will be on stream in late 2008. Metabolix’s Mirel family of plastics range in properties from rigid to tough and highly elastomeric to soft and tacky. They can be made as resins or aqueous dispersions with excellent film forming characteristics. Robust in use yet biodegradable, they offer a renewable and environmentally friendly alternative in many applications now served by synthetic plastics, including fiber, film, molded goods, extruded products, adhesives and coatings. Applications to date include holiday gift cards sold by Target. According to Metabolix, potential applications include single – use (disposable) items such as coffee cups, dinnerware, containers for cosmetics, food and detergent. Agricultural applications include degradable plant pots, stakes, erosion control netting and mulch film. The companies are expecting to charge a premium for the plastic. Receiving a premium for low value items such as disposable dinnerware or horticultural applications would be very unusual except in those political geographies that are banning non-degradable plastic items. POLYESTERS

TABLE H

ECOFLEX® – BIODEGRADABLE PLASTIC WITH HIGH FUNCTIONALITY vs LDPE

Typical properties of Ecoflex® F and LDPE

PROPERTY UNIT TEST METHOD ECOFLEX® F LDPE

Density g/cm3 ISO 1183 1.25-1.27 0.922-0.925

Melt viscosity MVR 190 °C, 2.16 kg

ml/10min ISO 1183 -

2.5-4.5 - 0.8-1.2

Melt point °C DSC 110-120 111

Shore D hardness - ISO 868 32 48

Vicat VST A/50 °C ISO 806 80 96

Page 129: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 22

Typical film properties of Ecoflex® F and LDPE at 50 um thickness

PROPERTY UNIT TEST METHOD ECOFLEX® F LDPE

Transparency % ASTM D 1003 82 89

Tensile strength Tensile stress at break Tensile strain at break

N/mm2 N/mm2 %

ISO 527 ISO 527 ISO 527

35/44 36/45 560/710

26/20 - 300/600

Fracture energy (Dynatest) J/mm DIN 53373 24 5.5

Transmission rates: Oxygen Water vapor

ml/(m2d bar) g/(m2d)

DIN 53380 DIN 53122

1400 170

2900 1.7

Water-vapor transmission (WVT) of Ecoflex® F

Film thickness um WVT g/m2 d 23

°C, 85% r.h 100 um

Tensile strain at break in

extrusion direction N/mm2

Ecoflex® F Ecoflex® F + wax

20 15

85 35

41 39

Ecoflex® F + talc Ecoflex® F + talc, 1:4

32 12

83 48

25 70

The Ecoflex® polyester family was developed as a petrochemical biodegradable plastic. Recently, BASF has modified Ecoflex® so that it could be blended with up to 50% polylactic acid polymers and thus claim a biodegradable plastic having a high biobased content. The new polymer family name is Ecovio®. The concept of blending of a petrochemical polymer with a biobased polymer to improve properties of the biobased component of the new blended plastic is becoming more common. Other examples of this product trend are the polymer families Sorona® Polymer and Cerenol™ Polymers promoted by DuPont that contain 20-37% biobased component, Bio-PDO™ (1,3 propane diol). Polyamides Arkema is planning to launch a complete range of engineering thermoplastic elastomers trade named Pebax® RNew containing from 20-90% renewable content, primarily castor oil.

Page 130: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 23

Cellulose Polymers Cellulosic polymers are produced by chemical modification of natural cellulose. The main representatives are cellophane, cellulose acetate and regenerated cellulose for fibers, e.g. Viscose rayon. Both cellulose and starch have glucose as their basic monomer unit but the polymers differ in the linkage between the glucose units and in the configuration of their polymer chains. Cellulose’s configuration provides an opportunity to form stronger hydrogen bonds as well as a close interaction with other polymeric structures such as lignin, pectin, hemicelluloses and proteins. Because of this mixed polymer morphology, cellulose is more resistant to hydrolysis than is starch.

NatureFlex™ Cellophane NatureFlex™ films are based on renewable resources (wood-pulp from managed plantations) and use novel heat-seal resins on each side. The films are static free and offer a super wide heat-seal range for outstanding machine performance. The films offer good gas barrier properties and the coatings can be tailored to provide varying degrees of moisture barrier, depending on the needs of the wrapped product. Soy Protein Thermoplastics Although no bioplastics currently contain soy protein, several projects supported by the United Soybean Board have as their objective the development of a soy protein containing bioplastic or water soluble polymer. The projects are:

TABLE I

CURRENT USB SOY PROTEIN PROJECTS

USB Project Number

Organization Description

7426 Univ. of Wisconsin - Madison

Development of Soy Protein blended with modified starch to form a biodegradable plastic

8425 Ford Motor Research Soy Meal as reactive filler in elastomeric matrices

8476 Washington State University

Development of Soy Protein biodegradable Plastics

8437 Battelle Memorial Inst. Soy protein polymer as “super absorbent” water soluble polymer

8457 New Jersey Institute of Technology

Soy Protein fiber development

8459 Washington State University

Soy Protein fiber spinning

Page 131: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 24

PART 2 AGRICULTURAL FILMS

STEPHEN G. WILDES

AG FILMS MARKET SUMMARY Since the last update of this market study in 2001, world use of agricultural films, especially mulch films, has grown significantly. Mulch films will be the focus of this study since biodegradable mulch films appears to present the greatest market opportunity for soybean chemistry. The world mulch film market has grown but not in the U.S. Mulch film use will continue to grow with increasing demand for more row crop production on limited arable land. U.S. acreage mulched has remained stable but film volume demand has declined due to continued film downgauging and the practice of double cropping. U.S. mulch films are primarily blends of linear low and low density polyethylene (LL/LDPE) and high density polyethylene (HDPE). Photodegradable film use is gone and no commercially proven biodegradable mulch films are yet available in the U.S. The unmet market demand for these films is, however, strong because mulch film disposal costs are escalating and the problem remains unresolved. Two new biodegradable mulch films have been developed using renewable feedstocks that are in the early stages of market introduction. Soybean chemistry, probably in the form of soy protein, in biodegradable mulch films is technically feasible. However, no current research work utilizing soy is known. An observation from the 2000 study is still valid – “Such an undertaking would need to be a global effort since the U.S. mulch film market is only 5% of the global area mulched.”

Page 132: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 25

MULCH FILM MARKET – WHAT’S CHANGED SINCE 2000

OVERVIEW 1. World Market – Major growth 2. U.S. Market – Declined but is now static

• Film downgauging • Escalating costs of row crop farming • U.S. row crop production lost to Mexico and Latin America

3. Number of U.S. mulch film manufacturers down. Increasing imports. 4. Mulch film product mix:

2000 2007 LDPE 40% 0% LL/LDPE Blends 10% 60% HDPE 50% 40%

5. Film disposal – Still an unresolved issue – Recovery cost escalation, reduce landfill

availability, very little recycling 6. Biodegradable mulch films

• Market need higher than ever • None commercially available in U.S. • Two new films being introduced

o Novamont, Novara, Italy – Mater Bi™ based on polymerized corn starch

o Telles (ADM/Metabolix JV), Lowell, MA – Mirel™ based on corn fructose

Page 133: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 26

AGRICULTURAL FILM MARKET - SITUATION ANALYSIS World demand for agricultural films has grown considerably because of an essential need to improve crop yields on limited arable land that is suitable for cultivation. Additional pressures are challenging the agriculture industry:

• Scarce irrigation water • Trade subsidy threats • Demand for ag product sustainability

Plastic films are making a significant contribution to increase crop output in the form of mulch film, greenhouse covers and silage bags with total world demand reaching 7.8 billion pounds in 2007. Demand growth has been especially strong in China, Eastern Europe and Latin America. China represents 60% of world ag film demand. MULCH FILM MARKET World mulch film demand has grown strongly from 1.2 billion pounds to 3.2 billion pounds annually with the countries mentioned above leading the way. U.S. mulch film demand, meanwhile, has decreased in film volume usage from the 90 million pounds reported in 1999 to 60 million pounds in 2007. The acreage mulched has been about the same while film use declined due to the downgauging of mulch film thickness. This was accomplished by the growing use of blends of low and linear low density polyethylene film resins. These films now occupy 60 to 70% of the U.S. mulch film market. U.S. row crop farmers in large mulching states such as Florida, California and Georgia are experiencing increasing farming costs from higher film, pesticide and fertilizer prices that raises the difficulty of competing with other countries especially Mexico and Central America.

Page 134: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 27

AGRICULTURAL FILMS - WORLD DEMAND 2007 GLOBAL AGRICULTURAL CHALLENGES • Food security

- Populations are growing and individual calorie intake rising • Arable farm land in cultivation is static • Improved yields are essential

- In 1950 one hectare fed 2 people - In 1995 one hectare fed 4 people - In 2025 one hectare will feed 5 people

• Water scarcity • Move to reduce trade subsidies PLASTICS AND AGRICULTURE - THE STORY SO FAR… • Plastics have made a substantial contribution to the increased production in

agricultural output in the last 50 years - Films

• Greenhouse • Mulch • Silage

- Pipes - Containers

• Global plastics demand for agricultural uses in the film area was 7.8 billion pounds in 2007

Page 135: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 28

CHART C

World Demand 2007 - Ag Films

Japan 1%

Rest of World8%Europe

20%

NAFTA5%

Latin America5%

Asia61%

Total demand 7.8 billion pounds

CHART D

World Demand 2007 - Ag Films

Silage (1.5)19%

Greenhouse (3.1)40%

Mulch (3.2)41%

Total demand 7.8 billion pounds

Page 136: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 29

CHART E

World Demand 2007 - Mulch Films

Total demand 3,200 million pounds

Asia (1,950) 61%

Japan (30) 1%

Rest of World (250) 8%

Europe (640) 20%

NAFTA (160) 5% Latin America (160)

5%

TABLE J

WORLD MULCH FILM MARKET Million Pounds

AREA 1999 2007

North America 150 160 U.S. 90 60 Mexico 60 100 Latin America 90 160 Europe 410 640 Spain 70 Italy 60 Germany 50 France 50 Others 100 E. Europe 310 China 850 1,950 Rest of World 200 290 TOTALS 1,220 3,200

Page 137: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 30

MULCH FILM PRODUCTS (U.S.) Mulch film use in the U.S. since year 2000 has changed markedly. At that time, LDPE film was dominant, LL/LDPE blends were coming in to the market but downgauged HDPE film was growing fastest. In 2007, the market dynamics have changed radically. LDPE film is no longer used, HDPE film use is about 40% of the market and LL/LDPE blends are dominant at 60% of the market and growing. Specialty films – embossed, barrier, metalized and coextruded films are widely used while photodegradable films have disappeared. There are still no commercially available biodegradable mulch films although interest and demand potential is high because of escalating film disposal costs. Fumigation films are blown rather than extruded resin blends that are heavier gauge -1.25 mils - and wider - 13 feet vs. 5.3 feet - mulch films. There is no need for in-situ biodegradability since the primary function is as a barrier film with a short 1-4 day use life. Fumigation appears to offer little opportunity for soy protein-based biodegradable films. COMMERCIAL MULCH FILMS • LD/LLDPE Blends:

Gauge – 0.9 - 1.0 mils Width – 64” Roll – 4,000 ft, 102 lbs/roll Pricing - $1.25 - $1.30/lb, $127/roll

• HDPE: Gauge – 0.6 - 0.7 mils Width – 64” Roll – 7,000 ft, 107 lbs/roll Pricing - $1.50 - $1.70/lb, $180/roll

• Specialty Films: Embossed, barrier, metalized and coextruded versions of above films at premium prices. Film colors – black, white, clear, silver, red, blue, green, yellow

Typical Film use: 1 roll/acre, 200 lbs. of film/acre LL/LDPE Blends – 240 lbs/acre HDPE – 170 lbs/acre Mulch film costs per acre have increased from $80/acre to $170/acre since 2000.

Page 138: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 31

U.S. MULCH FILMS

TABLE K

PRODUCT GAUGE (mils) PRICE/LB MARKET SHARE

2000 2007 2000 2007 2000 2007 LL/LDPE Blends 1.0 0.9-1.0 $0.75 $1.25-1.30 10% 60% HDPE 0.7 0.6-0.7 $1.00 $1.50-1.80 50% 40% LDPE 1.25 $0.55 40% 0% Barrier – LLDPE/HDPE $1.60-2.10 Metalized – LLDPE/HDPE $1.60-2.85 Embossed – LLDPE/HDPE $1.25-1.80 The use of LD/LLDPE blend mulch film is growing and becoming dominant. The use of LLDPE imparts additional stretch and strength to the film. HDPE film is stronger than LDPE and can be downgauged further but it does not stretch. Mulch film is typically stretched when applied in the field. Too weak a film will tear under the tension necessary for its application. MULCH FILM MANUFACTURERS (U.S.)

TABLE L

2000 LDPE

LD/LLDPE BLENDS HDPE Clarke Ag Plastics – Greenwood, VA Sunoco Products - Hartsville, SC First Film Extruding – Des Plaines, IL Green-Tek Inc. – Edgerton, WI Holland Transplanter – Holland, MI Huntsman Packaging – Newport News, VA Ken-Bar Inc. – Reading, MA Sunoco Products Co. – Hartsville, SC Treessentials Co. – Mendota Heights, MN Tyco Plastics – City of Industry, CA

2007 LD/LLDPE BLENDS HDPE

Pliant Corp. – Chicago, IL Hilex Poly Co. – Hartsville, SC Olefinas – Guatemala (purchased Sunoco products) Ginegar – Israel TRM – Los Angeles, CA EPA – Mexico Climagro – Montreal, Canada

Page 139: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 32

MULCH FILM PERFORMANCE REQUIREMENTS Physical property performance for any new film must meet the requirements described below and be thoroughly proven in field testing. Biodegradable and photodegradable films have been introduced over the years and been unsuccessful making the farmer skeptical and wary of new product claims. • Gauge thickness – 1.25 mils or less • High elasticity to allow field stretching • Toughness – good tear resistance • Chemically resistant to pesticides • Ultra-violet (UV) stable to last the growing season • Film fabrication capability

- On existing high speed casting or extrusion equipment - Coextrusion, embossing, metalizing - Colors - black, white, clear, silver, red, blue, green, yellow

• Biodegradability - Predictable biodegradation rates of 90 days and 180 days. Two defined rates for different row crops.

• Cost – A significant film cost premium of 50% or more is feasible if film removal and disposal can be eliminated

• New film quality standards – “The NF Mark” This is a new European voluntary industrial quality standard that includes plastic films for agricultural use. It covers product specifications for mulching and silage films and includes ISO 9002 standards. ECONOMICS The cost of row crop farming has increased significantly since 2000. Price escalation of ag films, pesticides and fertilizers has occurred due to petrochemical feedstock price inflation – crude oil and natural gas. Prices of mulch films have risen 70% since 2000. Typical mulching costs have increased from $130 per acre to $200 per acre since 2000. Mulch film disposal costs for field collection (labor), trucking and disposal (landfill tipping fees) have, concurrently, increased from $50 to $100 per acre on an average depending on location. Film disposal remains an unresolved and costly problem. Landfilling waste film is a declining alternative as landfill space becomes less available. Film recycling has been attempted but it was not cost-effective. In Florida, the largest mulch film user state, film is typically burned in the field. This practice will not be allowed much longer.

Page 140: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 33

The obvious unmet market need is for an effective biodegradable mulch film that will meet standard performance requirements at a price not to exceed film disposal costs. To date, no commercial biodegradable mulch film is available in the U.S. However, two companies have been developing these films and one of them is being marketed in Italy and eastern Canada. These films will be described later in this study in the “State of the Art” section. MARKET OUTLOOK The use of plastic mulch films will continue to grow globally, especially in the intensive cultivation of high value row crops such as tomatoes, strawberries and tobacco. External conditions will continue to challenge the farmer and accelerate the use of mulch films. FARMER CHALLENGES • Irrigation water scarcity • Increasing food demand by a growing world population • Limited arable land • A shortage of plant nutrients requiring more efficient fertilizers • Increasing environmental pressure on pesticide use • Mulch film disposal, a growing and costly problem Demand for cost-effective biodegradable mulch films would be strong across most world row crop markets. Farmers would probably be willing to pay a significant price premium for biodegradable films to eliminate the film disposal problem. Biodegradable films could reinvigorate the U.S. market and help make the American farmer more competitive. A successful biodegradable mulch film could also create additional market opportunities beyond fruits, vegetables and tobacco. • Trash and yard waste bags • Forestry seedlings • Cotton

Page 141: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 34

STATE OF THE ART – BIODEGRADABLE MULCH FILMS Although no commercial biodegradable mulch films are yet available in the U.S., a new Novamont product is being marketed in Italy and has recently been introduced in Canada. A second film has been developed by Metabolix Inc. and will be marketed by Telles of Lowell, Massachusetts, a joint venture of ADM and Metabolix Inc. Novamont S.p.A., Novara, Italy

Mater - Bi™ • Polymerized corn starch modified with sunflower and rapeseed lipids • Italian plant – 132 million pound capacity – onstream 2007 • Sales mostly in Italy but introduced in Canada by Dubois Agrinovation, Montreal

(BioTeloAgni™) • Dubois having difficulty getting product approval in the U.S. • Successfully field tested by Cornell University • Two grades available for 4 and 6 month biodegradation • Pricing – 2-2.5 times LL/LDPE blend films – $2.60-$3.00 per pound Telles, Lowell, MA Metabolix, Inc. & ADM Joint Venture Mirel™ • Made from corn fructose and vegetable oils • Clinton, Iowa resin plant – 110 million pounds start up scheduled for late 2008 • Resin samples from pilot plant available for evaluation by fabricators • Pricing – Expected to be 2.5 to 3 times LL/LDPE blend films - $3.00 - $3.50 per pound Polylactic acid (PLA) – Manufactures – Nature Works (Cargill) and Purac. Ag films have and can be produced but are brittle, do not stretch well and require performance additives that make them cost prohibitive. Additional research on biodegradable mulch films is active by various chemical firms and universities but most approaches involve modified polyester films that are said to perform marginally.

Page 142: World Bioplastics Industry

OMNI TECH INTERNATIONAL, LTD. 35

MARKET OPPORTUNITY U.S. market is 60 million pounds, 5% of a global market of 3.2 billion pounds. This market has stabilized after declining due to film downgauging and the loss of some crop farming to Mexico. The U.S. market is poised to resume growth with the availability of higher performance mulch films. World market demand, meanwhile, continues to increase significantly. While some countries could not afford premium priced films, Europe definitely could. BIODEGRADABLE MULCH FILMS Two new biodegradable mulch films – Novamont’s Mater’Bi™ and Telles’ Mirel™ have been developed and are in early market introduction. They are based on corn starch and corn fructose respectively as described in the “State of the Art” section of this report. Mention has been made by these companies that each film resins contains “vegetable oils”. This will be investigated further to determine if soybean oil and derivatives are and can be utilized. Development of soy protein-based films will require considerable cost and time. Earlier research at Iowa State University demonstrated that such films are feasible. An invitation for development was presented to the American Society for Plasticulture at their recent Congress on March 9, 2008. RECOMMENDATIONS Omni Tech International, Ltd. recommends that the USB New Uses Committee consider funding support for future projects involving the development of soy-based biodegradable agricultural mulch films. USB funding support was not recommended in the 2000 market study update. However, demand for biodegradable mulch films has increased considerably since then and the market will now support premium priced biodegradable films if they perform well and eliminate the need for mulch film collection and disposal. An RFP (Request for Proposal) focused on soy protein-based biodegradable mulch films sent to key universities and mulch film manufacturers could stimulate R&D efforts.

Page 143: World Bioplastics Industry

1

��������ก�....������ก������������

������������� ������ ��� ����!"# $%��%�$�& : ��������ก ����ก���������������������������� ������ �����ก!"ก�#�������$�������#� �%�&��#����ก ����'(�%�&�����ก)$* +%,��'-�ก��.���%,�$���%ก��/���0�ก��������%���-��%1� � (Polymerization) �����!���������+�� )#�'�%ก��@������ก�+/�ก��)�����*+����������+�ก � +� A���ก��#ก �����B@������ก)$*���ก ���"� ����ก� ก��#ก� �����1A# (reuse) ก�'���%�$��ก� ��/�������'�� (recycle) '�F�������Bก���� (reduce) ����ก����� �������F*�)$*���������%@��)��)�)#�'���!����('������ �'�H*+ ����*+)$*,��,#�H+!H+%ก$*��ก �ก��#/���� BI-����กก� �����1A#'�F�ก�'���%�$��ก� ������'�����+,#�H+!H+ก���%�JK������#���,� A+ก��#/���� BI-����1A#'�F�'���%�$��ก� ������'�� %�F*�+�ก����ก�$,�B�������+� �%�&�/��กก�%F*����@�+����%���-)$*/��ก�����ก�/���1A#'��,� A+ ������)����ก�/���/���� BI-"+ �������'��+ก�����ก����������กกL��ก���'�%ก������M)+�กN '�F�)+�A# �ก%'��/�� +ก����H+%ก��ก�� O�����ก�'���!������������������ %�$�ก����ก�$A�� ��������ก (Bioplastic) '�F�����ก���������)+�$��� (Biodegradable Plastics)

��������ก(�������ก�)���������*�����+��

������ ��H+�$'���+,-ก�) *���ก����#%���ก�� �)#���T�/���� BI-���������)+�$���@HA� ����'�,#�#ก �,��@�+����ก���������)+�$�����ก��+ก �%�Lก���� %���

- ����ก���������)+�$��� ,F� ����ก)$*��������� %�F*�+��กก�)#+�@�+ �����)�$�-)$*�$��"���������� %��� ��,)$%�$� ����'���1H*+�$@��ก#'�������T� ASTM D6400-99 - ����ก���������)+�$��� ,F� ����ก)$*!"ก��ก�����'�%ก��ก�%��$*�����+�,�+��+)+%,�$���������������)$*ก#'��������%_��%�&�%'��)#�'��� ����+` @�+����ก���+�������+%��'�H*+1H*+��!� �������������$)������T�)$*%'���ก �����@�+����ก���ก����+� /�ก�)�����!�#����%�&�%กBI-��ก��#��ก���%�)@�+����ก���������)+�$��� ���ก�%��$*�����+�,�+��+)+%,�$� +ก������+%ก���กก�)#+�@�+�����)�$�-���������%)�� A� ��@��ก#'�����T� ISO 472:1998

Page 144: World Bioplastics Industry

2

- � ������ก������F*���%�&�����ก)$*���������)+�$��� กL���%�F*�����ก�����)�$�-) A+'��!"ก���������+��"�B-��������)�$�- )$*�$��"������������ ����$� ��ก���������"������@��ก#'����ก�)��������T� DIN FNK103.2 (1993) - � ����������� ,F� � ��)$*ก�������%�&�/���กก�)#+�@�+�����)�$�-)#�'�� ��%ก��ก�%��$*�����+%�&��A# กl1,�-�������ก�1�- ���/ '�F� กl1�$%)� �������$����'�� %�&�/���� BI-��@ A������)�� ��@��ก#'��@�+ CEN 1993 #'� �,#�� biodegradation ('�F�ก����������)+�$���) �����ก biotic degradation �����T���+` �$,#�#ก �,��)$*����FA�T����,��%�$��ก � ,F� %�&�ก�)#+�@�+�����)�$�-)$*�$�����A�� �� %�&�/��'�� ��%ก��ก�%��$*�����+��%�&�กl1,�-�������ก�1�-'�F�กl1�$%)�����A# ���������������ก��@�+� ��������� %��� ,�-���p%��� ����$��ก! *� ������ก�$%1����- %�&���� 1H*+ก���������@HA���"�ก ��A#'� ก��%�ก�� �����������B��������%���- )$*���%�&����/���ก�/�����������ก ก����������)+�$���@�+� ����+`�$���� � 2 ���+)$*,��,��ก������� ����ก�

1.,����!��ก���� �@�+� ��)$*��������� %��� � ��)$*�$���/�@�+�F� ���/�@�+ ��- '�F��$���/�@�+����'��ก������� 1H*+����!��� ����%�+����������

2. ����%��)$*�����ก���������������������������$ก������������� ��)$*��ก��+ก �

� ���������)$*�#�/�����������ก)$*��������'(�/����ก�F� �$ 2 ���� ����ก� ����ก)$*����ก��q+@�����%ก���กก�'� ก�A#������q+@���������%�FA������)�$�-�'�%�&�����%���-@�+ก�� ��,��ก�ก� A�%ก���0�ก��������%���-��%1� ����ก�%�F*����+� �����'��+����%���-@�+ก����,��ก�'���1����ก@HA���ก��%�&���������ก)$*%�$�ก�� polylactic acid (PLA)�������ก)$*����ก�������� �#��'� +%ก��ก���������%�FA������)�$�-'������ � +,+�����q+ +%,��'-����%���-)$*�$@���'(�)$*%�$�ก������ก� polyhydroxyalkanoate (PHA) ��� polyhydroxybutyrate (PHB) %�F*��#��/��ก�����ก�)+%,�$���������ก)$*)�)�ก�� �����ก�����ก�/������� Thermo forming, Injection molding ��� Blow molding

����ก���������������������������� (Environmentally Degradable Plastics, EDP) '��!H+ ����ก)$*��!%ก��ก�%��$*�����+�� ��%�F*�+�ก���� ���+` ������������ %��� ก�� ��+ �A# �����ก1�%����������� �+�ก��+�)���- ��+%,���กก�ก��)�@�+%�L�|������+�� '�F��ก%���1�-@�+�����)�$�- )#�'�%ก��ก�%��$*�����+�,�+��+)+%,�$ ก��%�&��)$*!"ก�"�1H� ������������������+��"�B-��������)�$�-���กl1,�-�������ก�1�- �A# �����)�$�- ������

Page 145: World Bioplastics Industry

3

�$��� %�&�/���� BI-@ A���)�� ���ก����������ก��"�1H��$A���+%ก��@HA�������%�L�%�$�+��)$*�����)#�'�%ก��ก��������������� ���,#������ก)$*%�&������������������ (Environmental Friendly Plastics) '�F� ����ก$%@$�� (Green Plastics) '��!H+ ����ก)$*)#�'������ก�� �ก�@�����+����+/�ก��)������������������������ก������ก)$*���ก ���"�) *����������� � �ก,��'��� +ก���@�+����H+� ���������ก'�F�����ก���������)+�$���%�&�����ก)$*%�&������������*+�������'�F�����ก$%@$����� /"������,��ก��������ก%��*�,#�H+!H+%�F*�+@�+���������%��*�%@���$�)�)��ก�ก#ก ��"��%ก$*��ก �%�F*�+������ BI-@�+��,��ก@HA� �H+)#�'������,�����������'� T�%���ก���+�$ก��� �%��$*�������@�+ก�,��,��� กMB�@�+��,�) A+,�B��@�+��,���������������,� � +� A���,�)$*��%@����#'��������%)N� +ก�������"���������ก�,��,����%�F*�+������ BI-@�+��,��������� ((� กMB-�����ก��#��ก����@�+������ BI-)$*�$,�B�� ��%�&������ �!�)$*���������)+�$��� � +��)$*1

+��*�� 1 �� (� กMB-%�F*������ก��#��ก����@�+������ BI-)$*�$,�B�� ��%�&������ �!�)$*���������)+�$���

��-����#.�ก/�+�01#����ก�)��������� 1. ก����+�)+ก���)�- ����ก���������!"ก� O�@HA�%�F*������ก�/���� ��)+ก�

��)�- %��� /��'� +%)$�� �)$*!"ก��ก�����'���!,��,��ก���������� �����+��` ������+ก������+����%��'�H*+ '�F��'����� ���ก�B-���%�)ก�" ����/����ก���"ก)$*���� �ก�/�� ����|�+��"�����+ก�)$*��!���������%�+��'� +�กก�)#'��)$*��)$*���� �ก���ก����������%�L��A� )#�'�������+)#ก�/�� �1A#%�F*��#� ��)$*�����ก�� กM%�L�������ก�ก��+ก�/"��~��

+��*�� 2 ก���"ก%)$��)$*��������� +��*�� 3 �'����� ���ก�B-���%�)ก�"

Page 146: World Bioplastics Industry

4

2. �%,�F��ก���M '�F���� ������ ��$ก��#����ก���������)+�$�������+�%�&��%,�F��ก���M#'� �'���p�%���-%ก��- '�F�!����A#�����������)�A+

+��*�� 4 ก���M'���p�%���-%ก��- +��*�� 5 !����A#�����������)�A+ 3. �.�-�,������ ���� ��#'� �ก�%กM�� �.�-�,������#'� �ก�%กM��%�&����ก�B-)+

ก�%กM��)$*#, (��ก�%����"ก�F��+���� %��� ��%@F�%)N 1H*+�/���.�-��������q�+ก �ก�%�����@�+� ��F� ���� กM,���FA������ ก�����.�-���!/�������ก����ก���������)+�$�����������@ A����ก�%กL����ก#� ��.�-���'� +%�L��A�ก����+� ��ก�ก�$A� +�$ก��#����ก�������������%�&�� ��,��,��ก����������#, ( %��� � �� ���� �%,�$#'� �ก�%กM�� � ��ก ก%กL��A##'� �ก�%����"ก�F���)�%�)�� ���!H+!�+'�F�ก��!+#'� �%�����ก��

4. !�+#'� ���@�+ (shopping bag) !�+����ก����.�-�����ก#'� �ก����+���������� BI-���� �,��������ก����+��ก@HA��������� � �+/��'��$ ������"���@��������B"+ ����ก����������H+%�&�����ก)$*�$N ก�����ก��#�����)�����ก) *���%�F*�/���%�&�!�+����.�-����+��ก

5. �.�-����!�+#'� ���@��%NM�'� (Food waste film and bags) %'��#'� �!�)$*)$*�$����ก�ก#� �@�����)�$�-�������$ก�,����)- ก#� +���� �,����������+���%)N %�F*�+�ก��!ก#� ����ก��#�)#,����)-�����@�����)�$�-�F*�` )#�'�%ก��,�����ก������+��ก)�A+

6. ������ BI-%�F*�ก������, (Consumer Packaging Materials) N ก���'�H*+��ก����+�����ก���������)+�$��� ,F� ก����+���������� BI- 1H*+���ก��ก���������� BI-�'�)$*/����ก����ก) *���� ก������� �,�������#ก� ���$�1%,���ก� ก %�F*�+�ก�$ก���%�JK��"+ )#�'�������ก���ก�%กL����)#,����� ก��#����ก����������/���%�&������� BI-#'� ��'� %��� !����������#'� ��'�#%�L��"�����'������� �H+%�&����)+'�H*+��ก�����('���ก�� �ก�@�������� BI-�+���

7. ���%�L�ก �ก���)ก (Loose fill) ���) *���/����ก�������$� (Polystylene) %�F*�����������-�����ก�@��+��,� �$@���$,F� �$,���F�'������!�q�+ก ���,��ก��+ก���)ก��'��+ก�

Page 147: World Bioplastics Industry

5

%,�F*��������@��+���%�&����+�$ ��ก�ก�$A� +�$�A#'� ก%�)#�'�ก�@��+��,�%�&���������+���ก������'� �%�FA�%���+ �����(',F� �������$� %�&�����ก)$*����������ก������%�FA�)$*��ก�� �%กL�%�F*�ก�ก#� �"+ ������ ��$ก�� O�ก�/������%�L�ก �ก���)ก�ก��q+�������%���-�����F*�)$*�����A#������������)+�$���@HA� )#�'�+�����ก����+�������ก��ก�ก#� �%�F*��A���ก����+�����

�ก��('@������ก)$*�+/�ก��)�����*+����������+�ก ��������$ก�ก#� �@������ก�������$�#ก� ������'��กL��!����('���%�$�+�+���%)�� A� ���!�%�����ก ��B�+,-�������ก)$*���������)+�$���'�F�' �����!�+/��)�กL%�&����)+ก���@������ก)$*%ก��@HA���� �����������ก���@�+���M�-����ก� ก%��$*�����+ก �����ก %���ก����!�+����ก� A��"������ +�����ก���ก����+� ��ก��%�&����'�H*+@�+ก�'���������*+@�+������ � +� A��H+,��/�������ก)$*���������)+�$����)��)� �$ก) A+���%)N�)�%�&����%)N%กM��ก���)$*�$� �!������ก�/�������ก���������)+�$���%�&��#����ก��)#�'����)��ก�/�������ก)$*���������)+�$����*#�+���%�&�����ก ��*+������� ��ก��������� 1. � �����������)+�$���ก �ก�����������-�������� � [������-]. [��+!H+� �)$* 7 ��M�,� 2553] : %@�!H+����ก http://clgc.rdi.ku.ac.th/index.html 2. ����ก���������: %),�����$%�&������������������%�F*�ก�� O�)$*� *+�F� [������-]. [��+!H+� �)$* 7 ��M�,� 2553] : %@�!H+����กhttp://www2.metec.or.th/th/special/biodegradable_plastic/process_plas.html 3. ��������ก [������-]. [��+!H+� �)$* 5 ��M�,� 2553] : %@�!H+����ก http://library.dip.go.th/%E0%B8%99%E0%B8%A7%E0%B8%B1%E0%B8%95%E0%B8%81%E0%B8%A3%E0%B8%A3%E0%B8%A1/www/download/BTID%20Bioplastic.pdfhttp://library.dip.go.th/

#� ก���'����� ���+'��+�0�� ��ก� ก����)�N��-���ก� �)�. 0 2201 7125 E-mail : [email protected]. ��M�,� 2553

Page 148: World Bioplastics Industry

พลาสตก (Plastic) หมายถงสารประกอบอนทรยทสงเคราะหขนใชแทนวสดธรรมชาต บางชนดเมอเยนกแขงตว เมอถกความรอนกออนตว บางชนดแขงตวถาวร ปจจบนพลาสตกเปนปญหากบสงแวดลอม ยอยสลายยากใชเวลานาน ท าใหดนเสอมคณภาพ เผาท าลายท าใหเกดมลพษในอากาศ

พลาสตกชวภาพ (Bioplastic) หรอพลาสตกชวภาพยอยสลายได (Biodegradable plastic) หมายถงพลาสตกทผลตขนจากวสดธรรมชาตสวนใหญเปนพช สามารถยอยสลายไดในธรรมชาต (biodegradable) ชวยลดปญหามลพษในสงแวดลอม

วสดธรรมชาตทสามารถน ามาผลตเปนพลาสตกชวภาพมหลายชนด เชน cellulose collagen casein polyester แปง (starch) โปรตนจากถว และ

ขาวโพด เปนตน และในบรรดาวสดธรรมชาตทงหลาย แปง นบวาเหมาะสมทสดเพราะมจ านวนมากและราคาถก เนองจากสามารถหาไดจากพชชนดตาง ๆ เชน ขาวโพด ขาวสาล มนฝรง มนเทศ มนส าปะหลง เปนตน

พลาสตกชวภาพทผลตจากแปงโดยตรงจะมขดจ ากด เพราะจะเกดการพองตวและเสยรปรางเมอไดรบความชน จงไดมการใชเชอจลนทรยเขาไป

ยอยสลายแปง แลวเปลยนแปงใหกลายเปนโมโนเมอร (monomer) ทเรยกวากรดแลคตก (lactic acid) จากนนน าไปผานกระบวนการ polymerization ท าใหกรดแลคตกเชอมกนเปนสายยาวทเรยกวา โพลเมอร (polymer)

ประเภทของพลาสตกยอยสลายได

จะแบงประเภทของการยอยสลายออกเปน 5 ประเภทใหญ ๆ คอ

1. การยอยสลายไดโดยแสง (Photodegradation) การยอยสลายโดยแสงมกเกดจากการเตมสารเตมแตงทมความวองไวตอแสงลงในพลาสตกหรอสงเคราะหโคพอลเมอรใหมหมฟงกชนหรอพนธะเคมทไมแขงแรง แตกหกงายภายใตรงส (UV) เชน หมคโตน (Ketone group) อยในโครงสราง เมอสารหรอหมฟงกชนดงกลาวสมผสกบรงสยวจะเกดการแตกของพนธะกลายเปนอนมลอสระ (Free radical) ซงไมเสถยร จงเขาท าปฏกรยาตอ

อยางรวดเรวทพนธะเคมบนต าแหนงคารบอนในสายโซพอลเมอร ท าใหเกดการขาดของสายโซ แตการยอยสลายนจะไมเกดขนภายในบอฝงกลบขยะ กองคอมโพสท หรอสภาวะแวดลอมอนทมด หรอแมกระทงชนพลาสตกทมการดวยหมกทหนามากบนพนผว เนองจากพลาสตกจะไมไดสมผสกบรงสยวโดยตรง

2. การยอยสลายทางกล (Mechanical Degradation) โดยการใหแรงกระท าแกชนพลาสตกท าใหชนสวนพลาสตกแตกออกเปนชน ซงเปนวธการทใชโดยทวไปในการท าใหพลาสตกแตกเปนชนเลกๆ

3. การยอยสลายผานปฏกรยาออกซเดชน (Oxidative Degradation) การยอยสลายผาน)ฏกรยาออกซเดชนของพลาสตก เปนปฏกรยาการเตม

ออกซเจนลงในโมเลกลของพอลเมอรซงสามารถเกดขนไดเองในธรรมชาตอยางชาๆ โดยมออกซเจน และความรอน แสงยว หรอแรงทางกลเปนปจจยส าคญ เกดเปนสารประกอบไฮโดรเปอรออกไซด (hydroperoxide, ROOH) ในพลาสตกทไมมการเตม สารเตมแตงทท าหนาทเพมความเสถยร (stabilizing additive) แสงและความรอนจะท าให ROOH แตกตวกลายเปนอนมลอสระ RO และ OH) ทไมเสถยรและเขาท าปฏกรยาตอท

พนธะเคมบนต าแหนงคารบอนในสายโซพอลเมอร ท าใหเกดการแตกหกและสญเสยสมบตเชงกลอยางรวดเรว แตดวยเทคโนโลยการผลตทไดรบการวจยและพฒนาขนในปจจบนท าใหพอลโอเลฟนเกดการยอยสลายผานปฏกรยาออกซเดชนกบออกซเจนไดเรวขนภายในชวงเวลาทก าหนด โดยการเตมสารเตมแตงทเปนเกลอของโลหะทรานสชน ซงท าหนาทคะตะลสตเรงการแตกตวของสารประกอบไฮโดรเปอรออกไซด (Hydroperoxpide,

ROOH) เปนอนมลอสระ (Free radical) ท าใหสายโซพอลเมอรเกดการแตกหกและสญเสยสมบตเชงกลรวดเรวยงขน

4. การยอยสลายผานปฏกรยาไฮโดรไลซส (Hydrolytic Degradation) การยอยสลายของพอลเมอรทมหมเอสเทอร หรอเอไมด เชน แปง พอลเอสเทอร พอลแอนไฮดรายด พอลคารบอเนต และพอลยรเทน ผานปฏกรยากอใหเกดการแตกหกของสายโซพอลเมอร ปฏกรยาไฮโดรไลซสทเกดขน

โดยทวไปแบงออกเปน 2 ประเภท คอ ประเภททใชคะตะลสต (Catalytic hydrolysis) และไมใชคะตะลสต (Non-Catalytic Hydrolysis) ซงประเภทแรกยงแบงออกไดเปน 2 แบบคอ แบบทใชคะตะลสตจากภายนอกโมเลกลของพอลเมอรเรงใหเกดการยอยสลาย (External Catalytic Degradation) และแบบทใชคะตะลสตจากจากภายในโมเลกลของพอลเมอรเองในการเรงใหเกดการยอยสลาย (Internal catalytic degradation) โดยคะตะลสตจากภายนอกม 2 ชนด คอ คะตะลสตทเปนเอนไซมตางๆ (Enzyme) เชน Depolymerase lipase esterase และ glycohydrolase ใน

กรณนจดเปนการยอยสลายทางชวภาพ และคะตะลสตทไมใชเอนไซม (Non-enzyme) เชน โลหะแอลคาไลด (alkaline metal) เบส (base) และกรด(acid) ทมอยในสภาวะแวดลอมในธรรมชาต ในกรณนจดเปนการยอยสลายทางเคม ส าหรบปฏกรยาไฮโดรไลซสแบบทใชคะตะลสตจากภายในโมเลกลของพอลเมอรนนใชหมคารบอกซล(Carboxyl Group) ของหมเอสเทอร หรอเอไมดบรเวณปลายของสายโซพอลเมอรในการเรงปฏกรยา

การยอยสลายผาปฏกรยาไฮโดรไลซส

5. การยอยสลายทางชวภาพ (Biodegradation) การยอยสลายของพอลเมอรจากการท างานของจลนทรยโดยทวไปมกระบวนการ 2 ขนตอน เนองจากขนาดของสายพอลเมอรยงมขนาดใหญและไมละลายน า ในขนตอนแรกของของการยอยสลายจงเกดขนภายนอกเซลลโดยการปลดปลอย

เอนไซมของจลนทรยซงเกดไดทงทงแบบใช endo-enzyme หรอ เอนไซมทท าใหเกดการแตกตวของพนธะภายในสายโซพอลเมอรอยางไมเปนระเบยบ และแบบ exo-enzyme หรอเอนไซมทท าใหเกดการแตกหกของพนธะทละหนวยจากหนวยซ าทเลกทสดทอยดานปลายของสายโซพอลเมอร เมอพอลเมอรแตกตวจนมขนาดเลกพอจะแพรผานผนงเซลลเขาไปในเซลล และเกดการยอยสลายตอในขนตอนท 2 ไดผลตภณฑในขนตอน

สดทาย (ultimate biodegradation) คอ พลงงาน และสารประกอบขนาดเลกทเสถยรในธรรมชาต (Mineralization) เชน แกสคารบอนไดออกไซด แกสมเทน น า เกลอ แรธาตตางๆ และมวลชวภาพ (biomass)

++++++++++++++++++++++++++++++++++++++

Page 149: World Bioplastics Industry

พลาสตกชวภาพทส าคญ ม 2 ชนด คอ

1. Polylactic acid (PLA)

2. Polyhydroxybutyrate (PHB)

Polylactic acid (PLA)

Polylactic acid หรอ Polylactide เปนพลาสตกทผลตจากขาวโพดหรอออย แตสวนใหญนยมผลตจากขาวโพด กระบวนการผลตคอจะน าเมลด

ขาวโพดไปท าเปนแปงแลวน าแปงทไดไปผานกระบวนการหมก (fermentation) โดยใชแบคทเรย Lactobacillus brevis ไดผลผลตเปนกรดแลคตก (Lactic acid) ซงกรดแลคตกนเปนโมโนเมอรทจะน าไปใชเปนสารตงตนในการผลตเปนพลาสตก โดยน าไปผานกระบวนการ polymerization ไดเปนโพลเมอรทเรยกวา polylactide

ขนตอนการผลต PLA และการน ากลบมาใชใหม

ผลตภณฑทไดจากพลาสตก PLA

กลองใสอาหาร

ถวยใสอาหาร

แกวใสของรอน

โทรศพท NEC รน FOMA(R)N70iECO

Page 150: World Bioplastics Industry

กลองใส CD/DVD

Polyhydroxybutyrate (PHB)

PHB ถกคนพบโดย Maurice Lemoigne นกจลชววทยาชาวฝรงเศส เกดจากการยอยสลายของจลนทรย Alcaligenes eutrophus โดยใชแหลงวตถดบจากน าตาลกลโคสหรอแปง มาเปนแหลงคารบอนใหกบจลนทรยเพอเปลยนเปน acetyle CoA ซงสารนจะเปนโมโนเมอรส าหรบใชในการผลตเปน PHB

การสงเคราะหพลาสตก PHB จากจลนทรย Alcaligenes eutrophus จะมเอนไซมเขามาเกยวของในปฏกรยาทงหมด 3 ชนด คอ

เอนไซม 3-ketothiolase จะเรงใหเกดการรวมตวกนของ Acetyl CoA ไดเปน Acetoacetyl-CoA

เอนไซม acetoacetyl-CoA reductase จะเปนตวรดวซ acetoacetyl-CoA ไปเปน R(-)-3-hydroxybutynl-CoA

เอนไซม PHA synthase จะมาเรงปฏกรยา polymerizes สาร R(-)-3-hydroxybutynl-CoA ไดเปนโพลเมอร PHB

โมเลกลของ PHB

แหลงขอมล : http://en.wikipedia.org/wiki/Polyhydroxybutyrate

http://web.mst.edu/~microbio/BIO221_2005/A_eutrophus.html

http://www.rsc.org/education/teachers/learnnet/inspirational/resources/3.1.11.pdf

http://www2.mtec.or.th/th/special/biodegradable_plastic/type_de_plas.html

http://opac.tistr.or.th/Multimedia/STJN/4901/4901-1.pdf

http://dspace.library.drexel.edu/bitstream/1860/2878/1/Singh_Vishesh.pdf

http://en.wikipedia.org/wiki/Bioplastic

Page 151: World Bioplastics Industry

การจดท าแผนทสทธบตรเรอง Bioplastics March 9th, 2011 by pornpan 59 views

Add Comment Trackback Comments Feed

การวเคราะหขอมลสทธบตรและจดท าแผนทสทธบตร (Patent Mapping) เรอง พลาสตกทไดจากวสดธรรมชาต (Bioplastics) จากฐานขอมล Delphion โดยก าหนดค าสบคนดวยค าวา Bioplastics เมอวนท 9 กมภาพนธ 2554 พบจ านวน 135 เรอง ครอบคลม 5 ส านกสทธบตร คอ US, EP, JP, WO และ DE และน ามาวเคราะหเปนแผนทสทธบตรดวยโปรแกรม Text Mining ชอ Vantage Point ไดผลสรปดงน

1. ประเทศผยนจดสทธบตร (Application Countries) เรอง Bioplastics อนดบ 1 คอ ประเทศสหรฐอเมรกา (US) จ านวน 39 เรอง รองลงมา คอ สทธบตรทยนทองคกรทรพยสนทางปญญาในระดบนานาชาต (World Intellectual Property Organization : WIPO) จ านวน 29 เรอง

2. ปทท าการยนจดสทธบตร (Filed of year) อนดบ 1 คอ ป 2008 จ านวน 30 เรอง รองลงมาคอ ป 2006 จ านวน 14 เรอง

3. นกประดษฐ (Inventors) นกประดษฐผน า อนดบ 1 คอ Della Valle, Francesco ยนจดสทธบตร จ านวน 19 เรอง รองลงมา คอ Romeo, Aurelio ยนจดสทธบตร จ านวน 18 เรอง

4. สญชาตผประดษฐ (Inventor Country) อนดบ 1 คอ สหรฐอเมรกา (US) ยนจดสทธบตร จ านวน 52 เรอง รองลงมา คอ อตาล ยนจดสทธบตร จ านวน 8 เรอง

5. หมวดหมสาขาวชาเทคโนโลย (IPC-R) ทพบในเอกสารสทธบตรเรอง Bioplastics มากทสด จ านวนเทากน คอ A61K 8/72 และ A61L 27/00 จ านวน 19 เรอง

A61K 8/72 (Section A – Human Necessities, A61K 8/72 – Containing organic macromolecular compounds) A61L 27/00 (Section A – Human Necessities, A61L 27/00 – Materials for Prostheses or for Coating Prostheses)

6. บรษทผน า / สถาบน ผถอครองสทธบตร (Patent Assignees) อนดบ 1 คอ FIDIA S.P.A. จ านวน 17 เรอง รองลงมา คอ Bioplastic Polymers and Composites LLC. จ านวน 8 เรอง

7. ค าส าคญทปรากฎทชอเรองของเอกสารสทธบตรทส าคญ (Title (NLP) Phrase) ไดแก ค าวา Method พบมากทสด รองลงมา คอ Bioplastic

8. ตวอยางชอเรองสทธบตร เรอง Bioplastics ทพบมากอนดบ 1 คอ Bioplastics, Monomers Thereof, and Processes for the Preparation Thereof from Agricultural Feedstocs และ Reagents and Methods for Cyanobacterial Production of Bioplastics and Biomaterials ยนจดเทากน จ านวน 6 เรอง

ตวอยางชอเรองสทธบตร - Methods and Apparatus for Manufacturing Plasma Based Plastics and Bioplastics Produced Therefrom - Novel Triglycerides and Method of Preparation Thereof - Transgenic Cotton Plants Producing Heterologous Bioplasic - Esters of Alginic Acid

Page 152: World Bioplastics Industry

- Biodiesel Additive and Method of Preparation Thereof - Manufacturing Method for Seamless Manmade Leather Ball - Polymeric Bioplastics

9. แสดงกลมค า (Cluster) ทพบเหมอนกนในเอกสารสทธบตร เรอง Bioplastics คอ กลมท 1: possess, salt, total, cosmetic, pharmaceutical, interest, surgery, association, hyaluronic acid, include จ านวน 16 เรอง กลมท 2: problem, solve, provide, excellent, material, bioplastic, like, form, plastic, constitute จ านวน 14 เรอง กลมท 3: relate, preparation, agricultural feedstocks, feedstocks, flax, tallow, present invention, monomers, invention, process จ านวน 12 เรอง กลมท 4: describe, preparation, base, cleavage, cleaved end, coupling, double bond, fatty acid chain, intermediate for polymers, natural oil จ านวน 12 เรอง กลมท 5: production, biomass, process, bioplastics, bacterial, gasify, hydrogen, organic material, recycle, suit จ านวน 11 เรอง กลมท 6: field, extract, ex, medicine, high, invention, example, min, dwg, place จ านวน 11 เรอง กลมท 7: encode, produce, gene, select, group, consist, coding sequence, construct, genetic construct, genome จ านวน 10 เรอง กลมท 8: plasma, use, apparatus, embodiment, produce, useful, manufacturing, assess, biological response modifier, concentration จ านวน 10 เรอง กลมท 9: combination, additive, comprise, contain, make, increase, biopolymer, coat, extrusion, inorganic particle จ านวน 9 เรอง กลมท10: similar, form, include, composition, cured silane-modified oil, degree of unsaturation, disclosure, facilitate, fat, free radical initiator จ านวน 6 เรอง เอกสารสทธบตรทไมแสดงกลมค า (Unclustered Publications) พบจ านวน 24 เรอง

นอกจากนโปรแกรมยงแสดงความสมพนธบรษทผถอครองสทธบตรและหมวดหมสาขาวชาเทคโนโลย (Patent Assignees X IPC) สรปไดวาบรษทผน าผถอครองสทธบตร เรอง Bioplastics สวนใหญมการยนจดสทธบตรในหมวดหมสาขาวชาเทคโนโลยเดยวกน คอ หมวดหม (IPC) A61K 8/72 และ A61L 27/00

แสดงแผนท Cross Correlation Map ของผน าการประดษฐ (Inventors) กบ หมวดหมสาขาวชาเทคโนโลย (IPC-R) สรปตความไดวามผประดษฐ 2 กลม กลมท 1 จ านวน 6 คน กลมท 2 จ านวน 3 คน ทมการประดษฐคดคนเรอง Bioplastics มความสมพนธ / เกาะกลมกนในเอกสารสทธบตร เหมอนกนในระดบมากกวา 0.25-0.75 สวนอก 1 ผน าการประดษฐ ทกระจายออกไป ไมมความสมพนธใด ๆ

Page 153: World Bioplastics Industry

ไบโอพลาสตก ทางออกของปญหาโลกรอน จากผลตภณฑพลาสตก

ปจจบนทวโลกตางใหความส าคญกบ ภาวะโลกรอนกนอยาง กวางขวาง มการคนหาตนเหตของโลกรอน มขอสรปหลายประการ อาท สาเหต รอยละ 90 มาจากการทมนษยเผาผลาญเชอเพลงฟอสซลสงผลใหกาซคารบอนไดออกไซดขนสชนบรรยากาศมากเกนไปจนความรอนจากพนโลกไมสามารถสะทอนออกนอกโลกไดกอใหเกดการเปลยนแปลงสภาวะอากาศอยางรนแรงไปทวโลกดงนนภารกจทเหลามนษยชาตตองรบผดชอบรวมกนกคอลดการเผาผลาญเชอเพลงและปลอยกาซคารบอรไดออกไซดลงใหมากทสดเพอตอเวลาใหกบโลกใบนใหยาวยงขน ถงพลาสตกทเราใชรองรบสนคาและอาหารผลตจากเมดพลาสตก จากอตสาหกรรม ปโตรเคม ทใชเพลงฟอสซลคอ พวก น ามนถานหน หรอ กาซธรรมชาต เปนวตถดบการผลตถงพลาสตกสามารถท าไดอยางรวดเรวในปรมาณมาก และดวยตนทนทต า เมอน ามาใชจะมอายการใชงานสนและสวนใหญเปนการใชเพยงครงเดยวโดยเฉพาะถงขนาดเลกและบางถงทผานการใชงานแลวและถกน าไปทงจะเปนภาระในการเกบขนและจดการเปนอยางมาก เนองจากคณลกษณะทเบาบางและมปรมาณมากปะปนกบมลฝอยประเภทอนๆ จะท าใหการยอยสลายมลฝอยเปนไปไดยากมากยงขน ในกจวจประจ าวนของเราเกยวของกบพลาสตกเปนอยางมาก ไมวาในเมองใหญ หรอแมแตในชนบทหางไกล กยงตองพงพา การใชถงพลาสตกในชวตประจ าวนอยาง มากมาย ถาถามวา “ลดใชถงพลาสตกเกยวอะไรกบโลกรอน” และเราคนเดยว ลด หรอ ไมใช ถงพลาสตก จะเปลยนแปลงอะไรได? ค าตอบคอ ไดความเกยวโยงระหวางการใชถงพลาสตกกบโลกรอนคอยงมการใชถงพลาสตกมากเทาไหรปรมาณกาซคารบอนไดออกไซดทถกปลอยสชนบรรยากาศโลก จากการเผาไหมในกจกรรมการผลต และเผาท าลายถงพลาสตกกจะยงสงมากขนตามมาดวยปญหามากมายจากมลพษ ถงพลาสตกมผลท าใหเกดภาวะโลกรอน ซงถงพลาสตก 1 ใบ ตองใชเวลายอยสลายถง 450 ป หากน าไปเผากจะท าใหเกดสารประกอบไฮโดรคารบอน ซงท าใหเกดมลภาวะท าใหโลกรอน และ การใชถงผาจะชวยลดการปนเปอนของสารพษตางๆ และหากทกคนหนมาใชถงผาเพยงสปดาหละ 1 วน จะชวยลดการใชถงพลาสตกไดมากกวา 100 ลานถง/ปเมอป พ.ศ. 2550 กทม.ตองเกบขยะมากถง 85,000

ตน/วน เปนถงพลาสตกถงรอยละ 21 หรอ 1,800 ตน/วน ดงนน หากเปลยนมาใชถงผาแทน จะชวยลดคาใชจายการเกบขยะไดวนละ 1.78 ลานบาท/วน หรอคดเปน 650 ลานบาท/ป แนวทางแกไขของมวลมนษยชาต เกยวกบปญหา พลาสตกลนโลก การรณรงคลดการใชถงพลาสตกหนมาใชถงกระดาษหรอถงผาในชวตประจ าวน การลดใชถงหวในหางสรรพสนคา ตาง ๆ ซงตองอาศยจตใตส านกของแตละคน ในการทจะรวมมอชวยกนลดการใชพลาสตก ในสวนยอย ๆ ในสวนภาพรวมขนาดใหญ เชน การน าพลาสตกไปผลตน ามนเชอเพลง การผลตพลาสตกจากพชหรอ ไบโอพลาสตกนาจะเปนทางเลอกอกแนวทางในการลด การใชพลาสตก ภาพรวม พลาสตก คอ วสดทมสวนประกอบส าคญอยางนอย 1 ชนดเปนพอลเมอรอนทรย ซงเปนสารประกอบทมน าหนกโมเลกลสง มสภาวะเปนของแขงในขนตอนสดทายของกระบวนการผลต สามารถท าใหเปนผลตภณฑรปรางตางๆ ไดโดยการท าใหไหล ระหวางขนตอนการผลตหรอการขนรป พลาสตกยอยสลาย คอ พลาสตกทถกออกแบบมาเพอใหเกดการเปลยนแปลงโครงสรางทางเคมภายใตสภาวะแวดลอมทก าหนดไวเฉพาะ กอใหเกดการสญเสยสมบตบางประการ ซงสามารถวดการยอยสลายไดโดยใชวธการทดสอบมาตรฐานทเหมาะสมส าหรบพลาสตกและการใชงานในชวงเวลาหนง ผลการทดสอบสามารถน ามาใชในการระบชนด และประเภทของพลาสตกยอยสลายได Ref : ธนาวด ลจากภย, “พลาสตกยอยสลายไดเพอสงแวดลอม”, ศนยเทคโนโลยโลหะและวสด ดงนนพลาสตกยอยสลายไดทางชวภาพคออะไร

ค าตอบคอ พลาสตกยอยสลายไดทางชวภาพเปน พลาสตกยอยสลายชนดหนงทมกลไกการยอยสลาย ดวยเอนไซม และแบคทเรยในธรรมชาต ซงเมอยอยสลายหมดแลวจะไดผลตภณฑเปน น า มวลชวภาพ กาซมเทน และกาซคารบอนไดออกไซด ซงสงเหลานเปนสงจ าเปนในการเจรญเตบโตและด ารงชวตของพช ซงรวมถงมนส าปะหลงและ ขาวโพด ทเปนวตถดบในการผลตเปนพลาสตกยอยสลายไดทางชวภาพ ดงนนวงจรของพลาสตกชวภาพจงมรปแบบคอ

Page 154: World Bioplastics Industry

พลาสตกยอยสลายไดทางชวภาพจะมสมบตตางๆ ในการใชงาน เชนเดยวกบพลาสตกโดยทวไป แตจะมความแตกตางกนตรงทเมอทงพลาสตกยอยสลายไดทางชวภาพนไปเปนขยะซงจะอยในสภาวะทเหมาะสมคอมแบคทเรยและเอนไซม พลาสตกยอยสลายไดทางชวภาพ กจะเกดการยอยสลายได ซงผบรโภคบางรายทกลววาพลาสตกยอยสลายไดทางชวภาพนจะเกดการยอยสลายไปในขณะทใชงานท าใหอายการใชงานสนไมคมคาในการใชงานนน กไมตองกงวลในจดนอกตอไป เพราะตราบใดทเราไมทงพลาสตกยอยสลายไดทางชวภาพนใหเปนขยะโดยเฉพาะเมอถกฝงกลบ ในสภาวะทเหมาะสมกบการยอยสลาย กจะไมเกดการยอยสลาย พลาสตก ยอยสลายดทางชวภาพ ทมแนวโนมทางการท าตลาดทด และมการผลตเพอใชเปนผลตภณฑ ไดแก Polylactic Acid หรอ PLA และ Polyhydroxyalcanoates หรอ PHAs

ซงเปนพลาสตกทไดจากธรรมชาต คอใชกระบวน การทางชวเคมในการเปลยนสภาพจากแปงทไดจากมนส าปะหลงและขาวโพด ใหเปนพลาสตกยอยสลายไดทางชวภาพ นอกจากพลาสตก 2 ชนดนแลว ยงมพลาสตกยอยสลายอกชนดหนงซงเปนทนยมในตลาดเชนกน นนคอ poly (butylene adipate-co-terephthalate) ซงเปน polymer ทไดจากวตถดบ ปโตรเคม ผลตโดยบรษท BASF ประเทศเยอรมน มสมบตทสามารถยอยสลายไดทางชวภาพเชนเดยวกบพลาสตกทง 2 ชนดขางตนซงไดมาจากพชธรรมชาต

พลาสตกชวภาพ เปนพลาสตกทสามารถยอยสลายไดเองตามธรรมชาต ซงสามารถน ามาใชเพอทดแทนพลาสตกจากปโตรเคมในอนาคต ทงน อตสาหกรรมการพลาสตกชวภาพเปนหนงในอตสาหกรรมเพออนาคต ตามมตของคณะอนกรรมการปรบโครงสรางเศรษฐกจของประเทศ โดยกระทรวงวทยาศาสตรและเทคโนโลยในฐานะหนวยงานเจาภาพหลกไดน าเสนอแผนทน าทางแหงชาตการพฒนาอตสาหกรรมพลาสตกชวภาพ (National Roadmap for the Biodegradable Plastics Industry Development) ในระยะเวลา 5 ป (พ.ศ. 2551-2555) เพอพฒนาใหยทธศาสตรอตสาหกรรมพลาสตกชวภาพของประเทศด าเนนการไดอยางเปนรปธรรม

ความเคลอนไหว การพฒนาและใช"พลาสตกชวภาพ" ในตางประเทศ

หลายคนอาจจะเคยเหน "พลาสตกชวภาพ" ทอยในรปถวย แกว หรอถงหว แตผลตภณฑเหลานนกยงดหางไกลชวตประจ าวนของเรา ดวยราคาทแพงเกนกวาจะน ามาใชอยางฟมเฟอยได ขณะทญปนเขาไปไกลถงขนน าไปผลตเปนมอถอ เสอผา หรอตกตาไดแลว เชนบรษท ยนตกะ จ ากด เปน บรษททผลต พลาสตกชวภาพ และมธรกจพฒนาสตรการผลตเมดพลาสตกชวภาพพแอลเอ (PLA :

Polylacticacid) เพอขนรปเปนผลตภณฑตางๆ ภายใตชอทางการคาเทอราแมค (Terramac) ซงจะมบรษทรบซอเมดพลาสตกชวภาพเหลานนไปขนรปอกท พลาสตก PLA เปนพลาสตกชวภาพทมลกษณะเปนฟลม ซงไดจากการน ากรดแลคตคไปผานกระบวนการพอลเมอไรเซชน (polymerization) ใหเปนเมดพลาสตก โดยน าวตถดบตนน าคอแปงทไดจากพช อาท ขาวโพด มนส าปะหลง เปนตน ไปผานกระบวนการหมกดวยเอนไซมและแบคทเรยใหไดกรดแลคตค พลาสตกทไดใชทดแทนพลาสตกพอท (PET) โพลเอสทลน (PE) หรอบรรจภณฑตางๆ เปนตน ทงนมบรษทเนเจอรเวรค แอลแอลซ (NatureWorks LLC) ของสหรฐ อเมรกา แหงเดยวทผลตเมดพลาสตก PLA สงขายใหกบบรษทตางๆ ทวโลก "ถงแยกขยะ" คอผลตภณฑจากพลาสตกชวภาพชนแรกของยนตกะ โดยชาวญปนนยมใชถงตาขายส าหรบแยกขยะเปยกซงปกตถงดงกลาวผลตจากพอลเมอร สวนผลตภณฑเดนของทางยนตกะคอโฟมจากเมดพลาสตกชวภาพ ซงยนตกะเปนบรษทเดยวในโลกทท าได โดยโฟมดงกลาวทนรอนได 120 องศาเซลเซยสแตไมสามารถทนความรอนจากของทอดซงมอณหภมมากกวา 200 องศาเซลเซยสได อยางไรกดทางบรษทจะไดพฒนาคณสมบตของโฟมตอไป นอกจากนยนตกะยงไดพฒนาเมดพลาสตกเพอขนรปเปนผลตภณฑตางๆ อกหลายชนด อาท ถงชา ตกตา เสอผา พลาสตกใสบรเวณชองจาหนาซองจดหมาย บรรจภณฑประเภทขวด PET เปนตน และหลายผลตภณฑจากเมดพลาสตกชวภาพของยนตกะกไดเรมวางจ าหนายบางแลว อาท โคมไฟซงจดจ าหนายโดยโตชบา หรอโทรศพทมอถอของเอนอซ (NEC) รนฟอรมา เอน701 ไออซโอ (Forma N701

iECO) เปนตน ทางดาน บรษท โซนประเทศญปน จ ากด ซงมผลตภณฑอเลกทรอนกสล าสมยหลายชนด อาท คอมพวเตอรโนตบคไวโอ (Vaio)

เครองเลนเกมคอนโซลเพลยสเตชน (PS) เครองเลนเพลงเอมพ 3 (MP3) เปนตน กหนมาใหความสนใจในการน าพลาสตกชวภาพมา

Page 155: World Bioplastics Industry

ใชกบผลตภณฑของบรษท โดยแตละปมปรมาณของพลาสตกชวภาพเปนสวนประกอบในผลตภณฑของบรษทประมาณ 10 ลานตน ซงนอยกวา 1% ของผลตภณฑทงหมด ฮโรยก โมร (Hiroyuki Mori) วศวกรอาวโสดานวสดเพอสงแวดลอมของโซน ไดเผยถงการประยกตใชพลาสตกชวภาพกบผลตภณฑของโซน โดยชวงป 2000-2002 ไดใชผลตเปนพลาสตกหอหมมนดสก (minidisc)

และใชเปนกลองพลาสตกใสบรรจวทยแบบพกพา ตอมาชวงป 2002-2003 พลาสตกชวภาพไดกลายเปนชนสวนเกอบ 90 % ของพลาสตกทงหมดในเครองเลนเทปวอลกแมน รวมถงเปนชนสวนของเครองเลนดวด อปกรณเสรมของหนยนตไอโบ (AIBO)

ลาสดชวงป 2004-2006 กไดใชพลาสตกชวภาพททนรอนไดมากขนกบผลตภณฑของโซน อาท เครองเลนดวด การดตวหลอก (Dummy card) ในคอมพวเตอรโนตบค ไอซการด(IC card) ทประยกตใชเปนบตรพนกงานหรอบตรเงนสดได และโทรศพทมอถอจากพลาสตกชวภาพทยงคงเปนตนแบบอย การพฒนาอตสาหกรรมพลาสตกชวภาพ ในประเทศไทย

ภาครฐโดย ส านกงาน นวตกรรมแหงชาต (สนช.) กระทรวงวทยาศาสตรและเทคโนโลย ไดสงเสรมและผลกดนให มการ คดคน นวตกรรม เกยวกบพลาสตกชวภาพ ขนเชน จดการประกวด“10 สดยอดธรกจนวตกรรม ประจ าป 2551 (TOP TEN

INNOVATIVE BUSINESS 2008)” เพอเปนตวอยางในการพฒนาธรกจนวตกรรมของภาคเอกชน และแนวโนมทศทางของธรกจใหมทมศกยภาพในประเทศไทย ณ โรงแรมสยามซต กรงเทพฯ การด าเนนการพฒนาโครงการนวตกรรมเชงยทธศาสตรดานอตสาหกรรมพลาสตกชวภาพนนภาครฐ มงหวงใหเกดการเรงรดการน าศกยภาพดานวตถดบทางการเกษตรของประเทศไทย มาสรางใหเกดอตสาหกรรมพลาสตกชวภาพขนในประเทศไทยอยางแขงแกรง เพอยดครองความเปนผน าในภมภาคและมโอกาสทจะขบเคลอนใหประเทศไทยเปนศนยกลางของอตสาหกรรมพลาสตกชวภาพ (bioplastics hub)

อยางครบวงจรในอนาคตและเพอพฒนาใหยทธศาสตรอตสาหกรรมพลาสตกชวภาพของประเทศถกน ามาด าเนนการในเชงธรกจนวตกรรม อนจะสงผลใหเกดการใชวตถดบชวมวลในประเทศอยางมประสทธภาพและสามารถเพมมลคาผลตภณฑเกษตรใหสงขนมากกวา 10 เทา และเปนโอกาสส าคญในการเรงสรางอตสาหกรรมพลาสตกชวภาพของประเทศใหเกดขนไดทนตอสถานการณความตองการของตลาดโลก เพอใหประเทศไทยครองความเปนผน าในภมภาคไปพรอมกบการสรางความสามารถดานเทคโนโลยของประเทศเพอเพมศกยภาพการแขงขนในระยะยาว ประเทศไทยเปนประเทศทมศกยภาพสงในการพฒนานวตกรรมทางดานธรกจชวภาพ เนองจากมความพรอมในปจจยตางๆ ทเอออ านวยตอความหลากหลายทางชวภาพ รวมทงความสามารถในการสรางองคความรดานวทยาศาสตรและเทคโนโลยชวภาพ ของบคลากรภายในประเทศ จงท าใหประเทศไทยมศกยภาพสงในการน าผลตภณฑธรรมชาตและสงมชวตตางๆ มาประยกตใชใหเกดประโยชน ดงนน สนช. จงไดแสวงหาความรวมมอกบหนวยงานวชาการตางๆ และภาคเอกชนเพอรวมรงสรรคนวตกรรมดานธรกจชวภาพในสองสาขาไดแก 1.เทคโนโลยชวภาพ (Biotechnology) เปนการพฒนานวตกรรมจากการน าเทคโนโลยชวภาพมาใชเพอยกระดบคณภาพชวตทงในดานเศรษฐกจและสงคม ทงในดานเทคโนโลยชวภาพเพอสขภาพ (health biotechnology)

2. เทคโนโลยชวภาพ ทางการเกษตร (agri-biotechnology)ผลตภณฑธรรมชาต (Natural Products) เปนการพฒนานวตกรรมเพอสรางมลคาเพมใหแกผลตภณฑจากธรรมชาต เชน พชเกษตร สมนไพร จลนทรย เปนตน โดยเฉพาะการพฒนานวตกรรมผลตภณฑเสรมอาหารและฟงกชนนลฟดส (nutraceutical

& functional food) ผลตภณฑยาและเครองส าอาง (pharmaceutical & cosmeceutical) ตลอดจนการสรางผลตภณฑใหมดานอาหาร (novel food)

นเปนตวอยางบางสวนทพอจะท าใหเราเหนภาพวา พลาสตกชวภาพมศกยภาพพอ ทจะน าไปพฒนาเปนผลตภณฑอะไรไดและแมวาญปนและประเทศกลมอตสาหกรรมชนน าของโลกไดกาวน าหนาไทยในการพฒนา พลาสตกชวภาพไปหลายขม แตสงทนาจะเปนขอไดเปรยบของไทยกคอเราม "มนส าปะหลง" ซงเปนวตถดบตนน าของพลาสตกชวภาพอยจ านวนมาก และความทาทายอยทเราจะสามารถพฒนาเทคโนโลยบนพนฐานทรพยากรของเราเองไดหรอไม และทส าคญ ประชาชนคนไทยทกคนตองการ ลดการใชพลาสตก หรอถามความจ าเปนกควรเลอกผลตภณฑ ทผลตจาก พลาสตกชภาพใหกวางขวางขน เพราะนอกจะชวยกนลดภาวะโลกรอนลงไดอยางไดผลแลว ยงเปนการสงเสรมผลตผลทางการ

Page 156: World Bioplastics Industry

ไบโอพลาสตก เทคโนโลยทเปนมตรกบสงแวดลอม

พลาสตกนบวามบทบาทส าคญตอการด ารงชวต หากเราไดมโอกาสไปเดนซอสนคาไมวาทใดกตาม จะพบวาผลตภณฑเกอบทกชนดทเราซอ อาหารสวนใหญทเรารบประทาน และเครองดมจ านวนมากทเราดมลวนผลตขนหรอถกบรรจอยภายใจภาชนะทเรยกวา พลาสตกดวยกนทงสน การใชพลาสตกมประมาณสงตามปรมาณประชากรโลกทเพมขนอยางตอเนองในแตละป ในท านองเดยวกนของเหลอทงทมากจากผลตภณฑพลาสตกกยอมมปรมาณมากขนตามกน ดงนน ความเขาใจเกยวกบพลาสตก รวมถงผลกระทบจากการใชวตถดบในการผลต กระบวนการผลต การใชผลตภณฑ และการก าจดผลตภณฑพลาสตก จงเปนสงจ าเปนส าหรบมนษยผซงอาศยอยบนโลกใบเดยวกน ทงนเพอเปนแนวทางในการรวมกนลดภาระการจดการของเสยทมอย และปองกนมลพษทอาจเกดขนอกหลายดานในอนาคตอนใกล

พลาสตกเปนวสดทผลตจากสารพอลเมอร (polymer) หลายชนด มาสรางพนธะรวมกน ค าวา poly

แปลวา มาก สวนค าวา mer แปลวา สวน หรอ สวนประกอบ ดงนน polymer จง หมายความวา หลายๆ สวนมารวมกน แตละสวนของ polymer เรยกวา monomer หรอ monomeric

unit ซงสามารถสรางพนธะเปนสายโซตอเนองกน เกดเปน polymer ทมโมเลกลใหญ มสตรโครงสรางสลบซบซอน มความแขงแรง และยดหยนขน polymer เกดขนไดหลายรปแบบ แตละรปแบบจะสรางผลตภณฑทแตกตางกนออกไป เชน พรมเดครอน (พรมทท าดวยเสนใยสงเคราะห มสมบตทเหนยวทนทาน ไมยน มชอทางการคาวา Dacron ) ท าจากพอลเมอรชนดทสรางพนธะเรยงตอกนเปนสายโซแนวตรง ขวดแชมพและเหยอกนมทมความออนนมยดหยนได ท าจากพอลเมอรชนดทสรางพนธะแบบมกงกานหรอเปนแขนง ยางรถยนต และลกโบวลง ท าจากพอลเมอรทสรางพนธะแบบเชอมโยง เปนตน

พลาสตกจากพอลเมอรสงเคราะหกนพลาสตกจากไบโอพอลเมอร

สวนผสมหลกของพลาสตก คอ สารพอลเมอร การผลตโดยใชสารพอลเมอรตางชนด และตางกระบวนการจะไดพลาสตกตางชนด ตางรปแบบ ขนอยกบวตถประสงคของการน าพลาสตกชนดนนไปผลตผลตภณฑอะไร อยางไรกตามวสดทเราเรยกวา พลาสตกจะตองมขอก าหนด 3 ประการ คอ

1. มสารพอลเมอรเปนสวนผสมหลก

Page 157: World Bioplastics Industry

2. ตองอยในสถานทเปนของเหลว ณ ชวงใดชวงหนงระหวางการบวนการผลต

3. เมอสนสดกระบวนการผลต ผลตภณฑสดทายตองอยในสถานะทเปนของแขง

พลาสตกทใชกนอยทกวนน สวนใหญผลตจากพอลเมอรสงเคราะห ซงมสารพวกปโตรเคม เปนสวนผสมหลก พอลเมอรสงเคราะหเหลานจะสรางพนธะตอกนเปนโซยาวจนเปนโมเลกลใหญ แตการใชสารพอลเมอรอยางเดยวในการผลต ยงไมเพยงพอ เนองจากอาจท าใหผลตภณฑดแขงแรง แตเปราะเกนไป บดงอไดแตยดหรอหดตวมากเกนไป หรอพลกงอและยดหยนไดด แตรปลกษณไมสวยงามไมตองใจ ดงนนระหวางกระบวนการผลตจงมกมการเตมสาร plasticizers (สารเพมความยดหยน และออนนม) และสารตวเตมอนๆ เพอเพมความทนทาน ความยดหยนและปรบปรงรปลกษณของผลตภณฑใหดดยงขน การเพมสมบตของวสดโดยการเตมสารชนดตาง ๆ ดงกลาว เปนการเปลยนแปลงสมบตทางฟสกสและเคมของสารพอลเมอรตงตน ซงนอกจากท าใหน าหนกโมเลกลใหญขนแลว ยงท าใหสารพอลเมอรมสมบตเปนสารพวก hydrophobic เปนผลท าใหพลาสตกและผลตภณฑพลาสตกทผลตจากพอลเมอรเหลานเกดการสญเสยความสามารถในการยอยสลายโดยเชอจลนทรยในธรรมชาต เมอสนสดอายการใชงาน การไมยอยสลายของวสดทใชผลตพลาสตกนเองทเพมภาระการจดการของเสยเนองจากการน าไปใชถมทวางเปลาหรอฝงกลบ ซงเปนวธการก าจดขยะทงาย และประหยดคาใชจาย ไมสามารถแกปญหาขยะพลาสตกทไมยอยสลาย นอกจากนการเผาท าลายยงท าใหเกดแกสพษ และกลนไมพงปรารถนาทอาจกออนตรายตอการด ารงชพของสงมชวตได

การลดภาระการจดการของเสยทเปนพลาสตก หรอขยะพลาสตกทไมยอยสลาย โดยการน ามาใชซ า (reuse) การหมนเวยนกลบมาใชใหม (recycle) หรอลดปรมาณการใช (reduce) ดวยการใชวสดชนดอนทยอยสลายไดเขามาทดแทน กสามารถลดปญหาไดในระดบหนง แตสงทควรค านงถงเกยวกบการน าผลตภณฑพลาสตกมาใชซ า หรอหมนเวยนกลบมาใชใหม คอ

1. การปนเปอนของการน าผลตภณฑพลาสตกมาใชซ า หรอหมนเวยนกลบมาใชใหม

2. จ านวนครงของการน าผลตภณฑพลาสตกมาใชซ า หรอหมนเวยนกลบมาใชใหม

ผลตภณฑพลาสตก โดยเฉพาะผลตภณฑทเปนบรรจภณฑเมอน ามาใชซ าควรมการคดแยก และ ท าความสะอาดไดอยาแทจรงดวยกรรมวธทเหมาะสม ตามวตถประสงคของการน าไปใชงานซ า จ านวนครงของการท าความสะอาดและการใชซ า ท าใหผลตภณฑพลาสตกเสอมสภาพเนองจากสภาพของวสดทใชในการ

Page 158: World Bioplastics Industry

ผลต ขดจ ากดของการใชผลตภณฑพลาสตกซ า จงอาจขนกบดลยพนจของผใชงาน

กรณหมนเวยนผลตภณฑพลาสตกกลบมาใชใหม การคดแยกและการท าความสะอาดผลตภณฑคอนขางยงยาก และมคาใชจายในการด าเนนการสง เนองจากตองจดกลมตามชนดของพลาสตกในขนตอนการคดแยก และก าจดสงปนเปอน เชน อาหาร หมกพมพ และสงแปลกปลอมอน ๆ ทตดมากบผลตภณฑพลาสตก ออกใหหมดกอนน าเขากระบวนการหมนเวยนกลบมาใช ยงไปกวานน พลาสตกทน าเขากระบวนการหมนเวยนกลบมาใช มกท าใหระบบการท างานของเครองจกรหยดชะงก และผลตภณฑทผลตขนใหม มคณภาพทดอยลง อนเปนผลมาจากการเสอมสภาพของพอลเมอรทผานกระบวนการผลตซ าหลายครง การพฒนาเทคโนโลยสมยใหมไดมการน าพลาสตกทไมยอยสลายเขาสกระบวนการหมนเวยนกลบมาใช แลวท าการแปรสภาพวสดกลบไปเปนสารตงตน (feed monomer) เพอน าไปผลตสารพอลเมอรส าหรบผลตพลาสตก และผลตภณฑพลาสตกขนมาใหมได อยางไรกตาม การแปรสภาพพลาสตกกลบไปสสารตงตนท าใหตนทนของสารตงตนเพมขน สงผลใหตนทนการผลตผลตภณฑ (final plastic หรอ finished product ) สงขนตามไปดวย ซงแมจะเปนการชวยลดภาระการจดการกบของเสยจ าพวกพลาสตกทไมยอยสลาย แตระหวางกระบวนการแปรสภาพพลาสตกกอาจกอใหเกดมลพษทางอากาศ หรอทางน า อนเปนการลดภาระการจดการมลภาวะดานหนงแลวไปกอมลภาวะดานอนอกหลายดานตามกนไป

เทคโนโลยการน าพลาสตกทไมยอยสลายหมนเวยนกลบมาใชใหม แมจะไดรบการพฒนาอยาไมหยดยง แตกไมสามารถแกปญหาเรองตนทนการผลตใหลดต าลงในระดบทผผลตยอมรบได ประกอบกบความตองการใชพลาสตกและผลตภณฑพลาสตกมปรมาณเพมขนอยางตอเนอง จงเกดความกงวลเกยวกบปรมาณของเสยทเพมขน และทรพยากรทนบวนมแตจะลดนอยลง ซงหากไดมการศกษาเพอแสวงหาแหลงวตถดบชนดใหม หรอวสดพอลเมอรธรรมชาตทสามารถยอยสลายไดมาใชผลตพลาสตกในอตสาหกรรมแลวกนาจะเปนการเพมและกระตนความสนใจใหเกดการน าพอลเมอรชนดใหมนมาใชผลตพลาสตกทยอยสลายไดตอไปในอนาคตขางหนาดวย

ไบโอพอลเมอรสไบโอพลาสตก ทางเลอกใหมส าหรบโลกในอนาคต

เมอเรานกถงบางสงบางอยางทยอยสลายได เรามกจะนกถงภายการแยกออกเปนชนเลกชนนอยแลวเกดการสลายและหายไป เชนเดยวกบไบโอพลาสตก ซงผลตจากไบโอพอลเมอร ทไดจากวสดธรรมชาต สามารถยอยสลายไดดวยกระบวนการทางชวภาพ แลวเปลยนไปเปนธาตคารบอน ออกซเจน และไฮโดรเจน โดยจะยอยสวนประกอบทเปนวสดธรรมชาต เชน พวกคารโบไฮเดรต โปรตนจากถว และไตรกลเซอไรด เปนตน ระยะเวลาการยอยสลายขนอยกบน าหนกโมเลกล ชนด และปรมาณไบโอพอลเมอรทใชเปนสวนผสมในการผลตไบโอพลาสตก เชน ไบโอพลาสตกทผลตจากแปงเพยงอยางเดยว เมอไดรบความชน แปงจะเกดการพองตว และเสยรป จากนนกจะเกดการยอยสลายไปอยารวดเรว และปลอดภย กลายเปนวตถดบทคนกลบสธรรมชาตกลมกลนไปกบสภาพแวดลอม แตเมอน าแปงผสมเขากบ ไบโอพอลเมอรชนดอนหรอพอลเมอรทไมยอยสลายปรมาณเลกนอยกจะท าใหไบโอพลาสตกและผลตภณฑทผลตไดมความแขงแรง

Page 159: World Bioplastics Industry

ทนทานยงขน ดงนน การผลตไบโอพลาสตกเพอการผลตผลตภณฑใด ๆจงตองพจารณาวตถประสงคของการใชงานเปนหลก อยางไรกตาม การยอยสลายงายของไบโอพลาสตกทผลตจากวสดทธรรมชาตสามารถสรางขนใหมไดท าใหผลตภณฑไบโอพลาสตกไมแขงแรงทนทาน มอายการใชงานสนกวา อกทงตนทนการผลตกสงกวาเมอเทยบกบพลาสตกสงเคราะหทวไปทผลตจากสาร ปโตรเคมทไดจากธรรมชาต แตไมสามารถสรางขนใหม ซงหากไดมการพฒนาดานความแขงแรง ทนทาน โดยท าใหความสามารถในการยอยสลายบรรลผลส าเรจอยางแทจรง และลดตนทนการผลตต าลงไดแลว กจะท าใหผลตภณฑไบโอพลาสตกมอนาคตสดใสยงขน ดงนนการพฒนาผลตภณฑทสมฤทธผลจงอาจเรมจากการเลอกใชวสดธรรมชาตทหาไดงาย มปรมาณมาก ราคาถก และสามารถปรบปรงคณภาพเพอใหผลตภณฑมความทนทานแขงแรงขณะใชงาน โดยมปจจยในการพจารณาถงผลกระทบทมตอสภาพแวดลอม คอ

1. เปนวสดธรรมชาตทใชแลวสามารถเกดขนใหมได โดยพจารณาวา วสดนนสามารถเกด หรอเจรญเตบโตขนใหมเพอใหทนตอการน าไปผลตไบโอพลาสตกหรอไม เชน วสดทผลตจากเมลดถวน ามาใชประโยชนไดเรวกวาท

ผลตจากไม

2. มความสามารถในการยอยสลาย โดยพจารณาจากระยะเวลาการยอยสลายหลงการเลกใชงาน

3. ลดปรมาณของเสยทเกดโดยพจารณาปรมาณของเสย หรอมลภาวะทเกดขนระหวางกระบวนการผลตไบโอดพลาสตก หรอเมอเลกใชผลตภณฑแลว

อนทจรงวสดธรรมชาตหลายชนดไดมการพฒนาสมบตทางเคมและฟสกส ใหกลายเปนไบโอพอลเมอรส าหรบผลตผลตภณฑไบโอพลาสตกทมความแขงแรง ทนทาน ยดหยน และหกงอได ซงปจจบนไดมการขยายการผลตออกมาใชเชงการคา เชน cellulose collagen casein polyesters แปงโปรตนจากถว และขาวโพด เปนตน และในบรรดาวสดธรรมชาตทงหลายเหลาน แปงนบวามจ านวนมากและราคาถกทสด เนองจากสามารถหาไดวายจากพชชนดตาง ๆ เชน ขาวโพด ขาวสาล มนฝรง มนเทศ มนส าปะหลง เปนตน แตแปงมขดจ ากดการใชงายคอนขางนอย เนองจากไบโอพลาสตกทผลตจากแปงโดยตรง เกดการพองตวและเสยรปงายเมอไดรบความชน จงไดมการใชเชอจลนทรยเขาไปยอยสลายแปงแลวเปลยนแปงใหกลายสาร monomer ทเรยกวา กรด lactic หลงผานการบวนการ polymerization กรด lactic จะเชอมโยงตอกนเปนสายโซยาวเรยกวา polymer ซงจะสรางพนธะตอไปอก จนกลายเปนพลาสตกทเรยกวา polylactic acid (PLA) นอกจากนเชอจลนทรยหลายชนดยงใชแปงในการสงเคราะหและสะสมพอลเมอรทมขนาดโมเลกลใหญขนภายในเซลล

Page 160: World Bioplastics Industry

ปจจบนไบโอพลาสตกจากไบโอพอลเมอรทไดจากการเปลยนแปลงของแปง หรอจากแปงโดยตรง สามารถน ามาใชผลตผลตภณฑหลายประเภท เชน ถงและกระสอบบรรจปย ภาชนะบรรจอาหารจากดวน บรรจภณฑตางๆ แผนฟลมส าหรบหอของและคลมตนกลาของพชส าหรบกนแมลง ผาออมและผลตภณฑอน ๆ เชน บรษทโตโยตา เปนบรษทผลตรถยนตรายแรกของโลกทใช polylactic acid (PLA)

ในการผลตชนสวนรถยนต และปลอกครอบยางอะไหลรถยนต บรษทมตซบชพลาสตกประสบความส าเรจในการเพมความแขงแรง และความสามารถในการตานทานความรอนของ polylactic acid โดยน ามาท าปฏกรยาทางเคมรวมกบไบโอพลาสตกและสารตวเตมอน ๆไบโอพลาสตกชนดใหมทผลตขนสามารถน ามาผลตกลอง และโครงพลาสตก ส าหรบผลตภณฑชนใหมของบรษท Sony ในขณะเดยวกบ บรษท NEC ไดทดลองใช polylactic acid ผสมกบเสนใยปอในปรมาณรอยละ 20 โดยน าหนก เพอการผลตผลตภณฑเกยวกบอเลกทรอนกสทมความแขงแรง และตานทานความรอนสง เปาหมายในระยะเวลา 2 ปขางหนาของบรษท NEC คอ การใชไบโอพลาสตกชนดใหมนเพยงอยางเดยวในการผลตผลตภณฑ เชน ท ากลองดานนอกของชดคอมพวเตอร และผลตภณฑชนดอนทสามารถใชประโยชนซบซอนยงขน ซงในปจจบน ประเทศญปนไดมการใชพลาสตกประมาณ 14 ลานตนตอป หากการผลตไบโอพลาสตก หรอพลาสตกทเปนมตรตอสงแวดลอม มปรมาณการผลตเพมขนเพยงปละ 1 หมนตน แลวคาดวาในป 2005 นตลาดส าหรบไบโอพลาสตกคงจะเตบโตอยางชนดทคาดไมถงเลยทเดยว

กลาวโดยสรปกคอ พลาสตกหรอผลตภณฑพลาสตกทผลตจากพอลเมอรสงเคราะหจากสารปโตรเคมทใชกนอยทวไป แมจะมราคาถก มความแขงแรงและมอายการใชงานนาน แตความทนทานและการยดเกาะกนอยางเหนยวแนนของเนอพลาสตก ท าใหพลาสตกไมสามารถยอยสลายไดดวยกระบวนการทางชวภาพ อนเปนการสรางภาระการจดการขยะ หรอของเหลอทง ดงนนจงไดเกดการศกษาวจยเพอน าวสดธรรมชาตทหาไดงาย มปรมาณมาก และราคาถก มาทดลองผลตไบโอพอลเมอร เพอการผลตไบโอพลาสตก ซงการผลตไบโอพอลเมอรโดยใชวสดธรรมชาตเปนวตถดบน นอกจากจะใชพลงงานในการสงเคราะห และยอยสลายต าแลวยงท าใหดนมสภาพดในการยอยสลาย ลดการเกดฝนกรดและสรางสภาพแวดลอมโดยรวมทดตามไปดวย นอกเหนอจากนน ผลตภณฑไบโอพลาสตกทไดรบการพฒนาแลวยงมสมบตในดานความแขงแรง ยดหยนและทดทานตอการใชงานไดดเชนเกยวกบพลาสตก สงเคราะหจนสามารถผลตออกสตลาดมากขน อยางไรกตาม ในอนาคตขางหนาหากไดมการสนบสนนและพฒนาการใชทรพยากรทสามารถสรางขนใหมในการผลตไบโอพลาสตก โดยท าการประเมนหรอก าหนดอายการใชงาน ศกษาผลกระทบและระยะเวลาการยอยสลายของผลตภณฑ หลงการเลกใชงานพรอมทงหาวธการบรหารจดการทเหมาะสมลดตนทนการผลต เสรมความร และสรางความเขาใจแกผเกยวของใหมากขนแลว กจะท าใหผลตภณฑไบโอพลาสตกกลายเปนทนยม และยอมรบของคนทงโลกในอนาคตขางหนาได

Page 161: World Bioplastics Industry

ภาพนคอ กระบวนการยอยสลาย